Sebagai seorang penjual properti, kita ingin membuat model yang mana dapat memprediksi harga properti berdasarkan beberapa informasi yang ada pada data.
Tentukan variabel:
priceprice1. Read data house_data.csv
house <- read.csv("data_input/house_data.csv")
head(house)2. Cek struktur data
glimpse(house)#> Rows: 21,613
#> Columns: 9
#> $ price <int> 221900, 538000, 180000, 604000, 510000, 1225000, 257500, 2…
#> $ bedrooms <int> 3, 3, 2, 4, 3, 4, 3, 3, 3, 3, 3, 2, 3, 3, 5, 4, 3, 4, 2, 3…
#> $ bathrooms <dbl> 1.00, 2.25, 1.00, 3.00, 2.00, 4.50, 2.25, 1.50, 1.00, 2.50…
#> $ sqft_living <int> 1180, 2570, 770, 1960, 1680, 5420, 1715, 1060, 1780, 1890,…
#> $ sqft_lot <int> 5650, 7242, 10000, 5000, 8080, 101930, 6819, 9711, 7470, 6…
#> $ floors <dbl> 1.0, 2.0, 1.0, 1.0, 1.0, 1.0, 2.0, 1.0, 1.0, 2.0, 1.0, 1.0…
#> $ waterfront <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0…
#> $ grade <int> 7, 7, 6, 7, 8, 11, 7, 7, 7, 7, 8, 7, 7, 7, 7, 9, 7, 7, 7, …
#> $ yr_built <int> 1955, 1951, 1933, 1965, 1987, 2001, 1995, 1963, 1960, 2003…
unique(house$waterfront)#> [1] 0 1
unique(house$grade)#> [1] 7 6 8 11 9 5 10 12 4 3 13 1
anyNA(house)#> [1] FALSE
💡 Hasil pemeriksaan struktur data: - Tipe data pada waterfront perlu diubah menjadi kategorikal, karena hanya memiliki dua data unik dan dapat bersifat dan ordinal. - Semua tipe data selain pada kolom waterfront sudah sesuai. - Tidak terdapat missing value
3. Cleansing Data
house_clean <- house %>%
mutate(waterfront = as.factor(waterfront))head(house_clean)3. EDA
#persebaran data
boxplot(house_clean$price)#korelasi
ggcorr(house_clean, label = TRUE)💡 Insight: - sqft_living dan grade memiliki korelasi > 0.5 yang dapat digunakan untuk model selection based on correlation
Buatlah 3 model berdasarkan feature selection yg telah dipelajari 1. model all predictor 2. model selection based on correlation (korelasi > 0.5) 3. model selection hasil stepwise (backward/forward/both)
#model all predictor
model_all <- lm(formula = price ~ . ,
house_clean)
summary(model_all)#>
#> Call:
#> lm(formula = price ~ ., data = house_clean)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -1384206 -112972 -10077 91060 4251811
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 6999106.70657 121576.94670 57.569 < 0.0000000000000002 ***
#> bedrooms -41484.20936 2040.73489 -20.328 < 0.0000000000000002 ***
#> bathrooms 51710.08964 3437.50666 15.043 < 0.0000000000000002 ***
#> sqft_living 177.91392 3.29026 54.073 < 0.0000000000000002 ***
#> sqft_lot -0.23947 0.03679 -6.509 0.0000000000774 ***
#> floors 17283.13337 3426.85939 5.043 0.0000004609553 ***
#> waterfront1 721804.73094 17406.65326 41.467 < 0.0000000000000002 ***
#> grade 128813.92794 2149.93255 59.915 < 0.0000000000000002 ***
#> yr_built -3963.73577 64.04988 -61.885 < 0.0000000000000002 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 218900 on 21604 degrees of freedom
#> Multiple R-squared: 0.6446, Adjusted R-squared: 0.6445
#> F-statistic: 4898 on 8 and 21604 DF, p-value: < 0.00000000000000022
#model corr selection
model_selection <- lm(formula = price ~ sqft_living + grade,
house_clean)
summary(model_selection)#>
#> Call:
#> lm(formula = price ~ sqft_living + grade, data = house_clean)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -1065457 -138304 -25043 100447 4794633
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -598108.986 13297.807 -44.98 <0.0000000000000002 ***
#> sqft_living 184.420 2.869 64.29 <0.0000000000000002 ***
#> grade 98554.798 2241.331 43.97 <0.0000000000000002 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 250500 on 21610 degrees of freedom
#> Multiple R-squared: 0.5345, Adjusted R-squared: 0.5345
#> F-statistic: 1.241e+04 on 2 and 21610 DF, p-value: < 0.00000000000000022
