A continuación se presenta el objetivo general de la práctica:
A continuación, se presenta los objetivos específicos que tiene la siguiente práctica:
Identificar Los Ejercicios De La Literatura De La Regresión Lineal.
De Un Conjunto De Datos Con Dos Variables (Bivariable) En Donde Una De Ellas Es X Variable Independiente Y Otra De Ellas Y Variable Dependiente
Predecir El Valor De Y Conforme La Historia De X.
Realizar la Interpretación De La Práctica Correspondiente.
La probabilidad y la estadística están relacionadas en una forma importante. La probabilidad se emplea como herramienta; permite que se evalúe la confiabilidad de las conclusiones acerca de la población cuando tenga sólo información muestral.
Por otra parte, la probabilidad indica el grado de certidumbre o certeza de un suceso o fenómeno estudiado, en la investigación científica existen muchos fenómenos en los cuales es necesario determinar la probabilidad de que un evento ocurra o dejen de ocurrir, para lo cual el estudio de este campo, es necesario.
Además tiene aplicaciones muy importantes en investigación; dado que es base para la inferencia estadística que permite el estudio de muestras con el objetivo de inferir o extrapolar características de estas a una población.
La definición propia de una variables estadísticas es la siguiente, de acuerdo con los estipulado por Enciclopedia en su sitio web (2022):
Una variable estadística es una característica de una muestra o población de datos que puede adoptar diferentes valores.
Cuando hablamos de variable estadística estamos hablando de una cualidad que, generalmente adopta forma numérica. Por ejemplo, la altura de Juan es de 180 centímetros. La variable estadística es la altura y está medida en centímetros.
Claro que no todas las variables estadísticas son iguales y, por supuesto, no todas se pueden (en principio) expresar en forma de número.
Aunque hay decenas de tipos de variables estadísticas, por norma general podemos encontrarnos dos tipos de variables:
Variable Cuantitativa: Son variables que se expresan numéricamente.
Variable Continua: Toman un valor infinito de valores entre un intervalo de datos. El tiempo que tarda un corredor en completar los 100 metros lisos.
Variable Discreta: Toman un valor finito de valores entre un intervalo de datos. Número de helados vendidos.
Variable Cualitativa: Son variables que se expresan, por norma general, en palabras.
Variable Ordinal: Expresa diferentes niveles y orden.
Variable Nominal: Expresa un nombre claramente diferenciado. Por ejemplo el color de ojos puede ser azul, negro, castaño, verde, etc.
La utilidad principal de los análisis correlacionales es saber cómo se puede comportar un concepto o una variable al conocer el comportamiento de otras variables vinculadas, por ejemplo: a mayor estudio mejor rendimiento; a mayor cantidad de sol mayor temperatura de ambiente; a mayor frecuencia de actividad social mayor porcentaje de contagios, entre muchos otros.
La importancia de la correlación es conocer el grado de relación entre variables y ayuda a las técnicas de predicción, es decir, intentar predecir el valor aproximado que tendrá un grupo de individuos o casos en una variable, a partir del valor que poseen en las variables relacionadas.
La correlación puede ser positiva o negativa de entre \(-1\) a \(1\) y significa que el coeficiente r de Pearson puede variar de −1.00 a +1.00, donde:
−1.00 = correlación negativa perfecta. (“A mayor X, menor Y”, de manera proporcional. Es decir, cada vez que X aumenta una unidad, Y disminuye siempre una cantidad constante). Esto también se aplica “a menor X, mayor Y”. - −0.90 = Correlación negativa muy fuerte. - −0.75 = Correlación negativa considerable. - −0.50 = Correlación negativa media. - −0.25 = Correlación negativa débil. - −0.10 = Correlación negativa muy débil. - 0.00 = No existe correlación alguna entre las variables. - +0.10 = Correlación positiva muy débil. - +0.25 = Correlación positiva débil. - +0.50 = Correlación positiva media. - +0.75 = Correlación positiva considerable. - +0.90 = Correlación positiva muy fuerte. - +1.00 = Correlación positiva perfecta (“A mayor X, mayor Y” o “a menor X, menor Y”, de manera proporcional. Cada vez que X aumenta, Y aumenta siempre una cantidad constante).
