1 Bài về nhà tuần 1

library(ggplot2)
library(extraDistr)

1.1 Poisson Distribution

poisson <- rpois(10000, lambda = 1.5)
summary(poisson)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   1.000   1.000   1.472   2.000   8.000
var(poisson)
## [1] 1.46274
sd(poisson)
## [1] 1.209438
poisson <- table(poisson)
poisson <- as.data.frame(poisson)
ggplot(poisson, aes(poisson, Freq)) + geom_col(fill = 'red') + geom_point() + geom_line(aes(as.integer(poisson), Freq), color = 'yellow')

1.2 Student Distribution

student <- round(rt(10000, df = 70),0)
summary(student)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## -4.0000 -1.0000  0.0000  0.0175  1.0000  4.0000
var(student)
## [1] 1.105704
sd(student)
## [1] 1.051525
student <- table(student)
student <- as.data.frame(student)
ggplot(student, aes(student, Freq)) + geom_col(fill = 'green') + geom_point() + geom_line(aes(as.integer(student), Freq), color = 'red')

1.3 Chi_square Distribution

chisquare <- round(rchisq(10000, df = 10),0)
summary(chisquare)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   1.000   7.000   9.000   9.928  13.000  39.000
var(chisquare)
## [1] 20.36685
sd(chisquare)
## [1] 4.512965
chisquare <- table(chisquare)
chisquare <- as.data.frame(chisquare)
ggplot(chisquare, aes(chisquare, Freq)) + geom_col(fill = 'purple') + geom_point() + geom_line(aes(as.integer(chisquare), Freq), color = 'yellow')

1.4 Binomial Distribution

binomial <- rbinom(10000, size = 10, prob = 0.2)
summary(binomial)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   1.000   2.000   1.996   3.000   7.000
var(binomial)
## [1] 1.554138
sd(binomial)
## [1] 1.246651
binomial <- table(binomial)
binomial <- as.data.frame(binomial)
ggplot(binomial, aes(binomial, Freq)) + geom_col(fill = 'yellow') + geom_point() + geom_line(aes(as.integer(binomial), Freq), color = 'red')

1.5 Normal Distribution

normal <- rnorm(n = 10000, mean = 1, sd = 4)
summary(normal)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## -14.145  -1.726   1.017   1.010   3.756  17.335
var(normal)
## [1] 16.27791
sd(normal)
## [1] 4.034589
hist(normal)

1.6 Exponential Distribution

exponential <- rexp(n = 10000, rate = 1)
summary(exponential)
##      Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
##  0.000246  0.285396  0.701611  1.016285  1.415225 11.092827
var(exponential)
## [1] 1.04669
sd(exponential)
## [1] 1.023079
hist(exponential)

1.7 Uniform Distribution

Uniform <- runif(10000, min = 0, max = 50)
summary(Uniform)
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
##  0.00477 12.76534 25.03761 25.11008 37.51878 49.99728
var(Uniform)
## [1] 207.382
sd(Uniform)
## [1] 14.40076
hist(Uniform)

1.8 Triangular Distribution

Triangular <- rtriang(10000, a = 2, b = 10, c = 6)
summary(Triangular)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   2.053   4.858   6.025   6.008   7.163   9.993
var(Triangular)
## [1] 2.629848
sd(Triangular)
## [1] 1.621681
hist(Triangular)