Mindanao State University

General Santos City

Submitted by: Dongosa, Davy, 1-BS MATH

Math 108

June 08, 2023

knitr::opts_chunk$set(echo = TRUE)

Install packages (if needed)

if (!require(ggplot2)) {
  install.packages("ggplot2")
}
## Loading required package: ggplot2
if (!require(dplyr)) {
  install.packages("dplyr")
  }
## Loading required package: dplyr
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
if (!require(stats)) {
  install.packages("stats")
}

Load packages

library(ggplot2) library(dplyr) library(stats)

CONTINUOUS PROBABILITY DISTRIBUTIONS

1. Normal Probability Distributions

# Specify x-values for dnorm function
x_dnorm <- seq(-5, 5, by = 0.005)
y_dnorm <- dnorm(x_dnorm)
y_pnorm <- pnorm(x_dnorm)
x_qnorm <- seq(0, 1, by = 0.005)
y_qnorm <- qnorm(x_qnorm)

# Apply dnorm function
# Apply pnorm function
# Apply qnorm function
set.seed(123)
N <- 500
y_rnorm <- rnorm(N)

# combine plots
par(mfrow = c(2, 2))
plot(y_dnorm, main = "Density plot")
plot(y_pnorm, main = "Cumulative Density plot")
plot(y_qnorm, main = "Quantile plot")
plot(y_rnorm, main = "Scatter Plot Random Samples")

par(mfrow = c(1, 1))

2. Exponential Probability Distributions

# Specify x-values for dexp function
x_dexp <- seq(0, 1, by = 0.02)
y_dexp <- dexp(x_dexp, rate = 5)
y_pexp <- pexp(x_dexp, rate = 5)
x_qexp <- seq(0, 1, by = 0.02)
y_qexp <- qexp(x_qexp, rate = 5)

# Apply dexp function
# Apply pexp function
# Apply qexp function
set.seed(13579)
N <- 500
y_rexp <- rexp(N, rate = 5)

# combine plots
par(mfrow = c(2, 2))
plot(y_dexp, main = "Exp Density plot")
plot(y_pexp, main = "Exp Cumulative Density plot")
plot(y_qexp, main = "Exp Quantile plot")
plot(y_rexp, main = "Exp Scatter Plot Random Samples")

par(mfrow = c(1, 1))

3. Gamma Probability Distributions

# Specify x-values for dgamma function
x_dgamma <- seq(0, 1, by = 0.02)
y_dgamma <- dgamma(x_dgamma, shape = 5)
y_pgamma <- pgamma(x_dgamma, shape = 5)
y_qgamma <- qgamma(x_dgamma, shape = 5)

# Apply dgamma function
# Apply pgamma function
# Apply qgamma function
set.seed(13579)
N <- 500
y_rgamma <- rgamma(N, shape = 5)

# combine plots
par(mfrow = c(2, 2))
plot(y_dgamma, main = "Gamma Density plot")
plot(y_pgamma, main = "Gamma Cumulative Density plot")
plot(y_qgamma, main = "Gamma Quantile plot")
plot(y_rgamma, main = "Gamma Scatter Plot Random Samples")

par(mfrow = c(1, 1))

4. Beta Probability Distributions

# Specify x-values for dbeta function
x_dbeta <- seq(0, 1, by = 0.02)
y_dbeta <- dbeta(x_dbeta, shape1 = 2, shape2 = 5)
y_pbeta <- pbeta(x_dbeta, shape1 = 2, shape2 = 5)
y_qbeta <- qbeta(x_dbeta, shape1 = 2, shape2 = 5)

# Apply dbeta function
# Apply pbeta function
# Apply qbeta function
set.seed(24680)
N <- 500
y_rbeta <- rbeta(N, shape1 = 2, shape2 = 5)

# combine plots
par(mfrow = c(2, 2))
plot(y_dbeta, main = "Beta Density plot")
plot(y_pbeta, main = "Beta Cumulative Density plot")
plot(y_qbeta, main = "Beta Quantile plot")
plot(y_rbeta, main = "Beta Scatter Plot Random Samples")

par(mfrow = c(1, 1))

5. Chi-Square Probability Distributions

# Specify x-values for dchisq function
x_dchisq <- seq(0, 20, by = 0.01)
y_dchisq <- dchisq(x_dchisq, df = 3)
y_pchisq <- pchisq(x_dchisq, df = 3)
x_dchisq <- seq(0, 1, by = 0.01)
y_qchisq <- qchisq(x_dchisq, df = 3)

