# Mindanao State University
# General Santos City
# June 5, 2023
# Probability Distributions
######################################
#
# 1. Normal Probability Distributions
#
######################################
x_dnorm <- seq(- 5, 5, by = 0.005)
y_dnorm <- dnorm(x_dnorm) 
y_pnorm <- pnorm(x_dnorm) 
x_qnorm <- seq(0, 1, by = 0.005)
y_qnorm <- qnorm(x_qnorm) 
set.seed(123) 
N = 500 
y_rnorm <- rnorm(N) 
y_rnorm
##   [1] -0.560475647 -0.230177489  1.558708314  0.070508391  0.129287735
##   [6]  1.715064987  0.460916206 -1.265061235 -0.686852852 -0.445661970
##  [11]  1.224081797  0.359813827  0.400771451  0.110682716 -0.555841135
##  [16]  1.786913137  0.497850478 -1.966617157  0.701355902 -0.472791408
##  [21] -1.067823706 -0.217974915 -1.026004448 -0.728891229 -0.625039268
##  [26] -1.686693311  0.837787044  0.153373118 -1.138136937  1.253814921
##  [31]  0.426464221 -0.295071483  0.895125661  0.878133488  0.821581082
##  [36]  0.688640254  0.553917654 -0.061911711 -0.305962664 -0.380471001
##  [41] -0.694706979 -0.207917278 -1.265396352  2.168955965  1.207961998
##  [46] -1.123108583 -0.402884835 -0.466655354  0.779965118 -0.083369066
##  [51]  0.253318514 -0.028546755 -0.042870457  1.368602284 -0.225770986
##  [56]  1.516470604 -1.548752804  0.584613750  0.123854244  0.215941569
##  [61]  0.379639483 -0.502323453 -0.333207384 -1.018575383 -1.071791226
##  [66]  0.303528641  0.448209779  0.053004227  0.922267468  2.050084686
##  [71] -0.491031166 -2.309168876  1.005738524 -0.709200763 -0.688008616
##  [76]  1.025571370 -0.284773007 -1.220717712  0.181303480 -0.138891362
##  [81]  0.005764186  0.385280401 -0.370660032  0.644376549 -0.220486562
##  [86]  0.331781964  1.096839013  0.435181491 -0.325931586  1.148807618
##  [91]  0.993503856  0.548396960  0.238731735 -0.627906076  1.360652449
##  [96] -0.600259587  2.187332993  1.532610626 -0.235700359 -1.026420900
## [101] -0.710406564  0.256883709 -0.246691878 -0.347542599 -0.951618567
## [106] -0.045027725 -0.784904469 -1.667941937 -0.380226520  0.918996609
## [111] -0.575346963  0.607964322 -1.617882708 -0.055561966  0.519407204
## [116]  0.301153362  0.105676194 -0.640706008 -0.849704346 -1.024128791
## [121]  0.117646597 -0.947474614 -0.490557444 -0.256092192  1.843862005
## [126] -0.651949902  0.235386572  0.077960850 -0.961856634 -0.071308086
## [131]  1.444550858  0.451504053  0.041232922 -0.422496832 -2.053247222
## [136]  1.131337213 -1.460640071  0.739947511  1.909103569 -1.443893161
## [141]  0.701784335 -0.262197489 -1.572144159 -1.514667654 -1.601536174
## [146] -0.530906522 -1.461755585  0.687916773  2.100108941 -1.287030476
## [151]  0.787738847  0.769042241  0.332202579 -1.008376608 -0.119452607
## [156] -0.280395335  0.562989533 -0.372438756  0.976973387 -0.374580858
## [161]  1.052711466 -1.049177007 -1.260155245  3.241039935 -0.416857588
## [166]  0.298227592  0.636569674 -0.483780626  0.516862044  0.368964527
## [171] -0.215380508  0.065293034 -0.034067254  2.128451899 -0.741336096
## [176] -1.095996267  0.037788399  0.310480749  0.436523479 -0.458365333
## [181] -1.063326134  