El signo indica la dirección de la correlación (positiva o negativa); y el valor numérico, la magnitud de la correlación
Por otra parte, el análisis de correlación intenta medir la intensidad de tales relaciones entre dos variables por medio de un solo número denominado coeficiente de correlación.
Para determinar el coeficiente de correlación de Pearson de una muestra se utiliza la siguiente fórmula:
\[r = \frac{\sum_{i=1}^{n}(x_i - \bar{x})\cdot(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n}(x_i - \bar{x})^{2}\cdot\sum_{i=1}^{n}(y_i - \bar{y})^{2}}}\]
Siendo \(r\) el valor del coeficiente de correlación. La correlación de Pearson funciona bien con variables cuantitativas que tienen una distribución normal. [@amat_rodrigo_correlacion_2016]
La idea básica del análisis de correlación es identificar la asociación entre dos variables; por lo general, se puede describir la relación graficando o elaborando un diagrama de dispersión entre \(x\) y \(y\).
La regresión lineal simple implica aplicar una ecuación matemática de mínimos cuadrados que permite pronosticar o predecir el valor de una variable con base en el valor de otra; este procedimiento se llama análisis de regresión.
El análisis de regresión es un método para examinar una relación lineal entre dos variables; se utiliza el concepto de correlación \(r\), sin embargo, la regresión proporciona mucho más información, además de permitir estimaciones o predicciones de la relación lineal con la ecuación de mínimos cuadrados [@lind_estadistica_2015].
\[Y = a + bx\]
En donde:
\[ b = r \cdot(\frac{ s_{y}}{s_x}) = r \cdot \frac{\sqrt{ \frac{\sum_{i=1}^n(y_i- \bar{y})^2}{n-1}}} {\sqrt{ \frac{\sum_{i=1}^n(x_i- \bar{x})^2}{n-1}}} \] En donde:
\(r\) es el coeficiente de correlación.
\(S_y\) es la desviación estándar de \(y\). \(\text {es el denominador}\)
\(S_x\) es la desviación estándar de la variable \(x\). \(\text{es el numerador}\)
Y para determinar a:
\[a = \bar{y} - b \cdot\bar{x}\]
Un valor que es importante destacar en la regresión lineal, es el coeficiente de determinación también representado por \(r^{2}\) que se puede sacar elevando al cuadrado el coeficiente de correlación previamente determinado.
Cuando el coeficiente \(r\) de Pearson se eleva al cuadrado \(r^{2}\), se obtiene el coeficiente de determinación y el resultado indica la variabilidad de factores comunes. Esto es, el porcentaje de la variación de una variable debido a la variación de la otra variable y viceversa (o cuánto explica o determina una variable la variación de la otra).
El coeficiente de determinación es la proporción y la explicación de la variación total de la variable dependiente \(y\) con respecto a la variable independiente \(x\).
En los siguientes ejercicios también se utilizan funciones de paquetes predeterminados de lenguaje de R para una mejor comprensión de la distribución binomial.
# Importación De Los Paquetes Y Librerías Necesarias Para La Realización De La Práctica
library(dplyr)
library(mosaic)
library(readr)
library(ggplot2) # Para gráficos
library(knitr) # Para formateo de datos
# Acomodo Del Tipo De Notación Para El Muestro De Los Valores Obtenidos
options(scipen=999) # Notación normal
# options(scipen=1) # Notación científica
Datos de llamadas que hacen vendedores y las ventas que realizan.