# Set seed for reproducibility
set.seed(13579)
N <- 500

# Generate random samples
y_rchisq <- rchisq(N, df = 3)
y_rchisq
##   [1]  9.40875055  2.39449258  0.47390375  0.61063988  3.05346606  0.76055155
##   [7]  4.22813263  2.18121985  8.60938778  0.72189112  0.64786568  0.60733259
##  [13]  3.85738502  5.25352396  1.02763548  2.50508821  1.81485216  3.34653065
##  [19]  1.53994122  5.32058188  2.31422368  1.29958709  1.53846829  3.07388630
##  [25]  5.03972548  4.60117189  3.99952446  0.77051536 11.09975361  2.87102132
##  [31]  2.66297030  0.97438692  9.58511164  2.33491566  1.82202004  0.31053377
##  [37]  1.16993670  1.53529001  2.17679004  0.24911057  4.50328189  4.07550909
##  [43]  0.40882732  2.71601149  1.48556911  2.91149035  3.96544527  1.67145199
##  [49]  1.83814128 10.84706357  4.66938441  4.02486494  0.76251372  8.73986979
##  [55]  5.70158601  4.28402436  1.68905146  0.43773623  3.24213731  3.37263247
##  [61]  0.24698024  3.69817912  4.80063458  0.55473343  0.89342037  2.72203575
##  [67]  0.08623424  6.05450146  7.02666720  0.96049100  5.67837805  8.61924646
##  [73]  1.35375731  1.80854914  0.69764473  2.83765195  5.25771695  2.41057643
##  [79]  1.11184120  0.62286495  6.09394871  4.80252016  1.62857503  1.73419055
##  [85]  4.92319878  1.80697406  5.31603368  0.19579514  4.38843740  2.75813422
##  [91]  4.00974470  0.45875695  1.67968454  2.66826916  4.96100896  0.78192253
##  [97]  1.22483829  4.63359608  9.14422962  3.26457746  6.11886265  2.66934759
## [103]  0.58634909  4.76454979  2.58500924  1.28933392  1.82988799  2.79782366
## [109]  5.10224022  2.26271269  3.23533157  1.96837213  4.55797867  2.45366481
## [115]  2.78623964  8.10259274  2.42613999  0.56502042  2.32045904  1.66553449
## [121]  1.46762928  2.65247223  0.47889745  1.30915620  2.75920500  2.41948240
## [127]  3.59027295  4.86424338  1.08212524  2.00504782  6.44897562  0.95514994
## [133]  4.94106405  2.09732089  0.14170620  2.71284398  1.44311908  1.73813129
## [139]  0.16362987  7.29436551  0.55050084  1.61259287  1.27948111  4.75469346
## [145]  0.57872591  2.05315443  4.54302047  0.98521294  2.68879334  3.94491626
## [151]  1.68234630  1.64471538  1.14256421  6.57604073  8.61550038  3.70421549
## [157]  6.91122006  1.37971364  2.17300697  1.56100089  1.40502243  3.13862807
## [163]  5.12983401  1.65367214  1.75403713  0.43769853  6.01507458  1.62878151
## [169]  1.48207507  0.20140100  0.75355260  3.70300291  5.71393906  2.35147853
## [175]  3.78689980  2.87434325  5.33529802  3.50729683  4.39108038  0.95995393
## [181]  1.46142662  2.22823674  3.59526631  0.35364592  5.50534980  2.00616905
## [187]  4.31321548  1.65105986  2.82351005  2.04212295  3.33770802  1.06056483
## [193]  3.27196332 10.26585822  3.21413594  1.88555689  2.98764668  5.33299335
## [199]  0.89450408  0.14272733 12.37941712  1.50134073  1.88723251  1.23757404
## [205]  7.44252558  5.25712210  0.66368283  6.50434193  0.34326324  2.77502006
## [211]  1.64567030  0.96518556  3.70368460  4.06409428  3.83572403  1.86725197
## [217]  4.07504842  4.96934595  0.96060553  1.83357930  2.06380655  1.99110640
## [223]  2.85363432  1.84919636  6.07530162  1.15887268  4.74273662  4.05098834
## [229]  2.78334812  6.60366867  4.42457647  6.46911889  1.88190257  1.30509407
## [235]  4.44786060  2.64429315  6.22834731  4.49125663  3.19874276  1.75182019
## [241]  2.74365686  2.87658283  4.03175534  2.25393665  0.34867833  3.28062628
## [247]  1.08382098  3.05832296  0.61140000  0.84739619  0.06916182  4.55163499
## [253]  1.89447981  3.17310550  1.64190736  6.27133478  1.94353395  0.36536351
## [259] 11.43281605  