Department of Industrial Psychology
Stellenbosch University
South Africa
The data should be stored in a .csv file. Each column in the .csv file should have a heading.
library(lavaan)
library(psych)
library(semTools)
mydata <- read.csv(file.choose())
#describe(mydata)
### Choose an estimator from "ML", "MLM", "MLR"
estimator <- "MLM"
### Type the name of the grouping variable
group <- "Country_habitat"
mymodel <- '
Stress =~ GWS1 + GWS2 + GWS3 + GWS4 + GWS5 + GWS6 + GWS7 + GWS8 + GWS9
'
# Estimate and inspect the item parameters
fit.mymodel <- cfa(model = mymodel,
data = mydata,
estimator = estimator)
summary(fit.mymodel, standardized = TRUE, fit.measures = TRUE)
## lavaan 0.6.15 ended normally after 22 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 18
##
## Number of observations 1377
##
## Model Test User Model:
## Standard Scaled
## Test Statistic 808.572 576.336
## Degrees of freedom 27 27
## P-value (Chi-square) 0.000 0.000
## Scaling correction factor 1.403
## Satorra-Bentler correction
##
## Model Test Baseline Model:
##
## Test statistic 6506.495 4273.114
## Degrees of freedom 36 36
## P-value 0.000 0.000
## Scaling correction factor 1.523
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.879 0.870
## Tucker-Lewis Index (TLI) 0.839 0.827
##
## Robust Comparative Fit Index (CFI) 0.881
## Robust Tucker-Lewis Index (TLI) 0.841
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -14826.170 -14826.170
## Loglikelihood unrestricted model (H1) -14421.884 -14421.884
##
## Akaike (AIC) 29688.341 29688.341
## Bayesian (BIC) 29782.439 29782.439
## Sample-size adjusted Bayesian (SABIC) 29725.260 29725.260
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.145 0.122
## 90 Percent confidence interval - lower 0.136 0.114
## 90 Percent confidence interval - upper 0.154 0.129
## P-value H_0: RMSEA <= 0.050 0.000 0.000
## P-value H_0: RMSEA >= 0.080 1.000 1.000
##
## Robust RMSEA 0.144
## 90 Percent confidence interval - lower 0.134
## 90 Percent confidence interval - upper 0.154
## P-value H_0: Robust RMSEA <= 0.050 0.000
## P-value H_0: Robust RMSEA >= 0.080 1.000
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.057 0.057
##
## Parameter Estimates:
##
## Standard errors Robust.sem
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## Stress =~
## GWS1 1.000 0.810 0.762
## GWS2 1.114 0.025 44.563 0.000 0.902 0.814
## GWS3 0.963 0.033 29.149 0.000 0.780 0.737
## GWS4 0.895 0.039 23.233 0.000 0.725 0.668
## GWS5 0.763 0.031 24.228 0.000 0.618 0.665
## GWS6 0.831 0.029 28.291 0.000 0.673 0.748
## GWS7 0.813 0.034 24.209 0.000 0.659 0.627
## GWS8 0.837 0.033 25.583 0.000 0.678 0.723
## GWS9 0.771 0.034 22.972 0.000 0.624 0.651
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .GWS1 0.474 0.021 22.512 0.000 0.474 0.419