1.263185176 -0.349650388 -0.865512863 -0.236279569
## [186] -0.197175894  1.109920290  0.084737292  0.754053785 -0.499292017
## [191]  0.214445310 -0.324685911  0.094583528 -0.895363358 -1.310801533
## [196]  1.997213385  0.600708824 -1.251271362 -0.611165917 -1.185480085
## [201]  2.198810349  1.312412976 -0.265145057  0.543194059 -0.414339948
## [206] -0.476246895 -0.788602838 -0.594617267  1.650907467 -0.054028125
## [211]  0.119245236  0.243687430  1.232475878 -0.516063831 -0.992507150
## [216]  1.675696932 -0.441163217 -0.723065970 -1.236273119 -1.284715722
## [221] -0.573973479  0.617985817  1.109848139  0.707588354 -0.363657297
## [226]  0.059749937 -0.704596464 -0.717218162  0.884650499 -1.015592579
## [231]  1.955293965 -0.090319594  0.214538827 -0.738527705 -0.574388690
## [236] -1.317016132 -0.182925388  0.418982405  0.324304344 -0.781536487
## [241] -0.788621971 -0.502198718  1.496060670 -1.137303621 -0.179051594
## [246]  1.902361822 -0.100974885 -1.359840704 -0.664769435  0.485459979
## [251] -0.375602872 -0.561876364 -0.343917234  0.090496647  1.598508771
## [256] -0.088565112  1.080799496  0.630754116 -0.113639896 -1.532902003
## [261] -0.521117318 -0.489870453  0.047154433  1.300198678  2.293078974
## [266]  1.547581059 -0.133150964 -1.756527396 -0.388779864  0.089207223
## [271]  0.845013004  0.962527968  0.684309429 -1.395274350  0.849643046
## [276] -0.446557216  0.174802700  0.074551177  0.428166765  0.024674983
## [281] -1.667475098  0.736495965  0.386026568 -0.265651625  0.118144511
## [286]  0.134038645  0.221019469  1.640846166 -0.219050379  0.168065384
## [291]  1.168383873  1.054181023  1.145263110 -0.577468001  2.002482730
## [296]  0.066700871  1.866851845 -1.350902686  0.020983586  1.249914571
## [301] -0.715242187 -0.752688968 -0.938538704 -1.052513279 -0.437159533
## [306]  0.331179173 -2.014210498  0.211980433  1.236675046  2.037574018
## [311]  1.301175992  0.756774764 -1.726730399 -0.601506708 -0.352046457
## [316]  0.703523903 -0.105671334 -1.258648628  1.684435708  0.911391292
## [321]  0.237430272  1.218108610 -1.338774287  0.660820298 -0.522912376
## [326]  0.683745522 -0.060821955  0.632960713  1.335517615  0.007290090
## [331]  1.017558637 -1.188434035 -0.721604440  1.519217711  0.377387973
## [336] -2.052222820 -1.364037452 -0.200781016  0.865779404 -0.101883256
## [341]  0.624187472  0.959005378  1.671054829  0.056016733 -0.051981906
## [346] -1.753237359  0.099327594 -0.571850058 -0.974009583 -0.179906231
## [351]  1.014943173 -1.992748489 -0.427279287  0.116637284 -0.893207570
## [356]  0.333902942  0.411429921 -0.033036159 -2.465898194  2.571458146
## [361] -0.205299257  0.651193282  0.273766491  1.024673235  0.817659446
## [366] -0.209793171  0.378167772 -0.945408831  0.856923011 -0.461038339
## [371]  2.416773354 -1.651048896 -0.463987243  0.825379863  0.510132547
## [376] -0.589481039 -0.996780742  0.144475705 -0.014307413 -1.790281237
## [381]  0.034551067  0.190230316  0.174726397 -1.055017043  0.476133278
## [386]  1.378570137  0.456236403 -1.135588470 -0.435645470  0.346103620