2.84261702  0.47264031  0.21345420  1.76941064  9.05192457
## [265]  1.67488721  3.06676889  1.54592061  1.54252576  8.21569440  3.44653629
## [271]  0.61142602  2.45363230  1.96786170  5.08668112 10.91033243  0.87495420
## [277]  7.59095400  1.13252367  2.91214090  2.30518633  0.60818915  0.40056714
## [283]  1.90707014  2.05440314  2.01931560  0.84046939  2.37367838  5.18537588
## [289]  7.42067081  3.67846312  1.05225825  1.58791362  6.64439628  5.35359710
## [295]  6.16092871  2.75834116  0.50649665  1.56081242  3.10216977  3.36822383
## [301]  2.04978656  5.14793534  0.32135644  4.16446275  4.89426116  0.36479863
## [307]  1.09238204  1.22785925  2.31187268  3.18676316  2.71610860  0.29451038
## [313]  3.34124506  5.73558789  0.88006749  2.23945583  0.75896752  2.69230938
## [319]  1.39445491  0.68600927  6.46720639  0.32457497  6.16194856  3.36246320
## [325]  0.95280092  1.87507381  0.91296744  0.17341532  0.93230551  8.01506002
## [331]  2.22132303  1.76855577  0.32680574  1.55297357  2.37164795  4.67099439
## [337]  5.47919441  1.96202854  1.50609117  4.53360140  0.39519184  1.11236453
## [343]  0.28010174  1.32530773  0.22717598  1.53055254  4.93143765  2.15666910
## [349]  3.71864708  3.62219243  0.98808060  2.36746244  0.31068685  1.27407609
## [355]  3.05935082  2.07381453  6.98316264  4.16332313  1.21919812  1.74032200
## [361]  5.31322981  0.71298834  2.45722527  2.56677598  3.39361980  1.68719617
## [367]  3.64543733  1.60842628  1.26145291  7.99994961  0.51836418  0.42602713
## [373]  2.60605595  3.66170012  4.60457431  5.38959526  0.32303946  7.39590159
## [379]  4.63380827  2.86797763  6.73257721  5.02217780  4.54290862  1.72781440
## [385]  2.55165773  0.51903319  7.20794861  4.27637990  6.97893764  5.27277277
## [391]  0.08424638  6.15941751  2.84354613  1.71553448  4.96513986  2.40313404
## [397]  4.65908322  0.91652584  2.35900077  2.18638557  2.38334553  1.47638425
## [403]  4.14813242  2.91230746  1.97241802  0.44100204  3.02057861  2.86459387
## [409]  4.68297548  1.14348297  0.53490983  3.88500157  2.62846223  3.26888076
## [415]  5.05340695  1.71472359  0.46968665  0.58776463  2.73643733  4.06736212
## [421]  3.20706821  1.40642997  2.02054134  3.36314973  1.85166814  2.93743693
## [427]  1.03219509  0.70642856  7.83573200  2.95669980  3.38391454  5.83193738
## [433]  3.10288614  1.05020945  2.89051613  2.35347553  4.76565805  2.84822843
## [439]  2.39680408  3.25089192  3.40390938  4.74646909  1.45606493  1.41568068
## [445]  0.59590329  9.34740023  0.49047683  5.19266202  0.64214743  0.38472440
## [451]  7.80086877  0.82916509  0.76496724  2.59823113  5.60805953  0.89121768
## [457]  4.84986579  0.14638504  6.15821231  0.51456229  3.07447494  2.09832538
## [463]  2.48757543  3.03690522 11.95474282  5.80105280  2.90603751  2.51528917
## [469]  0.53151149  0.82663654  3.24340917  7.98116945  1.17568590  3.16492180
## [475]  3.20115112  0.38249294  7.52764504  2.46744016  2.66668296  8.71035257
## [481]  1.10757543  1.89540619  2.85836319  1.95992748  0.34443267  2.26796444
## [487]  4.72284239  3.64465760  0.62915959  9.69228171  8.18372736  3.82590431
## [493]  0.58277129 14.54554407  1.52259235  5.60318348  6.75510659  3.74061509
## [499]  0.38593359  0.84105710
# Combine plots
par(mfrow = c(2, 2))
plot(y_dchisq, main = "Chi Square Density plot")
plot(y_pchisq, main = "Chi Square Cumulative Density plot")
plot(y_qchisq, main = "Chi Square Quantile plot")
plot(y_rchisq, main = "Chi Square Scatter Plot Random Samples")

par(mfrow = c(1, 2))
plot(density(y_rchisq), main = "Density plot")
hist(y_rchisq, main = "Histogram")
par(mfrow = c(1, 1))