## .GWS2 0.414 0.023 18.140 0.000 0.414 0.337
## .GWS3 0.511 0.030 16.999 0.000 0.511 0.457
## .GWS4 0.651 0.030 22.004 0.000 0.651 0.553
## .GWS5 0.481 0.022 22.205 0.000 0.481 0.557
## .GWS6 0.356 0.018 19.805 0.000 0.356 0.440
## .GWS7 0.671 0.029 23.433 0.000 0.671 0.607
## .GWS8 0.420 0.023 18.098 0.000 0.420 0.478
## .GWS9 0.530 0.026 20.110 0.000 0.530 0.576
## Stress 0.656 0.039 16.682 0.000 1.000 1.000
measurement.invariance <- function(fit.config, fit.weak, fit.strong, fit.strict, fit.means) {
config.fit <- fitmeasures(fit.config, c("cfi.robust", "tli.robust", "rmsea.robust", "srmr", "BIC", "chisq.scaled", "df.scaled", "pvalue.scaled"))
weak.fit <- fitmeasures(fit.weak, c("cfi.robust", "tli.robust", "rmsea.robust", "srmr", "BIC", "chisq.scaled", "df.scaled", "pvalue.scaled"))
strong.fit <- fitmeasures(fit.strong, c("cfi.robust", "tli.robust", "rmsea.robust", "srmr", "BIC", "chisq.scaled", "df.scaled", "pvalue.scaled"))
strict.fit <- fitmeasures(fit.strict, c("cfi.robust", "tli.robust", "rmsea.robust", "srmr", "BIC", "chisq.scaled", "df.scaled", "pvalue.scaled"))
means.fit <- fitmeasures(fit.means, c("cfi.robust", "tli.robust", "rmsea.robust", "srmr", "BIC", "chisq.scaled", "df.scaled", "pvalue.scaled"))
fit.models <- rbind(config.fit, weak.fit, strong.fit, strict.fit, means.fit)
delta.weak <- config.fit - weak.fit
delta.strong <- weak.fit - strong.fit
delta.strict <- strong.fit - strict.fit
delta.means <- strict.fit - means.fit
delta.models <- rbind(delta.weak, delta.strong, delta.strict, delta.means)
fit.models
delta.models
anova.models <- anova(fit.config, fit.weak, fit.strong, fit.strict, fit.means)
compare.models <- list(anova = anova.models, model.fit = fit.models, model.delta = delta.models[ , c(1, 3, 5)])
compare.models
}
##### Configural invariance
fit.config <- cfa(mymodel, data = mydata, group = group, estimator = estimator)
#summary(fit.config)
####### Weak invariance
fit.weak <- cfa(mymodel, data = mydata, group = group, estimator = estimator, group.equal ="loadings")
#summary(fit.weak)
####### Strong invariance
fit.strong <- cfa(mymodel, data = mydata, group = group, estimator = estimator,
group.equal = c("loadings", "intercepts"))
#summary(fit.strong)
####### Strict invariance
fit.strict <- cfa(mymodel, data = mydata, group = group, estimator = estimator,
group.equal = c("loadings", "intercepts",
"residuals"))
#summary(fit.strict)
####### Equal factor means
fit.means <- cfa(mymodel, data = mydata, group = group, estimator = estimator,
group.equal = c("loadings", "intercepts",
"residuals", "means"))
#summary(fit.means)
###################################################################
# Run the measurement invariance function in the MeasInvar.R file #
###################################################################
measurement.invariance(fit.config, fit.weak, fit.strong, fit.strict, fit.means)