## [391] -0.647045631 -2.157646335  0.884250820 -0.829477612 -0.573560271
## [396]  1.503900609 -0.774144930  0.845731540 -1.260682879 -0.354542403
## [401] -0.073556019 -1.168651424 -0.634748265 -0.028841553  0.670695969
## [406] -1.650546543 -0.349754239  0.756406439 -0.538809160  0.227291922
## [411]  0.492228570  0.267835015  0.653257679 -0.122708661 -0.413676514
## [416] -2.643148952 -0.092941018  0.430284696  0.535398841 -0.555278351
## [421]  1.779502910  0.286424420  0.126315858  1.272266779 -0.718466221
## [426] -0.450338624  2.397452480  0.011129187  1.633568421 -1.438506645
## [431] -0.190516802  0.378423904  0.300038545 -1.005636260  0.019259275
## [436] -1.077420653  0.712703325  1.084775090 -2.224987696  1.235693462
## [441] -1.241044497  0.454769269  0.659902638 -0.199889828 -0.645113957
## [446]  0.165321021  0.438818701  0.883302820 -2.052336984 -1.636379268
## [451]  1.430402341  1.046628847  0.435288949  0.715178407  0.917174918
## [456] -2.660922798  1.110277097 -0.484987597  0.230616831 -0.295157801
## [461]  0.871964954 -0.348472449  0.518503766 -0.390684979 -1.092787209
## [466]  1.210010510  0.740900011  1.724262239  0.065153933  1.125002746
## [471]  1.975419054 -0.281482115 -1.322951113 -0.239351567 -0.214041240
## [476]  0.151680505  1.712304977 -0.326143893  0.373004656 -0.227684065
## [481]  0.020450709  0.314057664  1.328214696  0.121318377  0.712842320
## [486]  0.778860030  0.914773271 -0.574394552  1.626881214 -0.380956739
## [491] -0.105784168  1.404050268  1.294083906 -1.089991872 -0.873071000
## [496] -1.358079059  0.181847193  0.164840868  0.364114687  0.552157714
# Combining the Plots
par(mfrow=c(2,2))
plot(y_dnorm, main="Density plot")
plot(y_pnorm, main="Cumulative Density plot")
plot(y_qnorm, main="Quantile plot")
plot(y_rnorm, main="Scatter Plot Random Samples")

par(mfrow=c(1,2))
plot(density(y_rnorm),main = "Density plot")
hist(y_rnorm, main= "Histogram")

par(mfrow=c(1,1))
# Modify values of the mean and sd
y_rnorm2 <- rnorm(N, mean = 2) 
y_rnorm3 <- rnorm(N, mean = 2, sd = 3) 
plot(density(y_rnorm), 
     xlim = c(- 10, 10),
     main = "Normal Distribution in R with different Mean and SD",lwd=3)
lines(density(y_rnorm2), col = "coral2",lwd=3) 
lines(density(y_rnorm3), col = "green3",lwd=3) 
legend("topleft", # Add legend to density
       legend = c("Mean = 0; SD = 1",
                  "Mean = 2; SD = 1",
                  "Mean = 2; SD = 3"),
       col = c("black", "coral2", "green3"),lty = 2, lwd=3)

par(mfrow=c(1,1))

#################################################
#
# 2. Exponential Probability Distributions
#
#################################################
# Specify x-values for dnorm function
x_dexp <- seq(0, 1, by = 0.02)
y_dexp <- dexp(x_dexp, rate = 5) 
y_pexp <- pexp(x_dexp, rate = 5) 
x_qexp <- seq(0, 1, by = 0.02) 
y_qexp <- qexp(x_qexp, rate = 5) 
set.seed(13579) 
N <- 500 
y_rexp <- rexp(N, rate = 5) 
y_rexp 