# Modify values of the shape parameter
y_rchisq2 <- rchisq(N, df = 1)
y_rchisq3 <- rchisq(N, df = 2)

# Plot density with higher mean
lines(density(y_rchisq2), col = "coral2", lwd = 3)

# Plot density with higher sd
lines(density(y_rchisq3), col = "green3", lwd = 3)

# Add legend to the plot
legend("topright",
       legend = c("df = 3", "df = 1", "df = 2"),
       col = c("black", "coral2", "green3"),
       lty = 2, lwd = 3,
       title = "Chi Square Distribution in R with different degrees of freedom")

6. Students t Probability Distributions

# Specify x-values for dt function
x_dt <- seq(-4, 4, by = 0.01)
y_dt <- dt(x_dt, df = 1)
y_pt <- pt(x_dt, df = 1)
x_dt <- seq(0, 1, by = 0.01)
y_qt <- qt(x_dt, df = 1)

# Set seed for reproducibility
set.seed(91929)
N <- 500

# Generate random samples
y_rt <- rt(N, df = 1)
y_rt
##   [1]  -0.206680813   0.687827774   0.097775011  -0.320853310   0.732752143
##   [6]   0.239506538   0.829111987  -0.968523712   2.943826284   1.286777777
##  [11]  -2.267263824   1.354351052   4.312681123   1.080469914   0.638726100
##  [16]  -1.419955543  -0.243128132   0.053082008   1.406649321  21.815783201
##  [21]  -1.626295490  -4.601582677   0.834281511 -11.004810264   2.934937810
##  [26]  -0.336454957  -0.831258982   3.958851185   1.662298533  -0.882703587
##  [31]  -0.810382620   0.681780649  -2.446399374   0.758066790  -0.213445168
##  [36]  -0.743516359  -3.783991229   0.412218027   0.342464072  -0.484595660
##  [41]   0.263298603  -1.136493441  -0.419313003  -0.027935552   2.297732156
##  [46]  -0.831028673  -1.506974454   1.845560699  -2.443561862   0.302679257
##  [51]   1.651117050   1.356164125  -2.405459421  -2.968223150   0.599379697
##  [56]   4.662295938  -0.065611122 -57.858327769   0.517822423   0.958256365
##  [61]   5.081258054   0.866385715  -0.856753660  -0.515367493  -2.781923327
##  [66]   0.745971073  -0.711160846   0.305279358   0.991753204  -1.877920271
##  [71]  -1.164522911  -1.411948308  -1.173261105  22.539142063   0.092592839
##  [76]  -0.376208135  -1.116272186   0.470584966   0.195007956   0.040906665
##  [81]   2.142722847  -0.543800768  -0.307655882   0.452904062   0.032532871
##  [86]  10.045834946  -0.860729053   0.256368832   0.871727596   1.661314283
##  [91]  -1.364645917  -2.048647859  -0.503850398   1.372356305   0.118479068
##  [96]  -1.043361194   0.059507279  -3.133569916  -2.560703884   0.275265477
## [101] -17.779647582  -0.037759774  -2.452026380  -0.157049897   1.514400946
## [106]   0.992970158   0.001793779  -0.911563907   0.769091996  -5.187242304
## [111]   0.969133332  -3.188563317  -6.411608287   0.956685119   0.253864046
## [116]   3.104547101  -0.340563096   1.241340681   0.976833115  -0.163751529
## [121] -69.212656517   0.798819936  -0.569308621   2.122199979   0.276846670
## [126]  -3.191976010   6.981356152   2.342004740   0.569817964  -0.300670837
## [131]  -0.872034108  -0.261438268  -0.514416741 -35.153470607   0.355096217
## [136]  -1.279621823   0.861112020   1.531298364 -15.570277094   4.163489529
## [141]   0.289727931  -6.183919796  -0.008553019   0.704877833  -2.255252963
## [146]   1.143218823  -0.159396613  -0.750181313  -0.049703891  -1.841100844
## [151]  -0.659551461  -0.061989428  -5.940545081   7.130882237  -0.792777384
## [156]   0.828461014  -1.037788914   2.541578804  -1.772900612  -0.424425728
## [161]   0.365794488   0.810918845   5.133561129  -4.377453918  -2.542577584
## [166]   0.932951022   0.003141469 -14.466151581  -3.236182668  -0.023161614
## [171]   1.824483762  -1.130040037   8.455279721  -2.057023129  -0.654306517
## [176] -89.802125908   0.025733970  -0.143730802   0.188770469   3.219218085
## [181]  -1.133995562 -18.010875564  -1.234131948  -5.831395356  -1.163073196
## [186]   0.054316248  -0.645063743   0.136374130   1.434427137  -0.797505939
## [191]  -0.898280717  -0.303451497   3.053033570  -0.841088721   0.158698074
## [196]  -0.639101926  -0.336934985   2.134087611  -0.124843443   0.322523503
## [201]  -1.077315354   0.540014222  -1.099033931  -0.944349095   0.864301460
## [206]  -2.573287892   1.253949450  -1.874308678   1.020442939  -0.809357520
## [211]   0.147526588   2.225650676  17.298929966  -1.034743547  -1.207669329
## [216]  -0.070569855  -1.033665770  -3.331253679   0.327824305   4.646954918
## [221]   0.466907147   0.257442142  -9.450080050  -7.308687659  -0.070353159
## [226]  -0.762487117   0.019082420   0.266731898 -37.050448609  -4.388492330
## [231]  -0.225683481   