#model stepwise backward
model_stepback <- step(object = model_all,
direction = "backward")#> Start: AIC=531533.8
#> price ~ bedrooms + bathrooms + sqft_living + sqft_lot + floors +
#> waterfront + grade + yr_built
#>
#> Df Sum of Sq RSS AIC
#> <none> 1035294741860252 531534
#> - floors 1 1218939726736 1036513681586988 531557
#> - sqft_lot 1 2030230655068 1037324972515320 531574
#> - bathrooms 1 10844095263314 1046138837123566 531757
#> - bedrooms 1 19802603600782 1055097345461034 531941
#> - waterfront 1 82402185733932 1117696927594184 533187
#> - sqft_living 1 140116227741713 1175410969601965 534275
#> - grade 1 172030644434158 1207325386294410 534854
#> - yr_built 1 183528097123653 1218822838983905 535059
summary(model_stepback)#>
#> Call:
#> lm(formula = price ~ bedrooms + bathrooms + sqft_living + sqft_lot +
#> floors + waterfront + grade + yr_built, data = house_clean)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -1384206 -112972 -10077 91060 4251811
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 6999106.70657 121576.94670 57.569 < 0.0000000000000002 ***
#> bedrooms -41484.20936 2040.73489 -20.328 < 0.0000000000000002 ***
#> bathrooms 51710.08964 3437.50666 15.043 < 0.0000000000000002 ***
#> sqft_living 177.91392 3.29026 54.073 < 0.0000000000000002 ***
#> sqft_lot -0.23947 0.03679 -6.509 0.0000000000774 ***
#> floors 17283.13337 3426.85939 5.043 0.0000004609553 ***
#> waterfront1 721804.73094 17406.65326 41.467 < 0.0000000000000002 ***
#> grade 128813.92794 2149.93255 59.915 < 0.0000000000000002 ***
#> yr_built -3963.73577 64.04988 -61.885 < 0.0000000000000002 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 218900 on 21604 degrees of freedom
#> Multiple R-squared: 0.6446, Adjusted R-squared: 0.6445
#> F-statistic: 4898 on 8 and 21604 DF, p-value: < 0.00000000000000022
Berdasarkan RMSE model regresi manakah yang terbaik?
res <- data.frame(aktual = house$price,
model_all = model_all$fitted.values,
model_selection = model_selection$fitted.values,
model_stepback = model_stepback$fitted.values)
head(res)RMSE(y_pred = res$model_all,
res$aktual)#> [1] 218864.1
RMSE(y_pred = res$model_selection,
res$aktual)#> [1] 250475.5
RMSE(y_pred = res$model_stepback,
res$aktual)#> [1] 218864.1
💡 Kesimpulan : Data pada price meliki banyak outlier sehingga digunakan RMSE untuk melihat model terbaik Berdasarkan RMSE model_stepback dan model_all merupakan model terbaik Nilai RMSE model_stepback dan model_all memiliki nilai yang sama karena memiliki prediktor yang sama
summary(model_all)#>
#> Call:
#> lm(formula = price ~ ., data = house_clean)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -1384206 -112972 -10077 91060 4251811
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 6999106.70657 121576.94670 57.569 < 0.0000000000000002 ***
#> bedrooms -41484.20936 2040.73489 -20.328 < 0.0000000000000002 ***
#> bathrooms 51710.08964 3437.50666 15.043 < 0.0000000000000002 ***
#> sqft_living 177.91392 3.29026 54.073 < 0.0000000000000002 ***
#> sqft_lot -0.23947 0.03679 -6.509 0.0000000000774 ***
#> floors 17283.13337 3426.85939 5.043 0.0000004609553 ***
#> waterfront1 721804.73094 17406.65326 41.467 < 0.0000000000000002 ***
#> grade 128813.92794 2149.93255 59.915 < 0.0000000000000002 ***
#> yr_built -3963.73577 64.04988 -61.885 < 0.0000000000000002 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 218900 on 21604 degrees of freedom
#> Multiple R-squared: 0.6446, Adjusted R-squared: 0.6445
#> F-statistic: 4898 on 8 and 21604 DF, p-value: < 0.00000000000000022
1. Interpretasi coefficient untuk prediktor kategorik:
2. Interpretasi coefficient untuk prediktor numerik:
3. Signifikansi prediktor:
4. Adjusted R Squared:
summary(model_all)$adj.r.squared#> [1] 0.6444532