# Inicializando Los Valores Para La Práctica
vendedores <- paste("V",1:15, sep="")
llamadas <- c(96, 40, 104, 128, 164, 76, 72, 80 , 36, 84, 180, 132, 120, 44, 84)
ventas <- c(41, 41, 51, 60, 61, 29, 39, 50, 28, 43, 70, 56, 45, 31, 30)
datos <- data.frame(vendedores, llamadas, ventas)
datos
## vendedores llamadas ventas
## 1 V1 96 41
## 2 V2 40 41
## 3 V3 104 51
## 4 V4 128 60
## 5 V5 164 61
## 6 V6 76 29
## 7 V7 72 39
## 8 V8 80 50
## 9 V9 36 28
## 10 V10 84 43
## 11 V11 180 70
## 12 V12 132 56
## 13 V13 120 45
## 14 V14 44 31
## 15 V15 84 30
r <- cor(datos$llamadas, datos$ventas)
r
## [1] 0.8646318
ggplot(data = datos, aes(x = llamadas, y = ventas)) +
geom_point(colour = 'blue')
modelo <- lm(data = datos, formula = ventas~llamadas)
modelo
##
## Call:
## lm(formula = ventas ~ llamadas, data = datos)
##
## Coefficients:
## (Intercept) llamadas
## 19.9800 0.2606
summary(modelo)
##
## Call:
## lm(formula = ventas ~ llamadas, data = datos)
##
## Residuals:
## Min 1Q Median 3Q Max
## -11.873 -2.861 0.255 3.511 10.595
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 19.9800 4.3897 4.552 0.000544 ***
## llamadas 0.2606 0.0420 6.205 0.0000319 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.72 on 13 degrees of freedom
## Multiple R-squared: 0.7476, Adjusted R-squared: 0.7282
## F-statistic: 38.5 on 1 and 13 DF, p-value: 0.00003193
paste("El coeficiente de determinación o Multiple R-squared: es igual al cuadrado del coeficiente de correlación: ", r^2)
## [1] "El coeficiente de determinación o Multiple R-squared: es igual al cuadrado del coeficiente de correlación: 0.747588134135855"
a <- modelo$coefficients[1]
b <- modelo$coefficients[2]
a ; b
## (Intercept)
## 19.98
## llamadas
## 0.260625
mean(datos$llamadas)
## [1] 96
mean(datos$ventas)
## [1] 45
ggplot() +
geom_point(data = datos, aes(x = llamadas, y = ventas), colour='blue') +
geom_point(aes(x= mean(datos$llamadas), y = mean(datos$ventas)), col = 'green') +
geom_line(aes( x = datos$llamadas, y = predict(modelo, datos)), color = "red") +
xlab("Llamadas") +
ylab("Ventas") +
ggtitle("Linea de tendencia sobre Conjunto de Datos")
x <- c(100, 130, 160)
prediccion <- predict(object = modelo, newdata = data.frame(llamadas = x))
prediccion
## 1 2 3
## 46.04250 53.86125 61.68000
# Comprobar
y = a + b * x
y
## [1] 46.04250 53.86125 61.68000

De un conjunto de datos para una empresa que invierte dinero en comerciales se tienen un historial de ventas de doce semanas.
semanas <- c(1:12)
comerciales <- c(2,5,1,3,4,1,5,3,4,2,3,2)
ventas <- c(50,57,41,54,54,38,63,48,59,46, 45, 48 )
datos <- data.frame(semanas,comerciales,ventas)
kable(datos, caption = "Ventas en función de inversión en comerciales")
| semanas | comerciales | ventas |
|---|---|---|
| 1 | 2 | 50 |
| 2 | 5 | 57 |
| 3 | 1 | 41 |
| 4 | 3 | 54 |
| 5 | 4 | 54 |
| 6 | 1 | 38 |
| 7 | 5 | 63 |
| 8 | 3 | 48 |
| 9 | 4 | 59 |
| 10 | 2 | 46 |
| 11 | 3 | 45 |
| 12 | 2 | 48 |