0.433180501  -1.389130481   0.056516928  -0.998932951
## [236]   1.639358332  -0.185068634  -1.923429067   0.783143766   1.488517093
## [241]  -0.265340417   0.855835109  -0.704330760  -0.332917204  -2.644690384
## [246]  -0.767778952  -0.634889591   2.209728366  -0.517589213  -0.560293415
## [251]   0.270160407  -1.018048931   3.611526569  -0.249010015   0.023089390
## [256]   0.363967699   2.794213653   0.338758245   2.525812345  -0.209189141
## [261]  -2.620461248   0.352409996  -1.571301110  -2.669684838  -0.313992662
## [266]   0.833009866  -1.009821277  -4.639706497  -4.673463929   0.263971348
## [271]   0.561915529   0.572049811   0.585682412   4.493790848   1.517192256
## [276]  -0.107479021   0.744448215  -2.201648909  -2.738124294   0.911005998
## [281]  64.986470660  -0.582820713  -1.300450490  -0.853042511  13.487568471
## [286]   1.101078664  15.017409025  -0.781973640   1.697885045  -2.031655557
## [291]  -0.639941338  11.213121968   0.748636642   0.392709755  43.156220804
## [296]  -0.796788740   0.263809507  -2.385826898  -3.865203484  -2.193934971
## [301]  -0.893555618  -1.373922729   0.270707205  -0.167941033  -0.763187127
## [306]   1.401406555  -0.661468077   0.194387326  -0.707461479   0.879387341
## [311]  -0.277529822  -0.774965318  -0.677816557   1.080948709  -2.053349443
## [316]   0.125442589   1.233581061  -0.042285071  -0.947610248   3.171778911
## [321]  -0.273497251  -0.948441068  -0.232044636  -0.251481896   2.797206862
## [326]  25.604272309  -1.612933594  -8.313805663   0.782409742   0.503845835
## [331]   1.717264262  -0.211119465  -0.450656488  12.096533809   1.141202622
## [336]   0.479245855   8.187343726 -23.480757861   6.311975506  -0.573019748
## [341]   1.199550609  -0.273482269   1.227576810  -0.390158805  -2.816412147
## [346]  -0.994995877  -9.023201355  -0.706133178  -0.032878847  -0.189608409
## [351]  -6.530603310   0.447348177   0.163341145   1.029268620  -1.267392222
## [356]  -0.005770871  -0.142437235 -10.946535408  -2.225425628   1.628219049
## [361]   1.227526223  -0.203279674  -1.156827252  -0.067503263   0.998504927
## [366]   0.046978003   0.238632071   1.715813142  -1.173942188   0.432433159
## [371]  -1.523187763   0.457026892   3.846948669  -1.645788299   3.603034105
## [376]  -4.539786623  -0.143735278  -0.870343937  -0.038701559  -0.086102021
## [381]   0.358450297   1.244308046   0.127274384   1.360470272  -1.265838454
## [386]   0.430305657   0.496592038  -3.244543945  -5.480050034   4.184942539
## [391]  15.065429777   0.235285626   0.855682649  -0.527824646   0.072696463
## [396]   0.029171955  -0.548077317   0.638290935  -2.169507974  -0.190727397
## [401]   0.800164261 -12.792040079  -0.228393666  -2.067483607   1.173279448
## [406]   0.305630175  -0.443008229   0.265011804   0.900396731   0.569747467
## [411]   5.455293066   0.237078198  -3.202576645   1.375390521  -6.138395517
## [416]   1.809315614   6.095788560   0.335552067   0.216036955   0.093069903
## [421]  -1.256168007   0.506617199  -0.643834955  -1.829273486  -0.371929968
## [426]   0.521663592  -0.250761985  -0.715996337   1.797463823   1.149033305
## [431]  -1.192012209  -0.632049618   0.196927733   0.368302959  -0.107413518
## [436]   0.707572596   5.544136495  -0.067094422   1.925835267  -1.361592172
## [441]  -0.883908826   1.460600287   0.304226405  -0.214359444  -0.711777526
## [446]  -1.081616451   0.751022597  30.704746025  34.692301254   2.269407396
## [451]  -0.450654504   0.573028909  -0.018551563   1.884073099  -0.218305514
## [456]  -0.232918146   0.212579426   3.758713754  -2.187723937  -1.118910572
## [461]  -0.623292070  -0.139470191  -0.709325966   1.828023144  -0.227666349
## [466]   0.084369030  -0.245359717   2.026907211  -0.269000414  -0.496034855
## [471]   1.727497655   1.280743082   0.153837527   0.618625551  -2.142471555
## [476]   0.186357444   1.219821528  -2.290075193  -0.736552099  10.473227893
## [481]   4.059547630   1.088285292   2.141971154  -6.087338082   3.610167580
## [486]   2.564431495  -0.830389061   1.506793629  -7.888067967   0.217169451
## [491]   0.181352285  -1.324075549  -4.797856772  -3.421591680   0.431135030
## [496]   0.363778505  -1.318554561   0.676659199   0.773356186  -1.159720300
# Combine plots
par(mfrow = c(2, 2))
plot(y_dt, main = "Students t Density plot")
plot(y_pt, main = "Students t Cumulative Density plot")
plot(y_qt, main = "Students t Quantile plot")
plot(y_rt, main = "Students t Scatter Plot Random Samples")