## $anova
##
## Scaled Chi-Squared Difference Test (method = "satorra.bentler.2001")
##
## lavaan NOTE:
## The "Chisq" column contains standard test statistics, not the
## robust test that should be reported per model. A robust difference
## test is a function of two standard (not robust) statistics.
##
## Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)
## fit.config 54 29471 29754 842.56
## fit.weak 62 29464 29704 850.86 8.292 8 0.4055
## fit.strong 70 29618 29817 1021.49 260.932 8 < 2.2e-16 ***
## fit.strict 79 29664 29816 1085.56 58.199 9 2.976e-09 ***
## fit.means 80 29687 29833 1109.87 25.893 1 3.608e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## $model.fit
## cfi.robust tli.robust rmsea.robust srmr bic chisq.scaled
## config.fit 0.8807417 0.8409889 0.1435070 0.05366521 29753.55 591.7743
## weak.fit 0.8806962 0.8614536 0.1339543 0.05570739 29704.03 621.4061
## strong.fit 0.8549340 0.8507893 0.1390142 0.06820978 29816.84 793.3926
## strict.fit 0.8464985 0.8600999 0.1346072 0.07333484 29815.86 857.3154
## means.fit 0.8428583 0.8585725 0.1353400 0.08323715 29832.94 879.3561
## df.scaled pvalue.scaled
## config.fit 54 0
## weak.fit 62 0
## strong.fit 70 0
## strict.fit 79 0
## means.fit 80 0
##
## $model.delta
## cfi.robust rmsea.robust bic
## delta.weak 4.546861e-05 0.0095526256 49.5202773
## delta.strong 2.576218e-02 -0.0050598926 -112.8109903
## delta.strict 8.435499e-03 0.0044070506 0.9834126
## delta.means 3.640199e-03 -0.0007328253 -17.0823393
Type here the name of the fitted model that you want to inspect. This will typically be the best fitting model that was identified in the previous step.
summary(fit.strong, fit.measures = TRUE, standardized = TRUE)
## lavaan 0.6.15 ended normally after 38 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 55
## Number of equality constraints 17
##
## Number of observations per group:
## 2 793
## 1 584
##
## Model Test User Model:
## Standard Scaled
## Test Statistic 1021.491 793.393
## Degrees of freedom 70 70
## P-value (Chi-square) 0.000 0.000
## Scaling correction factor 1.287
## Satorra-Bentler correction
## Test statistic for each group:
## 2 494.400 384.001
## 1 527.091 409.392
##
## Model Test Baseline Model:
##
## Test statistic 6523.400 4555.388
## Degrees of freedom 72 72
## P-value 0.000 0.000
## Scaling correction factor 1.432
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.853 0.839
## Tucker-Lewis Index (TLI) 0.848 0.834
##
## Robust Comparative Fit Index (CFI) 0.855
## Robust Tucker-Lewis Index (TLI) 0.851
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -14771.097 -14771.097