r <- cor(datos$comerciales, datos$ventas)
r
## [1] 0.9006177
ggplot(data = datos, aes(x = comerciales, y = ventas)) +
geom_point(colour = 'blue')
modelo <- lm(data = datos, formula = ventas~comerciales)
modelo
##
## Call:
## lm(formula = ventas ~ comerciales, data = datos)
##
## Coefficients:
## (Intercept) comerciales
## 36.131 4.841
summary(modelo)
##
## Call:
## lm(formula = ventas ~ comerciales, data = datos)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.6534 -2.7331 0.1076 2.8357 4.1873
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 36.1315 2.3650 15.278 0.0000000293 ***
## comerciales 4.8406 0.7387 6.553 0.0000644865 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.378 on 10 degrees of freedom
## Multiple R-squared: 0.8111, Adjusted R-squared: 0.7922
## F-statistic: 42.94 on 1 and 10 DF, p-value: 0.00006449
paste("El coeficiente de determinación o Multiple R-squared: es igual al cuadrado del coeficiente de correlación: ", r^2)
## [1] "El coeficiente de determinación o Multiple R-squared: es igual al cuadrado del coeficiente de correlación: 0.811112191696598"
a <- modelo$coefficients[1]
b <- modelo$coefficients[2]
a ; b
## (Intercept)
## 36.13147
## comerciales
## 4.840637
mean(datos$comerciales)
## [1] 2.916667
mean(datos$ventas)
## [1] 50.25
ggplot() +
geom_point(data = datos, aes(x = comerciales, y = ventas), colour='blue') +
geom_point(aes(x= mean(datos$comerciales), y = mean(datos$ventas)), col = 'green') +
geom_line(aes( x = datos$comerciales, y = predict(modelo, datos)), color = "red") +
xlab("Comerciales") +
ylab("Ventas") +
ggtitle("Linea de tendencia sobre Conjunto de Datos")
x <- c(4, 3.5, 2, 0,1)
prediccion <- predict(object = modelo, newdata = data.frame(comerciales = x))
prediccion
## 1 2 3 4 5
## 55.49402 53.07371 45.81275 36.13147 40.97211
# Comprobar
y = a + b * x
y
## [1] 55.49402 53.07371 45.81275 36.13147 40.97211

Uno de los problemas más desafiantes que se enfrentan en el área del control de la contaminación del agua lo representa la industria de la peletería (dedicada a la elaboración de indumentaria, cuero y piel animal).
Los desechos de ésta tienen una complejidad química. Se caracterizan por valores elevados de demanda de oxígeno bioquímico, sólidos volátiles y otras medidas de la contaminación. [@walpole_probabilidad_2007]
Tal vez si existen contaminantes sólidos se requiera mayor oxígeno bioquímico.
seq <- c(1:33)
solido <- c(3,7,11,15,18,27,29,30,30,31,31,32,33,33,34,36,36,36,37,38,39,39,39,40,41,42,42,43,44,45,46,47,50)
oxigeno <- c(5,11,21,16,16,28,27,25,35,30,40,32,34,32,34,37,38,34,36,38,37,36,45,39,41,40,44,37,44,46,46,49,51 )
datos <- data.frame(seq,solido,oxigeno)
kable(datos, caption = "Contaminante oxígeno en función de sólidos contaminantes")
| seq | solido | oxigeno |
|---|---|---|
| 1 | 3 | 5 |
| 2 | 7 | 11 |
| 3 | 11 | 21 |
| 4 | 15 | 16 |
| 5 | 18 | 16 |
| 6 | 27 | 28 |
| 7 | 29 | 27 |
| 8 | 30 | 25 |
| 9 | 30 | 35 |