par(mfrow = c(1, 1))
plot(density(y_rt), main = "Density plot", xlim = c(-4, 10))

hist(y_rt, main = "Histogram", breaks = 1000, xlim = c(-3, 3))
par(mfrow = c(1, 1))

# Modify values of the shape parameter
y_rt2 <- rchisq(N, df = 2)
y_rt3 <- rchisq(N, df = 3)

# Plot density with higher mean
lines(density(y_rt2), col = "coral2", lwd = 3)

# Plot density with higher sd
lines(density(y_rt3), col = "green3", lwd = 3)

# Add legend to the plot
legend("topright",
       legend = c("df = 1", "df = 2", "df = 3"),
       col = c("black", "coral2", "green3"),
       lty = 2, lwd = 3,
       title = "Students t Distribution in R with different degrees of freedom")

7. F Probability Distributions

# Specify x-values for df function
x_df <- seq(0, 20, by = 0.01)
y_df <- df(x_df, df1 = 3, df2 = 5)   # Apply df function
y_pf <- pf(x_df, df1 = 30, df2 = 5)   # Apply pf function

# Plot density
plot(y_df, main = "F Density plot")

# Plot cumulative density
plot(y_pf, main = "F Cumulative Density plot")

# Specify x-values for qf function
x_qf <- seq(0, 1, by = 0.01)
y_qf <- qf(x_qf, df1 = 3, df2 = 5)   # Apply qf function

# Set seed for reproducibility
set.seed(13579)
N <- 500

# Generate random samples
y_rf <- rf(N, df1 = 3, df2 = 5)

# Plot quantile
plot(y_qf, main = "F Quantile plot")

# Plot scatter plot of random samples
plot(y_rf, main = "F Scatter Plot Random Samples")

# Combine density and histogram plots
par(mfrow = c(1, 2))
plot(density(y_rf), main = "Density plot")
hist(y_rf, main = "Histogram")
par(mfrow = c(1, 1))