##   [1] 0.4304628488 0.0448754426 0.4188465442 0.0153726040 0.0827383894
##   [6] 0.0298834610 0.1230255631 0.3210040148 0.0847058907 0.2575912395
##  [11] 0.3739378393 0.1088725767 0.1160947043 0.0725033843 0.2358778002
##  [16] 0.3173701042 0.1272207452 0.1935283599 0.0141272598 0.1684437008
##  [21] 0.0155475004 0.0055278600 0.3883418362 0.2278105611 0.0981377993
##  [26] 0.3726578541 0.1501526580 0.6399115041 0.2175315399 0.1263600907
##  [31] 0.6171591162 0.1058328426 0.1398303663 0.1693609228 0.1670840686
##  [36] 0.0674714735 0.5650798767 0.2251611600 0.0885720395 0.0052224816
##  [41] 0.2611994296 0.0389628253 0.0197845028 0.4255702410 0.3049375232
##  [46] 0.1177449713 0.0862239982 0.8296917688 0.0812133478 0.4898280773
##  [51] 0.0613636166 0.2585077999 0.0240652268 0.1646993317 0.2178937102
##  [56] 0.1532683572 0.0720650758 0.5923673778 0.0096594410 0.1028167995
##  [61] 0.6824885294 0.3997993845 0.3409431320 0.0307949640 0.0164071033
##  [66] 0.0322857643 0.3055676296 0.2016660478 0.0736791726 0.2058191683
##  [71] 0.0768022887 0.1196684984 0.1184952311 0.0310586396 0.0014292382
##  [76] 0.6211629823 0.0087189434 0.0785796145 0.9568131245 0.8276564609
##  [81] 0.1102485528 0.6944493156 0.0722134339 0.6586548239 0.1733822353
##  [86] 0.0199734278 0.0616167603 0.4070798065 0.0483530850 0.0013432059
##  [91] 0.1061864716 0.0255281447 0.0076782957 0.0878149213 0.1487272373
##  [96] 0.3076300926 0.3635651979 0.2607039383 0.4049626168 0.0023850450
## [101] 0.0275327469 0.0255780491 0.0873389206 0.1771615244 0.4525101351
## [106] 0.1938755628 0.1764767898 0.0768817023 0.2603782331 0.0317894939
## [111] 0.4251929324 0.0137899341 0.0239018593 0.5288688708 0.1166718173
## [116] 0.1080313025 0.1214896392 0.8292544853 0.2958068255 0.1918629710
## [121] 0.1108254925 0.2515561925 0.3556356992 0.0568493435 0.1171209813
## [126] 0.2426554870 0.1413106811 0.1930961001 0.5164853055 0.5473405216
## [131] 0.3302129131 0.1646470405 0.0113127667 0.0951108197 0.0307912551
## [136] 0.5057907682 0.7068698906 0.0889587999 0.1508297691 0.0272709093
## [141] 0.1021028167 0.2102280924 0.7050123673 0.4989409018 0.1324037685
## [146] 0.0664685049 0.1862607503 0.0184189227 0.0827031768 0.0450254944
## [151] 0.1140153416 0.2472450382 0.3070011210 0.2283963766 0.1318053074
## [156] 0.0830450808 0.2227569375 0.0899205279 0.5591009885 0.5272008944
## [161] 0.1388426943 0.0256807393 0.1056487754 0.7169774395 0.3098292805
## [166] 0.0673184106 0.1414918849 0.2599173700 0.1424148330 0.0522114006
## [171] 0.0530554689 0.6248315889 0.0849715661 0.0140833135 0.0224374436
## [176] 0.0902417049 0.3273684759 0.2853232305 0.1732028663 0.4075901169
## [181] 0.1213969490 0.3029242510 0.0596386860 0.4061955150 0.1829868693
## [186] 0.2544053281 0.4420034920 0.2161032721 0.0030373452 0.0543097503
## [191] 0.6199684396 0.2549603272 0.0638505688 0.1145902527 0.0838142803
## [196] 0.4868816558 0.1511204811 0.1144174033 0.1328482389 0.1773398299
## [201] 0.0545331534 0.4169562129 0.1652882449 0.1310331495 0.1592402477
## [206] 0.2527422102 0.1412797225 0.0487022399 0.1960320292 0.0314396822
## [211] 0.0460019010 0.2307577960 0.2426191565 0.1061809766 0.0730929984
## [216] 0.0842513132 0.1267093855 0.8635762847 0.0773268241 0.2499718424
## [221] 0.0487732232 