| 10 | 31 | 30 |
| 11 | 31 | 40 |
| 12 | 32 | 32 |
| 13 | 33 | 34 |
| 14 | 33 | 32 |
| 15 | 34 | 34 |
| 16 | 36 | 37 |
| 17 | 36 | 38 |
| 18 | 36 | 34 |
| 19 | 37 | 36 |
| 20 | 38 | 38 |
| 21 | 39 | 37 |
| 22 | 39 | 36 |
| 23 | 39 | 45 |
| 24 | 40 | 39 |
| 25 | 41 | 41 |
| 26 | 42 | 40 |
| 27 | 42 | 44 |
| 28 | 43 | 37 |
| 29 | 44 | 44 |
| 30 | 45 | 46 |
| 31 | 46 | 46 |
| 32 | 47 | 49 |
| 33 | 50 | 51 |
r <- cor(datos$solido, datos$oxigeno)
r
## [1] 0.9554794
ggplot(data = datos, aes(x = solido, y = oxigeno)) +
geom_point(colour = 'blue')
modelo <- lm(data = datos, formula = oxigeno~solido)
modelo
##
## Call:
## lm(formula = oxigeno ~ solido, data = datos)
##
## Coefficients:
## (Intercept) solido
## 3.8296 0.9036
summary(modelo)
##
## Call:
## lm(formula = oxigeno ~ solido, data = datos)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.939 -1.783 -0.228 1.506 8.157
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.82963 1.76845 2.166 0.0382 *
## solido 0.90364 0.05012 18.030 <0.0000000000000002 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.23 on 31 degrees of freedom
## Multiple R-squared: 0.9129, Adjusted R-squared: 0.9101
## F-statistic: 325.1 on 1 and 31 DF, p-value: < 0.00000000000000022
paste("El coeficiente de determinación o Multiple R-squared: es igual al cuadrado del coeficiente de correlación :", r^2)
## [1] "El coeficiente de determinación o Multiple R-squared: es igual al cuadrado del coeficiente de correlación : 0.912940801014387"
a <- modelo$coefficients[1]
b <- modelo$coefficients[2]
a ; b
## (Intercept)
## 3.829633
## solido
## 0.9036432
mean(datos$solido)
## [1] 33.45455
mean(datos$oxigeno)
## [1] 34.06061
ggplot() +
geom_point(data = datos, aes(x = solido, y = oxigeno), colour='blue') +
geom_point(aes(x= mean(datos$solido), y = mean(datos$oxigeno)), col = 'green') +
geom_line(aes( x = datos$solido, y = predict(modelo, datos)), color = "red") +
xlab("Reducción de sólido") +
ylab("% Oxígeno") +
ggtitle("Linea de tendencia sobre Conjunto de Datos")
x <- c(15,20,35,40,50)
prediccion <- predict(object = modelo, newdata = data.frame(solido = x))
prediccion
## 1 2 3 4 5
## 17.38428 21.90250 35.45715 39.97536 49.01179
# Comprobar
y = a + b * x
y
## [1] 17.38428 21.90250 35.45715 39.97536 49.01179
Pendiente..
Mediciones del cuerpo humano en donde se buscar identificar el coeficiente de correlación \(r\), el coeficiente de determinación \(r^2\) y el modelo de regresión lineal para predecir peso en relación a la estatura de una persona.
datos <- read.table("https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/2023/datos/body.dat.txt", quote="\"", comment.char="")
datos <- as.data.frame(datos)
Son 507 observaciones y 25 variables. Se identifican todas las variables de datos. Las variables de interés son las variables numéricas (columnas 23 y 24) y la columna 25 de género solo para ubicar género Masculino (1) o Femenino (2).
str(datos)