# Modify values of the shape parameter
y_rf2 <- rf(N, df1 = 10, df2 = 6)
y_rf3 <- rf(N, df1 = 20, df2 = 7)

# Plot density with higher mean
lines(density(y_rf2), col = "coral2", lwd = 3)

# Plot density with higher sd
lines(density(y_rf3), col = "green3", lwd = 3)

# Add legend to the plot
legend("topright",
       legend = c("Shape1 = 2, Shape2 = 5",
                  "Shape1 = 10, Shape2 = 6",
                  "Shape1 = 20, Shape2 = 7"),
       col = c("black", "coral2", "green3"),
       lty = 2, lwd = 3,
       title = "F Probability Distributions in R with different degrees of freedom")

8. Uniform Continuous Probability Distributions

# Specify x-values for dunif function
x_dunif <- seq(0, 100, by = 1)
y_dunif <- dunif(x_dunif, min = 10, max = 50)
y_punif <- punif(x_dunif, min = 10, max = 50)

# Specify x-values for qunif function
x_qunif <- seq(0, 1, by = 0.01)
y_qunif <- qunif(x_qunif, min = 10, max = 50)

# Set seed for reproducibility
set.seed(13579)
N <- 500

# Generate random samples
y_runif <- runif(N, min = 10, max = 50)

# Plot density
plot(y_dunif, main = "Uniform Continuous Density plot")

# Plot cumulative density
plot(y_punif, main = "Uniform Continuous Cumulative Density plot")

# Plot quantile
plot(y_qunif, main = "Uniform Continuous Quantile plot")

# Plot scatter plot of random samples
plot(y_runif, main = "Uniform Continuous Scatter Plot Random Samples")

# Combine density and histogram plots
par(mfrow = c(1, 2))
plot(density(y_runif), main = "Density plot")
hist(y_runif, main = "Histogram")
par(mfrow = c(1, 1))

# Modify values of the shape parameter
y_runif2 <- runif(N, min = 10, max = 60)
y_runif3 <- runif(N, min = 10, max = 70)

# Plot density with higher mean
lines(density(y_runif2), col = "coral2", lwd = 3)

# Plot density with higher sd
lines(density(y_runif3), col = "green3", lwd = 3)

# Add legend to the plot
legend("topright",
       legend = c("Min = 10, Max = 50",
                  "Min = 10, Max = 60",
                  "Min = 10, Max = 70"),
       col = c("black", "coral2", "green3"),
       lty = 2, lwd = 3,
       title = "Uniform Continuous Distribution in R")

DISCRETE PROBABILITY DISTRIBUTIONS

1. Binomial Discrete Probability Distributions

# Specify x-values for dbinom function
x_dbinom <- seq(0, 100, by = 1)
y_dbinom <- dbinom(x_dbinom, size = 100, prob = 0.5)
y_pbinom <- pbinom(x_dbinom, size = 100, prob = 0.5)
x_qbinom <- seq(0, 1, by = 0.01)
y_qbinom <- qbinom(x_qbinom, size = 100, prob = 0.5)
set.seed(13579)
N <- 500
y_rbinom <- rbinom(N, size = 100, prob = 0.5)
y_rbinom

# Combine plots
par(mfrow=c(2,2))
plot(y_dbinom, main="Binomial Density plot")
plot(y_pbinom, main="Binomial Cumulative Density plot")
plot(y_qbinom, main="Binomial Quantile plot")
plot(y_rbinom, main="Binomial Scatter Plot Random Samples")
par(mfrow=c(1,2))
plot(density(y_rbinom), main="Density plot")
hist(y_rbinom, main="Histogram")
par(mfrow=c(1,1))

# Modify values of the probability parameter
y_rbinom2 <- rbinom(N, size = 100, prob = 0.7)
y_rbinom3 <- rbinom(N, size = 100, prob = 0.3)

# Plot density with higher mean
lines(density(y_rbinom2), col = "coral2", lwd = 3)

# Plot density with higher sd
lines(density(y_rbinom3), col = "green3", lwd = 3)

# Add legend to the plot
legend("topright",
       legend = c("P Value = 0.5", "P Value = 0.7", "P Value = 0.3"),
       col = c("black", "coral2", "green3"),
       lty = 2, lwd = 3,
       title = "Binomial Distribution in R with different probability values")

2. Poisson Discrete Probability Distributions

# Specify x-values for dpois function
x_dpois <- seq(-5, 30, by = 1)
y_dpois <- dpois(x_dpois, lambda = 10)
y_ppois <- ppois(x_dpois, lambda = 10)
x_qpois <- seq(0, 1, by = 0.005)
y_qpois <- qpois(x_qpois, lambda = 10)
set.seed(13579)
N <- 500
y_rpois <- rpois(N, lambda = 10)
y_rpois