0.2539918855 0.3645360473 0.0421084581 0.1432923434
## [226] 0.1201757259 0.2137594227 0.1288114905 0.1385845669 0.3111416597
## [231] 0.0897289120 0.2427038202 0.0431473328 0.0469002625 0.0645122139
## [236] 0.2143995274 0.0570541609 0.7066055374 0.1569837265 0.1284756387
## [241] 0.1202070106 0.0723165593 0.2149657880 0.0782336540 0.1797724459
## [246] 0.0813856773 0.0340854152 0.4005367316 0.0563217903 0.5371036935
## [251] 0.0325744237 0.3562796313 0.4937017219 0.3850665290 0.1567942000
## [256] 0.2483538860 0.0858322757 0.2985452903 0.0901317216 0.2196495898
## [261] 0.0091673187 0.1352015890 0.0546016017 0.6348074357 0.1006552963
## [266] 0.1852296788 0.0288328023 0.2937624822 0.0544150706 0.5330004137
## [271] 0.6725561797 0.4207927339 0.3294540550 0.0772444182 0.2236726273
## [276] 0.0398876030 0.2496276176 0.1532954302 0.3509468425 0.0742886413
## [281] 0.0570498028 0.0098567866 0.1011184495 0.2833714213 0.1426737024
## [286] 0.0063347727 0.3137424398 0.1673803572 0.8097143363 0.2124193327
## [291] 0.2337052032 0.2439626664 0.6029629754 0.1745762298 0.0106267033
## [296] 0.0073621755 0.6655705362 0.0049850661 0.0777947573 0.0289100790
## [301] 0.0206048008 0.3506586507 0.3353626208 0.4485305410 0.0477521324
## [306] 0.0415110793 0.0246349973 0.2625822289 0.3586899824 0.0042128112
## [311] 0.2647775626 0.1379126545 1.1543510645 0.1590243380 0.2156649040
## [316] 0.7798075585 0.1162836884 0.0333814253 0.2202161438 0.1887542143
## [321] 0.0646329265 0.0833530828 0.1246361816 0.1979742471 0.7795213263
## [326] 0.1683855561 0.1560781082 0.0474177793 0.1464220785 0.3462393716
## [331] 0.4283343385 0.0026381479 0.1895566607 0.5723638177 0.3467193618
## [336] 0.0135015411 0.3337987690 0.0809423300 0.2371012144 0.2314168027
## [341] 0.2882200815 0.0773507793 0.4079233546 0.0111489639 0.2925952103
## [346] 0.2054514628 0.2164098593 0.3069865256 0.8378651179 0.3977851588
## [351] 0.0336689595 0.5142843146 0.0387177444 0.4913256865 0.1369044920
## [356] 0.0893550012 0.2803781373 0.1058670356 0.0732210807 0.5868808247
## [361] 0.1732304206 0.1102985973 0.0421838904 0.2418177389 0.0267825000
## [366] 0.0344193194 0.1095962471 0.2068268100 0.0618211612 0.3348801382
## [371] 0.0772066904 0.2542398667 0.1329377643 0.1184467050 0.1542118026
## [376] 0.0547203029 0.2514023287 0.2472443636 0.0754429908 0.0420750115
## [381] 0.1008910955 0.0170832227 0.0168763004 0.0004918388 0.0042977575
## [386] 0.2026334289 0.0586680545 0.0103612226 0.2579171026 0.1733188508
## [391] 0.1836545003 0.0821446788 0.0846461438 0.4030356083 1.0693119976
## [396] 0.1023346175 0.2257530831 0.5329443607 0.2831235550 0.2028801538
## [401] 0.0663843918 0.6568965494 0.0282981419 0.2977480639 0.3474905591
## [406] 0.0304886659 0.1754238224 1.0238484833 0.1354234412 0.1455202297
## [411] 0.1030377412 0.2173267210 0.0089897444 0.0674196985 0.3920407969
## [416] 0.5834699750 0.2719552169 0.1441609248 0.0608470227 0.7518897602
## [421] 0.1790439365 0.2399779348 0.1660038793 0.0686552907 0.0818977684
## [426] 0.1416995300 0.0884066727 0.1218154470 0.4442474525 0.0547785508
## [431] 