## 'data.frame': 507 obs. of 25 variables:
## $ V1 : num 42.9 43.7 40.1 44.3 42.5 43.3 43.5 44.4 43.5 42 ...
## $ V2 : num 26 28.5 28.2 29.9 29.9 27 30 29.8 26.5 28 ...
## $ V3 : num 31.5 33.5 33.3 34 34 31.5 34 33.2 32.1 34 ...
## $ V4 : num 17.7 16.9 20.9 18.4 21.5 19.6 21.9 21.8 15.5 22.5 ...
## $ V5 : num 28 30.8 31.7 28.2 29.4 31.3 31.7 28.8 27.5 28 ...
## $ V6 : num 13.1 14 13.9 13.9 15.2 14 16.1 15.1 14.1 15.6 ...
## $ V7 : num 10.4 11.8 10.9 11.2 11.6 11.5 12.5 11.9 11.2 12 ...
## $ V8 : num 18.8 20.6 19.7 20.9 20.7 18.8 20.8 21 18.9 21.1 ...
## $ V9 : num 14.1 15.1 14.1 15 14.9 13.9 15.6 14.6 13.2 15 ...
## $ V10: num 106 110 115 104 108 ...
## $ V11: num 89.5 97 97.5 97 97.5 ...
## $ V12: num 71.5 79 83.2 77.8 80 82.5 82 76.8 68.5 77.5 ...
## $ V13: num 74.5 86.5 82.9 78.8 82.5 80.1 84 80.5 69 81.5 ...
## $ V14: num 93.5 94.8 95 94 98.5 95.3 101 98 89.5 99.8 ...
## $ V15: num 51.5 51.5 57.3 53 55.4 57.5 60.9 56 50 59.8 ...
## $ V16: num 32.5 34.4 33.4 31 32 33 42.4 34.1 33 36.5 ...
## $ V17: num 26 28 28.8 26.2 28.4 28 32.3 28 26 29.2 ...
## $ V18: num 34.5 36.5 37 37 37.7 36.6 40.1 39.2 35.5 38.3 ...
## $ V19: num 36.5 37.5 37.3 34.8 38.6 36.1 40.3 36.7 35 38.6 ...
## $ V20: num 23.5 24.5 21.9 23 24.4 23.5 23.6 22.5 22 22.2 ...
## $ V21: num 16.5 17 16.9 16.6 18 16.9 18.8 18 16.5 16.9 ...
## $ V22: num 21 23 28 23 22 21 26 27 23 21 ...
## $ V23: num 65.6 71.8 80.7 72.6 78.8 74.8 86.4 78.4 62 81.6 ...
## $ V24: num 174 175 194 186 187 ...
## $ V25: int 1 1 1 1 1 1 1 1 1 1 ...
Se seleccionan las columnas que tienen valores de peso en kilogramso y estaturas en centímetros de personas así como el género, Se muestran los primeros 10 y últimos 10 registros.
colnames(datos)[23:25] <- c("peso", "estatura", "genero")
# Solo interesan las tres últimas columnas
datos <- select(datos, estatura, peso, genero)
kable(head(datos, 10), caption = "Datos de pesos y estaturas de personas")
| estatura | peso | genero |
|---|---|---|
| 174.0 | 65.6 | 1 |
| 175.3 | 71.8 | 1 |
| 193.5 | 80.7 | 1 |
| 186.5 | 72.6 | 1 |
| 187.2 | 78.8 | 1 |
| 181.5 | 74.8 | 1 |
| 184.0 | 86.4 | 1 |
| 184.5 | 78.4 | 1 |
| 175.0 | 62.0 | 1 |
| 184.0 | 81.6 | 1 |
kable(tail(datos, 10), caption = "Datos de pesos y estaturas de personas")
| estatura | peso | genero | |
|---|---|---|---|
| 498 | 169.5 | 67.3 | 0 |
| 499 | 160.0 | 75.5 | 0 |
| 500 | 172.7 | 68.2 | 0 |
| 501 | 162.6 | 61.4 | 0 |
| 502 | 157.5 | 76.8 | 0 |
| 503 | 176.5 | 71.8 | 0 |
| 504 | 164.4 | 55.5 | 0 |
| 505 | 160.7 | 48.6 | 0 |
| 506 | 174.0 | 66.4 | 0 |
| 507 | 163.8 | 67.3 | 0 |
r <- cor(datos$estatura, datos$peso)
r
## [1] 0.7173011
ggplot(data = datos, aes(x = estatura, y = peso)) +
geom_point(colour = 'blue')
modelo <- lm(data = datos, formula = peso~estatura)
modelo
##
## Call:
## lm(formula = peso ~ estatura, data = datos)
##
## Coefficients:
## (Intercept) estatura
## -105.011 1.018
summary(modelo)
##
## Call:
## lm(formula = peso ~ estatura, data = datos)
##
## Residuals:
## Min 1Q Median 3Q Max
## -18.743 -6.402 -1.231 5.059 41.103
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -105.01125 7.53941 -13.93 <0.0000000000000002 ***
## estatura 1.01762 0.04399 23.14 <0.0000000000000002 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.308 on 505 degrees of freedom
## Multiple R-squared: 0.5145, Adjusted R-squared: 0.5136
## F-statistic: 535.2 on 1 and 505 DF, p-value: < 0.00000000000000022
paste("El coeficiente de determinación o Multiple R-squared: es igual al cuadrado del coeficiente de correlación :", r^2)
## [1] "El coeficiente de determinación o Multiple R-squared: es igual al cuadrado del coeficiente de correlación : 0.514520837538849"
a <- modelo$coefficients[1]
b <- modelo$coefficients[2]
a ; b
## (Intercept)
## -105.0113
## estatura
## 1.017617
mean(datos$estatura)
## [1] 171.1438
mean(datos$peso)
## [1] 69.14753
ggplot() +
geom_point(data = datos, aes(x = estatura, y = peso), colour='blue') +
geom_point(aes(x= mean(datos$estatura), y = mean(datos$peso)), col = 'green') +
geom_line(aes( x = datos$estatura, y = predict(modelo, datos)), color = "red") +
xlab("Estatura") +
ylab("Peso") +
ggtitle("Linea de tendencia sobre Conjunto de Datos")
x <- c(150, 160, 170, 175, 185, 190)
prediccion <- predict(object = modelo, newdata = data.frame(estatura = x))
prediccion
## 1 2 3 4 5 6
## 47.63126 57.80743 67.98360 73.07168 83.24785 88.33593
# Comprobar
y = a + b * x
y
## [1] 47.63126 57.80743 67.98360 73.07168 83.24785 88.33593
Conforme a los datos obtenido de una muestra de mediciones del cuerpo humano en relación las variables independiente estatura y la variable dependiente el peso. Se concluye lo siguiente:
El valor de la correlación entre las variables estatura y peso es de 0.7173011 que significa y se interpreta como una correlación positiva considerable.