# Combine plots
par(mfrow=c(2,2))
plot(y_dpois, main="Poisson Density plot")
plot(y_ppois, main="Poisson Cumulative Density plot")
plot(y_qpois, main="Poisson Quantile plot")
plot(y_rpois, main="Poisson Scatter Plot Random Samples")
par(mfrow=c(1,2))
plot(density(y_rpois), main="Density plot")
hist(y_rpois, main="Histogram")
par(mfrow=c(1,1))

# Modify values of the lambda parameter
y_rpois2 <- rpois(N, lambda = 15)
y_rpois3 <- rpois(N, lambda = 20)

# Plot density with higher mean
lines(density(y_rpois2), col = "coral2", lwd = 3)

# Plot density with higher sd
lines(density(y_rpois3), col = "green3", lwd = 3)

# Add legend to the plot
legend("topright",
       legend = c("lambda = 10", "lambda = 15", "lambda = 20"),
       col = c("black", "coral2", "green3"),
       lty = 2, lwd = 3,
       title = "Poisson Distribution in R with different lambda values")

3. Geometric Discrete Probability Distributions

# Specify x-values for dgeom function
x_dgeom <- seq(0, 20, by = 1)
y_dgeom <- dgeom(x_dgeom, prob = 0.5)
y_pgeom <- pgeom(x_dgeom, prob = 0.5)
x_qgeom <- seq(0, 1, by = 0.01)
y_qgeom <- qgeom(x_qgeom, prob = 0.5)
set.seed(13579)
N <- 500
y_rgeom <- rgeom(N, prob = 0.5)
y_rgeom

# Combine plots
par(mfrow=c(2,2))
plot(y_dgeom, main="Geometric Density plot")
plot(y_pgeom, main="Geometric Cumulative Density plot")
plot(y_qgeom, main="Geometric Quantile plot")
plot(y_rgeom, main="Geometric Scatter Plot Random Samples")
par(mfrow=c(1,2))
plot(density(y_rgeom), main="Density plot")
hist(y_rgeom, main="Histogram")
par(mfrow=c(1,1))

# Modify values of the probability parameter
y_rgeom2 <- rgeom(N, prob = 0.7)
y_rgeom3 <- rgeom(N, prob = 0.3)

# Plot density with higher mean
lines(density(y_rgeom2), col = "coral2", lwd = 3)

# Plot density with higher sd
lines(density(y_rgeom3), col = "green3", lwd = 3)

# Add legend to the plot
legend("topright",
       legend = c("P value = 0.5", "P value = 0.7", "P value = 0.3"),
       col = c("black", "coral2", "green3"),
       lty = 2, lwd = 3,
       title = "Geometric Distribution in R with different probability values")

4. Negative Binomial Discrete Probability Distributions

# Specify x-values for dnbinom function
x_dnbinom <- seq(0, 100, by = 1)
y_dnbinom <- dnbinom(x_dnbinom, size = 100, prob = 0.5)
y_pnbinom <- pnbinom(x_dnbinom, size = 100, prob = 0.5)
x_dnbinom <- seq(0, 1, by = 0.01)
y_qnbinom <- qnbinom(x_dnbinom, size = 100, prob = 0.5)
set.seed(13579)
N <- 500
y_rnbinom <- rnbinom(N, size = 100, prob = 0.5)
y_rnbinom

# Combine plots
par(mfrow=c(2,2))
plot(y_dnbinom, main="Negative Binomial Density plot")
plot(y_pnbinom, main="Negative Binomial Cumulative Density plot")
plot(y_qnbinom, main="Negative Binomial Quantile plot")
plot(y_rnbinom, main="Negative Binomial Scatter Plot Random Samples")
par(mfrow=c(1,2))
plot(density(y_rnbinom), main="Density plot")
hist(y_rnbinom, main="Histogram")
par(mfrow=c(1,1))

# Modify values of the probability parameter
y_rnbinom2 <- rnbinom(N, size = 100, prob = 0.7)
y_rnbinom3 <- rnbinom(N, size = 100, prob = 0.3)

# Plot density with higher mean
lines(density(y_rnbinom2), col = "coral2", lwd = 3)

# Plot density with higher sd
lines(density(y_rnbinom3), col = "green3", lwd = 3)

# Add legend to the plot
legend("topright",
       legend = c("P value = 0.5", "P value = 0.7", "P value = 0.3"),
       col = c("black", "coral2", "green3"),
       lty = 2, lwd = 3,
       title = "Negative Binomial Distribution in R with different probability values")

KUDOS</3