0.1171480665 0.2543631155 0.4062047168 0.1759643372 0.0706204500
## [436] 0.2064570237 0.2998209726 0.1120997464 1.1455948322 0.3944598432
## [441] 0.1724202409 0.1618034024 0.0167343437 0.2507952835 0.1682600121
## [446] 0.1696957165 0.1552093657 0.0675675932 0.1112660250 0.1117089240
## [451] 0.0655837063 0.0003945209 0.1214717711 0.0950748889 0.0373791118
## [456] 0.0715208080 0.0906362925 0.1423168453 0.0050502124 0.5017117683
## [461] 0.2234110684 0.1792354776 0.0192700613 0.2503400892 0.1521765888
## [466] 0.1205337527 0.1500588810 0.0561385386 0.1145136865 0.0498821461
## [471] 0.3640119627 0.2176512760 0.2189045073 0.0386907753 0.1160453607
## [476] 0.0471176780 0.0791355430 0.5701856866 0.1404138455 0.2438570937
## [481] 0.0180721804 0.2401638253 0.1362552669 0.6145147353 0.0806840136
## [486] 0.5471450347 0.1696879991 0.0536053098 0.0834799652 0.0619588327
## [491] 0.0761097581 0.2727608586 0.5146991647 0.2406466970 0.1777100738
## [496] 0.0434884771 0.2694532100 0.0727838154 0.0045895175 0.3742320236
# Combine the Plots
par(mfrow=c(2,2))
plot(y_dexp, main="Exp Density plot")
plot(y_pexp, main="Exp Cumulative Density plot")
plot(y_qexp, main="Exp Quantile plot")
plot(y_rexp, main="Exp Scatter Plot Random Samples")

par(mfrow=c(1,2))
par(mfrow=c(1,2))
plot(density(y_rexp),main = "Density plot")
hist(y_rexp, main= "Histogram")

par(mfrow=c(1,1))
# Modify values of the mean and sd
y_rexp2 <- rexp(N, rate = 4) 
y_rexp3 <- rexp(N, rate = 3) 
plot(density(y_rexp), 
     xlim = c(- 0, 2),
     main = "Exponential Distribution in R with different Rates",lwd=3)
lines(density(y_rexp2), col = "coral2",lwd=3) 
lines(density(y_rexp3), col = "green3",lwd=3) 
legend("topright", # Add legend to density
       legend = c("Rate = 5",
                  "Rate = 1",
                  "Rate = 7"),
       col = c("black", "coral2", "green3"),lty = 2, lwd=3)

par(mfrow=c(1,1))

#################################################
#
# 3. Gamma Probability Distributions
#
#################################################
# Specify x-values for dnorm function
x_dgamma <- seq(0, 1, by = 0.02)
y_dgamma <- dgamma(x_dgamma, shape = 5) 
y_pgamma <- pgamma(x_dgamma, shape = 5) 
y_qgamma <- qgamma(x_dgamma, shape = 5) 
set.seed(13579) 
N <- 500 
y_rgamma <- rgamma(N, shape = 5) 
y_rgamma 
##   [1]  2.2619035  7.6577021  3.5820966  7.1282469 11.3278857  6.3054247
##   [7]  4.9084750  2.5859772  2.8018675  5.5551225  3.0205932  6.6321869
##  [13]  4.6900098 10.2150294  2.9656552  2.8576933  2.7968535  2.7062162
##  [19]  3.7125822  6.1597296  4.1598487  3.3787262  5.0198022  4.3011006
##  [25]  5.8315871  3.9952016  7.4825583  7.7893843  6.3006206  5.3758627
##  [31]  4.8268603  3.7149404  1.5105046  3.6061853  7.6509812  5.3834126
##  [37]  4.9425340  3.6088598  7.3372068  6.9595115  6.4285059  3.0346045
##  [43]  1.5762033 11.1333631  6.2079260  5.3798405  5.1766275  0.9067510
##  [49]  4.8472696  4.4812780  4.3318290  2.5281669  2.9208437  6.4491629
##  [55]  4.8479671  4.3088991  2.2963145  3.5575716  3.9899019  4.6854155
##  [61]  2.1733961  6.8741877  6.4964821  