El valor del coeficiente determinación \(r^{2}\) significa que el valor de la estatura de una persona representa el 51.45 % del peso de la misma.
Por cada unidad de estatura en una persona el peso varía en función de 1.0176168
Para una persona que mide 170 centímetros la predicción de peso es de 67.9835977
Para una persona que mide 185 centímetros la predicción de peso es de 83.2478493
Con los datos de “https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/2023/datos/players_20.csv” datos de FIFA. Se seleccionan las dos variables numéricas de interés, height_cm y weight_kg; se modifican los nombres de variables a altura y peso.
y con los datos de Universidades
“https://raw.githubusercontent.com/rpizarrog/probabilidad-y-estad-stica/master/2023/datos/world%20ranking%20universities.csv” y las variables de interés numéricas *publications y rank.*
Para cada conjunto de datos:
¿Cuál es la variable independiente y cuál la variable dependiente?. En los datos de FIFA la variabel estatura es la variable independiente y peso la variable dependiente; para los datos de las universidades la variable indepediente es publications y la variable dependiente es rank .
¿Cuál es la estructura de los datos?
Para los dos conjuntos de datos y las dos variables de interés, determinar la correlación de Pearson con la función cor(x,y) que establece el grado de relación entre dos variables; \(x\) e \(y\).
¿Cómo se interpreta el valor del coeficiente de correlación? para ambos conjunto de datos y las dos variables de interés.
Construir la dispersión de las variables para ambos conjuntos de datos
Construir el modelo de regresión lineal para ambos conjuntos de datos
¿Cuál es el valor y qué significa el coeficiente de determinación?, para ambos conjuntos de datos
¿Cuáles son los valores de \(a\) y \(b\) en la ecuación de mínimos cuadrados? \(Y = a + b\cdot x\) para ambos conjuntos de datos
para ambos conjuntos de datos
Predecir el pesos en kgs de los jugadores de fútbol conforme a valores nuevos con la función predict() y verificar manualmente.
Para el conjunto de datos de FIFA y las variables estatura y peso, ¿cuál será el peso de un jugador de Fútbol que tiene estatura 172, 175 y 180.
Para el conjunto de datos de Universidades y las variables publications y rank ¿cual debiera ser la predicción para una cantidad de predicciones de una universidad que publica 70000, 90000, y 100000 artículos.
En este caso se representó un histograma para una serie de datos simulados.
La regresión lineal simple es un proceso en el cual inferimos un modelo matemático lineal basado en un conjunto de datos medidos que muestran información de la relación de varias variables cuantitativas. El modelo de regresión lineal simple sólo está conformado por dos variables estadísticas llamadas X e Y. Considera una única variable independiente o explicativa, X, y una variable dependiente o respuesta, Y, asumiendo que la relación entre ambas es lineal.
El análisis de regresión es una técnica estadística para investigar la relación funcional entre dos o más variables, ajustando algún modelo matemático. La regresión lineal simple utiliza una sola variable de regresión y el caso más sencillo es el modelo de línea recta.
Levine, D. M. (2010) Estadística para administración y economía. (7ª. ed.) México : Pearson Educación.
Mendenhall, W. (2010). Introducción a la Probabilidad y Estadística. (13ª. ed.) México: Cengage Learning.
Montgomery, D. C. (2011). Probabilidad y estadística aplicadas a la ingeniería. (2ª. ed.) México : Limusa: Wiley.
Quezada, L. (2010). Estadística para ingenieros. México : Empresa Editora Macro.