## Loglikelihood unrestricted model (H1) -14260.351 -14260.351
##
## Akaike (AIC) 29618.193 29618.193
## Bayesian (BIC) 29816.844 29816.844
## Sample-size adjusted Bayesian (SABIC) 29696.133 29696.133
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.141 0.123
## 90 Percent confidence interval - lower 0.133 0.116
## 90 Percent confidence interval - upper 0.148 0.129
## P-value H_0: RMSEA <= 0.050 0.000 0.000
## P-value H_0: RMSEA >= 0.080 1.000 1.000
##
## Robust RMSEA 0.139
## 90 Percent confidence interval - lower 0.130
## 90 Percent confidence interval - upper 0.148
## P-value H_0: Robust RMSEA <= 0.050 0.000
## P-value H_0: Robust RMSEA >= 0.080 1.000
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.068 0.068
##
## Parameter Estimates:
##
## Standard errors Robust.sem
## Information Expected
## Information saturated (h1) model Structured
##
##
## Group 1 [2]:
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## Stress =~
## GWS1 1.000 0.865 0.791
## GWS2 (.p2.) 1.115 0.025 44.382 0.000 0.965 0.834
## GWS3 (.p3.) 0.969 0.033 29.531 0.000 0.838 0.750
## GWS4 (.p4.) 0.899 0.039 23.294 0.000 0.778 0.686
## GWS5 (.p5.) 0.765 0.031 24.549 0.000 0.662 0.667
## GWS6 (.p6.) 0.833 0.030 28.159 0.000 0.721 0.767
## GWS7 (.p7.) 0.822 0.033 25.075 0.000 0.711 0.688
## GWS8 (.p8.) 0.836 0.033 25.409 0.000 0.723 0.740
## GWS9 (.p9.) 0.770 0.033 23.073 0.000 0.666 0.648
##
## Intercepts:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .GWS1 (.20.) 2.699 0.036 75.742 0.000 2.699 2.467
## .GWS2 (.21.) 2.252 0.039 57.787 0.000 2.252 1.945
## .GWS3 (.22.) 2.313 0.036 65.071 0.000 2.313 2.069
## .GWS4 (.23.) 2.329 0.036 64.392 0.000 2.329 2.055
## .GWS5 (.24.) 2.099 0.031 68.180 0.000 2.099 2.115
## .GWS6 (.25.) 2.158 0.031 69.325 0.000 2.158 2.298
## .GWS7 (.26.) 2.707 0.034 80.274 0.000 2.707 2.620
## .GWS8 (.27.) 2.052 0.032 63.127 0.000 2.052 2.098
## .GWS9 (.28.) 2.060 0.032 64.571 0.000 2.060 2.005
## Stress 0.000 0.000 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .GWS1 0.448 0.026 17.091 0.000 0.448 0.374
## .GWS2 0.408 0.029 14.291 0.000 0.408 0.305
## .GWS3 0.547 0.045 12.226 0.000 0.547 0.438
## .GWS4 0.679 0.040 16.852 0.000 0.679 0.529
## .GWS5 0.547 0.031 17.617 0.000 0.547 0.555
## .GWS6 0.363 0.024 15.178 0.000 0.363 0.411
## .GWS7 0.562 0.032 17.390 0.000 0.562 0.526
## .GWS8 0.433 0.030 14.509 0.000 0.433 0.453
## .GWS9 0.612 0.038 16.026 0.000 0.612 0.580
## Stress 0.749 0.050 14.892 0.000 1.000 1.000
##
##
## Group 2 [1]:
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## Stress =~