2.4757186  5.2287928  3.9329626
##  [67]  5.4189461  6.3979260  4.1432637  4.3264086  2.1399939  3.3622265
##  [73]  5.5870983  9.1038475  4.0756697  6.0515652  5.8385487  4.8716793
##  [79]  3.6649427  6.7620868  7.0096544  6.3693731  7.9862967  3.9535113
##  [85]  5.0336028  3.5877962  4.1628288  2.5254097  5.7337849  5.8559293
##  [91]  2.1689394  6.1560193  7.1321903  2.7158266  3.2029694  5.2347017
##  [97]  1.7661532  8.1865798  8.9742736  3.2917491  7.8753740 10.2226221
## [103]  3.7793176  4.2942361  2.9307119  5.3474951  7.5223804  4.9247445
## [109]  3.4853947  2.8203229  8.2189941  7.1338153  4.0953583  4.2127556
## [115]  7.2375464  4.2925197  7.5716487  2.0569475  6.7735782  5.2700421
## [121]  6.8429467  2.5608163  4.1524227  5.1818503  7.2699371  3.0505742
## [127]  3.6248066  6.9876878 10.6248015  5.7548695  0.8829102  4.8136845
## [133]  5.1829129  2.7648250  1.4553830  3.6879980  2.5434954  5.0994856
## [139]  3.7026684  4.3174498  5.3087679  2.1671946  6.6629725  7.1151571
## [145]  4.6159344  4.7741057  5.7273835  4.4663829  6.9219112  4.9681959
## [151]  5.2974791  9.8226053  4.9404616  2.7318709  4.8332257  4.1366726
## [157]  3.9122868  5.1662726  2.5942106  3.7263683  5.2710887  4.9337414
## [163]  6.0572464  7.1869377  3.4480402  2.3453137  1.6832571  1.4830366
## [169]  3.7525209  3.3903986  3.2847515  7.2528574  4.6025763  1.9251640
## [175]  2.4190445  1.3801018  4.1390299  8.7765547  3.3807291  3.8175805
## [181]  3.7169098  7.4501380  3.2301911  8.4150137  1.4920770  4.7788649
## [187]  3.0085726  1.9413858  4.3736278  3.0304845  2.7415340  6.9088722
## [193]  3.3239840  5.2020557  6.3794769  4.1553814  4.1134319  3.5237011
## [199]  8.6119374 10.2197372  6.1615253  8.0595701  2.6912255  2.1032603
## [205]  4.6994547  1.4618541  3.0206794  5.6973606  3.8027582  2.9319613
## [211]  4.7445876  4.2345945  2.5253457  8.1541408  4.0955898  3.9289413
## [217]  2.0697246  3.0107157  6.1604194  1.7586345  4.1227474  6.2513678
## [223]  3.8700609  6.2367430  5.3830555  7.5878997  5.9808334  6.7758999
## [229]  3.2910460  3.9051216  4.7386254  6.0618319  2.3772199  7.7308413
## [235]  4.5065406  6.7073731  4.1205229  5.3337594  4.5445551  5.8233492
## [241]  3.4207437  5.7618017  0.7403340  7.8539040  2.1842317  5.4555598
## [247]  4.8861174  5.6449637  2.6963263  7.2392077  4.8688931 12.5490914
## [253]  7.7594844  7.8574652  7.1195175  3.4590974  2.8762962  8.3179190
## [259]  5.0000548  5.8286154  1.9278215 13.0265616  3.9510813  4.3794748
## [265]  3.6402752  9.3048049  7.5218773  2.8810891  8.5538584  2.3580821
## [271]  5.2865345  4.1144997  3.2978899  6.1610412  6.4862883  6.2809848
## [277]  4.3579217  6.4960708  7.2770721  3.2918991  4.3214580  4.5673962
## [283]  4.4905614  5.3629985  4.3383917  8.2036767  3.5439098  7.0822256
## [289]  6.4745765  5.2946595  8.6342849  6.8052981  8.5252813  4.3737314
## [295]  3.7215201  6.8257055  5.1581980  1.4563881  4.7439769  6.8636790
## [301]  5.6929144  4.2321584  5.2558824  5.3852225  6.4573743  4.7650873
## [307]  2.3680894  5.7699280  3.4501801  5.5597539  2.8030186  