setwd("E:/KULIAH/SEMESTER 6/(KAMIS) KOMPUTASI STATISTIKA")
dataset <- read.csv("H051201060_DS_FINAL_KOMSTAT.csv")
dataset
## x1 x2 x3 y
## 1 7.95 9.23 9.00 3.5
## 2 6.87 10.35 7.35 3.6
## 3 7.65 8.45 7.79 3.2
## 4 7.54 9.61 8.18 4.2
## 5 7.50 8.78 8.84 3.0
## 6 8.15 7.89 8.36 3.0
## 7 7.71 9.22 8.15 3.7
## 8 8.62 8.39 8.40 3.1
## 9 8.37 8.66 8.60 3.6
## 10 8.72 9.10 8.05 3.3
## 11 8.12 6.88 8.78 3.9
## 12 7.40 8.83 9.14 3.3
## 13 7.75 8.91 7.85 3.0
## 14 7.66 9.51 7.87 3.5
## 15 7.88 9.05 8.46 2.8
data_set <- sqrt(dataset)
y <- data_set$y
x1 <- data_set$x1
x2 <- data_set$x2
x3 <- data_set$x3
UJI LINEARITAS
Ho : Model Linear H1 : Model Tidak Linear
P-Value < 0,05
library(lmtest)
resettest(y~x1)
##
## RESET test
##
## data: y ~ x1
## RESET = 0.063378, df1 = 2, df2 = 11, p-value = 0.9389
resettest(y~x2)
##
## RESET test
##
## data: y ~ x2
## RESET = 4.7464, df1 = 2, df2 = 11, p-value = 0.03265
resettest(y~x3)
##
## RESET test
##
## data: y ~ x3
## RESET = 0.074771, df1 = 2, df2 = 11, p-value = 0.9284
Karena nilai p-value x1, x2, dan x3 > 0,5 maka terima Ho atau tidak cukup bukti untuk menolak Ho. Artinya, ketiga variabel bebas linear terhadap variabel y.
UJI KORELASI
dimana: 0 - 0,2 = sangat lemah 0,3 - 0,4 = lemah 0,5 - 0,6 = kuat 0,7 - 0,8 = sangat kuat
cor(data_set) #fokus ke variabel Y
## x1 x2 x3 y
## x1 1.0000000 -0.5106162 0.28100211 -0.16989143
## x2 -0.5106162 1.0000000 -0.46391399 0.11371519
## x3 0.2810021 -0.4639140 1.00000000 -0.05563645
## y -0.1698914 0.1137152 -0.05563645 1.00000000
UJI NORMALITAS
Kriteria penolakan Ho yakni ketika p-value < 0.5
shapiro.test(y)
##
## Shapiro-Wilk normality test
##
## data: y
## W = 0.9672, p-value = 0.8147
shapiro.test(x1)
##
## Shapiro-Wilk normality test
##
## data: x1
## W = 0.97086, p-value = 0.8706
shapiro.test(x2)
##
## Shapiro-Wilk normality test
##
## data: x2
## W = 0.93236, p-value = 0.2959
shapiro.test(x3)
##
## Shapiro-Wilk normality test
##
## data: x3
## W = 0.98111, p-value = 0.9765
UJI HOMOGENITAS
Kriteria penolakan Ho yakni ketika p-value < 0.5
bartlett.test(data_set)
##
## Bartlett test of homogeneity of variances
##
## data: data_set
## Bartlett's K-squared = 4.0195, df = 3, p-value = 0.2594
UJI AUTOKORELASI
Kriteria penolakan Ho yakni ketika p-value < 0.5
dwtest(y~x1+x2+x3)
##
## Durbin-Watson test
##
## data: y ~ x1 + x2 + x3
## DW = 2.4339, p-value = 0.7998
## alternative hypothesis: true autocorrelation is greater than 0
UJI MULTIKOLINERITAS
Yakni ketika nilai VIF > 10
library(car)
vif(lm(y~x1+x2+x3))
## x1 x2 x3
## 1.357238 1.592881 1.278526
ANALISIS REGRESI LINEAR
reg <- lm(y~x1+x3)
x <- cbind(x0 = array(1, dim = length(y)), x1,x3)
b <- solve(t(x) %*% x) %*% (t(x)) %*% y
b
## [,1]
## x0 2.42757970
## x1 -0.20067425
## x3 -0.01022803
summary(reg)
##
## Call:
## lm(formula = y ~ x1 + x3)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.16119 -0.07410 0.01061 0.06005 0.20210
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.42758 1.20856 2.009 0.0676 .
## x1 -0.20067 0.35516 -0.565 0.5825
## x3 -0.01023 0.35361 -0.029 0.9774
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1102 on 12 degrees of freedom
## Multiple R-squared: 0.02893, Adjusted R-squared: -0.1329
## F-statistic: 0.1788 on 2 and 12 DF, p-value: 0.8385
y_topi <- reg$coefficients[2] * 8.2
y_topi
## x1
## -1.645529