## GWS1 1.000 0.704 0.702
## GWS2 (.p2.) 1.115 0.025 44.382 0.000 0.785 0.769
## GWS3 (.p3.) 0.969 0.033 29.531 0.000 0.682 0.708
## GWS4 (.p4.) 0.899 0.039 23.294 0.000 0.632 0.630
## GWS5 (.p5.) 0.765 0.031 24.549 0.000 0.538 0.654
## GWS6 (.p6.) 0.833 0.030 28.159 0.000 0.586 0.706
## GWS7 (.p7.) 0.822 0.033 25.075 0.000 0.578 0.537
## GWS8 (.p8.) 0.836 0.033 25.409 0.000 0.588 0.677
## GWS9 (.p9.) 0.770 0.033 23.073 0.000 0.542 0.641
##
## Intercepts:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .GWS1 (.20.) 2.699 0.036 75.742 0.000 2.699 2.691
## .GWS2 (.21.) 2.252 0.039 57.787 0.000 2.252 2.208
## .GWS3 (.22.) 2.313 0.036 65.071 0.000 2.313 2.403
## .GWS4 (.23.) 2.329 0.036 64.392 0.000 2.329 2.321
## .GWS5 (.24.) 2.099 0.031 68.180 0.000 2.099 2.551
## .GWS6 (.25.) 2.158 0.031 69.325 0.000 2.158 2.599
## .GWS7 (.26.) 2.707 0.034 80.274 0.000 2.707 2.516
## .GWS8 (.27.) 2.052 0.032 63.127 0.000 2.052 2.364
## .GWS9 (.28.) 2.060 0.032 64.571 0.000 2.060 2.439
## Stress -0.223 0.044 -5.049 0.000 -0.317 -0.317
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .GWS1 0.511 0.033 15.287 0.000 0.511 0.508
## .GWS2 0.424 0.036 11.903 0.000 0.424 0.408
## .GWS3 0.462 0.034 13.759 0.000 0.462 0.499
## .GWS4 0.607 0.040 15.349 0.000 0.607 0.603
## .GWS5 0.388 0.026 15.011 0.000 0.388 0.572
## .GWS6 0.346 0.026 13.571 0.000 0.346 0.502
## .GWS7 0.824 0.044 18.583 0.000 0.824 0.711
## .GWS8 0.408 0.033 12.455 0.000 0.408 0.541
## .GWS9 0.420 0.033 12.795 0.000 0.420 0.589
## Stress 0.495 0.042 11.743 0.000 1.000 1.000
lavTestScore(fit.strong)
## Warning in lavTestScore(fit.strong): lavaan WARNING: se is not `standard'; not
## implemented yet; falling back to ordinary score test
## $test
##
## total score test:
##
## test X2 df p.value
## 1 score 173.413 17 0
##
## $uni
##
## univariate score tests:
##
## lhs op rhs X2 df p.value
## 1 .p2. == .p31. 0.417 1 0.519
## 2 .p3. == .p32. 7.943 1 0.005
## 3 .p4. == .p33. 0.537 1 0.464
## 4 .p5. == .p34. 0.030 1 0.863
## 5 .p6. == .p35. 0.379 1 0.538
## 6 .p7. == .p36. 7.786 1 0.005
## 7 .p8. == .p37. 4.583 1 0.032
## 8 .p9. == .p38. 0.058 1 0.809
## 9 .p20. == .p49. 6.564 1 0.010
## 10 .p21. == .p50. 13.114 1 0.000
## 11 .p22. == .p51. 7.656 1 0.006
## 12 .p23. == .p52. 0.727 1 0.394
## 13 .p24. == .p53. 22.339 1 0.000
## 14 .p25. == .p54. 3.098 1 0.078
## 15 .p26. == .p55. 88.060 1 0.000
## 16 .p27. == .p56. 37.233 1 0.000
## 17 .p28. == .p57. 2.999 1 0.083
parTable(fit.strong)
## id lhs op rhs user block group free ustart exo label plabel start
## 1 1 Stress =~ GWS1 1 1 1 0 1 0 .p1. 1.000
## 2 2 Stress =~ GWS2 1 1 1 1 NA 0 .p2. .p2. 1.163
## 3 3 Stress =~ GWS3 1 1 1 2 NA 0 .p3. .p3. 0.889
## 4 4 Stress =~ GWS4 1 1 1 3 NA 0 .p4. .p4. 0.841
## 5 5 Stress =~ GWS5 1 1 1 4 NA 0 .p5. .p5. 0.667
## 6 6 Stress =~ GWS6 1 1 1 5 NA 0 .p6. .p6. 0.757
## 7 7 Stress =~ GWS7 1 1 1 6 NA 0 .p7. .p7. 0.756
## 8 8 Stress =~ GWS8 1 1 1 7 NA 0 .p8. .p8. 0.804
## 9 9 Stress =~ GWS9 1 1 1 8 NA 0 .p9. .p9. 0.725
## 10 10 GWS1 ~~ GWS1 0 1 1 9 NA 0 .p10. 0.581
## 11 11 GWS2 ~~ GWS2 0 1 1 10 NA 0 .p11. 0.662
## 12 12 GWS3 ~~ GWS3 0 1 1 11 NA 0 .p12. 0.591
## 13 13 GWS4 ~~ GWS4 0 1 1 12 NA 0 .p13. 0.651
## 14 14 GWS5 ~~ GWS5 0 1 1 13 NA 0 .p14. 0.487
## 15 15 GWS6 ~~ GWS6 0 1 1 14 NA 0 .p15. 0.445
## 16 16 GWS7 ~~ GWS7 0 1 1 15 NA 0 .p16. 0.549
## 17 17 GWS8 ~~ GWS8 0 1 1 16 NA 0 .p17. 0.493
## 18 18 GWS9 ~~ GWS9 0 1 1 17 NA 0 .p18. 0.530
## 19 19 Stress ~~ Stress 0 1 1 18 NA 0 .p19. 0.050
## 20 20 GWS1 ~1 0 1 1 19 NA 0 .p20. .p20. 2.734
## 21 21 GWS2 ~1 0 1 1 20 NA 0 .p21. .p21. 2.299
## 22 22 GWS3 ~1 0 1 1 21 NA 0 .p22. .p22. 2.359
## 23 23 GWS4 ~1 0 1 1 22 NA 0 .p23. .p23. 2.313
## 24 24 GWS5 ~1 0 1 1 23 NA 0 .p24. .p24. 2.183
## 25 25 GWS6 ~1 0 1 1 24 NA 0 .p25. .p25. 2.135
## 26 26 GWS7 ~1 0 1 1 25 NA 0 .p26. .p26. 2.569
## 27 27 GWS8 ~1 0 1 1 26 NA 0 .p27. .p27. 1.963
## 28 28 GWS9 ~1 0 1 1 27 NA 0 .p28. .p28. 2.093
## 29 29 Stress ~1 0 1 1 0 0 0 .p29. 0.000
## 30 30 Stress =~ GWS1 1 2 2 0 1 0 .p30. 1.000
## 31 31 Stress =~ GWS2 1 2 2 28 NA 0 .p2. .p31. 1.064
## 32 32 Stress =~ GWS3 1 2 2 29 NA 0 .p3. .p32. 0.812
## 33 33 Stress =~ GWS4 1 2 2 30 NA 0 .p4. .p33. 0.553
## 34 34 Stress =~ GWS5 1 2 2 31 NA 0 .p5. .p34. 0.459
## 35 35 Stress =~ GWS6 1 2 2 32 NA 0 .p6. .p35. 0.555
## 36 36 Stress =~ GWS7 1 2 2 33 NA 0 .p7. .p36. 0.490
## 37 37 Stress =~ GWS8 1 2 2 34 NA 0 .p8. .p37. 0.566
## 38 38 Stress =~ GWS9 1 2 2 35 NA 0 .p9. .p38. 0.529
## 39 39 GWS1 ~~ GWS1 0 2 2 36 NA 0 .p39. 0.516
## 40 40 GWS2 ~~ GWS2 0 2 2 37 NA 0 .p40. 0.511
## 41 41 GWS3 ~~ GWS3 0 2 2 38 NA 0 .p41. 0.489
## 42 42 GWS4 ~~ GWS4 0 2 2 39 NA 0 .p42. 0.496
## 43 43 GWS5 ~~ GWS5 0 2 2 40 NA 0 .p43. 0.323
## 44 44 GWS6 ~~ GWS6 0 2 2 41 NA 0 .p44. 0.343
## 45 45 GWS7 ~~ GWS7 0 2 2 42 NA 0 .p45. 0.542
## 46 46 GWS8 ~~ GWS8 0 2 2 43 NA 0 .p46. 0.367
## 47 47 GWS9 ~~ GWS9 0 2 2 44 NA 0 .p47. 0.349
## 48 48 Stress ~~ Stress 0 2 2 45 NA 0 .p48. 0.050
## 49 49 GWS1 ~1 0 2 2 46 NA 0 .p20. .p49. 2.421
## 50 50 GWS2 ~1 0 2 2 47 NA 0 .p21. .p50. 1.937
## 51 51 GWS3 ~1 0 2 2 48 NA 0 .p22. .p51. 2.045
## 52 52 GWS4 ~1 0 2 2 49 NA 0 .p23. .p52. 2.147
## 53 53 GWS5 ~1 0 2 2 50 NA 0 .p24. .p53. 1.848
## 54 54 GWS6 ~1 0 2 2 51 NA 0 .p25. .p54. 2.002
## 55 55 GWS7 ~1 0 2 2 52 NA 0 .p26. .p55. 2.800
## 56 56 GWS8 ~1 0 2 2 53 NA 0 .p27. .p56. 1.978
## 57 57 GWS9 ~1 0 2 2 54 NA 0 .p28. .p57. 1.858
## 58 58 Stress ~1 0 2 2 55 NA 0 .p58. 0.000
## 59 59 .p2. == .p31. 2 0 0 0 NA 0 0.000
## 60 60 .p3. == .p32. 2 0 0 0 NA 0 0.000
## 61 61 .p4. == .p33. 2 0 0 0 NA 0 0.000
## 62 62 .p5. == .p34. 2 0 0 0 NA 0 0.000
## 63 63 .p6. == .p35. 2 0 0 0 NA 0 0.000
## 64 64 .p7. == .p36. 2 0 0 0 NA 0 0.000
## 65 65 .p8. == .p37. 2 0 0 0 NA 0 0.000
## 66 66 .p9. == .p38. 2 0 0 0 NA 0 0.000
## 67 67 .p20. == .p49. 2 0 0 0 NA 0 0.000
## 68 68 .p21. == .p50. 2 0 0 0 NA 0 0.000
## 69 69 .p22. == .p51. 2 0 0 0 NA 0 0.000
## 70 70 .p23. == .p52. 2 0 0 0 NA 0 0.000
## 71 71 .p24. == .p53. 2 0 0 0 NA 0 0.000
## 72 72 .p25. == .p54. 2 0 0 0 NA 0 0.000
## 73 73 .p26. == .p55. 2 0 0 0 NA 0 0.000
## 74 74 .p27. == .p56. 2 0 0 0 NA 0 0.000
## 75 75 .p28. == .p57. 2 0 0 0 NA 0 0.000
## est se
## 1 1.000 0.000
## 2 1.115 0.025
## 3 0.969 0.033
## 4 0.899 0.039
## 5 0.765 0.031
## 6 0.833 0.030
## 7 0.822 0.033
## 8 0.836 0.033
## 9 0.770 0.033
## 10 0.448 0.026
## 11 0.408 0.029
## 12 0.547 0.045
## 13 0.679 0.040
## 14 0.547 0.031
## 15 0.363 0.024
## 16 0.562 0.032
## 17 0.433 0.030
## 18 0.612 0.038
## 19 0.749 0.050
## 20 2.699 0.036
## 21 2.252 0.039
## 22 2.313 0.036
## 23 2.329 0.036
## 24 2.099 0.031
## 25 2.158 0.031
## 26 2.707 0.034
## 27 2.052 0.032
## 28 2.060 0.032
## 29 0.000 0.000
## 30 1.000 0.000
## 31 1.115 0.025
## 32 0.969 0.033
## 33 0.899 0.039
## 34 0.765 0.031
## 35 0.833 0.030
## 36 0.822 0.033
## 37 0.836 0.033
## 38 0.770 0.033
## 39 0.511 0.033
## 40 0.424 0.036
## 41 0.462 0.034
## 42 0.607 0.040
## 43 0.388 0.026
## 44 0.346 0.026
## 45 0.824 0.044
## 46 0.408 0.033
## 47 0.420 0.033
## 48 0.495 0.042
## 49 2.699 0.036
## 50 2.252 0.039
## 51 2.313 0.036
## 52 2.329 0.036
## 53 2.099 0.031
## 54 2.158 0.031
## 55 2.707 0.034
## 56 2.052 0.032
## 57 2.060 0.032
## 58 -0.223 0.044
## 59 0.000 0.000
## 60 0.000 0.000
## 61 0.000 0.000
## 62 0.000 0.000
## 63 0.000 0.000
## 64 0.000 0.000
## 65 0.000 0.000
## 66 0.000 0.000
## 67 0.000 0.000
## 68 0.000 0.000
## 69 0.000 0.000
## 70 0.000 0.000
## 71 0.000 0.000
## 72 0.000 0.000
## 73 0.000 0.000
## 74 0.000 0.000
## 75 0.000 0.000
de Bruin, G. P. & Taylor, N. (2005). Development of the Sources of Work Stress Inventory. South African Journal of Psychology, 35, 748-765.
de Bruin, G. P. (2006). Dimensionality of the General Work Stress Scale. SA Journal of Industrial Psychology, 32(4), 68-75.