3.1408392
## [313]  1.7089804  6.9163826  4.3872773  5.6687072  4.1102911  1.7718534
## [319]  4.8574285  7.2348552  6.8096987 11.7663499  2.3229334  4.4398820
## [325]  2.3985745 14.2805814  6.5789936  2.0490783  2.7406622  5.3523136
## [331]  2.5838893  2.0967372  4.2514650 13.2735718  6.9875994  5.4255802
## [337]  5.1173332  9.8036865  3.1336893  3.5319726  3.5573651  2.5271975
## [343]  5.1212184  1.8709189 10.2043269  4.4951996  4.8270663  3.0792340
## [349]  5.9030334  6.0866934  5.2926075  4.9681632  4.4658392  7.3772306
## [355]  2.2234433  1.8251228  4.5539988  4.7977142  4.0049073  4.6824781
## [361]  7.1878512 10.1654264  3.1781650  9.4219453  3.5112166  5.4195737
## [367]  4.8176267  2.7981530  2.4612930  5.0008216  4.5574986  4.5204613
## [373]  3.1313973  4.8873795  7.4611082  9.2875210  6.1380214  3.4101825
## [379]  1.7061712  3.1208682  7.2751703  2.5769827  3.1530830  2.7134803
## [385]  4.6830623  7.8263333  4.9713658  4.1689930  2.5187333  3.2612218
## [391]  5.8518209  4.5526350  7.6337311  7.7507162  6.2528374  7.9797907
## [397]  4.4029377  3.8419008  9.6975512  5.9554557  6.0640241 14.1983984
## [403]  8.7559559  2.2966704  5.2288881  2.2652019  5.8266524  7.9229671
## [409]  3.1850496  4.7501867  3.0183603  5.2055133  3.8271950  2.9138023
## [415]  8.5237288  2.3230928  8.2747745  0.3783881  5.9627771  2.4396949
## [421]  3.0341272  3.2816700  4.3663665  3.2290513  2.0044386  3.2546835
## [427] 11.6785798  5.3349872  4.7314934  4.2505279  2.3273075  4.0100272
## [433]  4.8853191  7.0201348  7.7089145  4.4596232  3.9565281  6.9006570
## [439]  2.4518486  3.4860498  2.2366819  3.7456024  2.1267804  3.9844992
## [445]  7.2446088  4.6645167  6.1746807  6.0865335  3.3277069  4.8810704
## [451]  2.2966088  3.6843535  5.5607338  4.5779172  8.9394882  6.5746949
## [457]  3.6179410  4.2195098  7.5692824  2.9528699  4.9717777  5.0813613
## [463]  5.8754701  4.1607690  6.1078245  4.0727262  3.6691526  9.7426014
## [469]  2.6582682  2.5054276  5.1203673  6.1227020  6.9624701  7.6336397
## [475]  2.3201855  1.9216373  4.0875402  5.2643153  7.7104369  3.0801709
## [481]  7.7134555  8.1638170  2.7391186  3.0687248  5.3768940 10.7704900
## [487]  6.7256832  8.6567082  1.4496390  6.9287287  2.6334968  5.4879249
## [493]  7.0442207  4.9147348  9.1187933  6.6748620  8.9361078  7.5351108
## [499]  1.7597606  8.2727004
# Combine the Plots
par(mfrow=c(2,2))
plot(y_dgamma, main="Gamma Density plot")
plot(y_pgamma, main="Gamma Cumulative Density plot")
plot(y_qgamma, main="Gamma Quantile plot")
plot(y_rgamma, main="Gamma Scatter Plot Random Samples")

par(mfrow=c(1,2))
par(mfrow=c(1,2))
plot(density(y_rgamma),main = "Density plot")
hist(y_rgamma, main= "Histogram")

par(mfrow=c(1,1))
# Modify values of the shape parameter
y_rgamma2 <- rgamma(N, shape = 2) 
y_rgamma3 <- rgamma(N, shape = 3) 
plot(density(y_rgamma), 
     xlim = c(- 0, 10),
     ylim = c(- 0, .35),
     main = "Gamma Distribution in R with different Shapes",lwd=3)
lines(density(y_rgamma2), col = "coral2",lwd=3) 
lines(density(y_rgamma3), col = "green3",lwd=3) 
legend("topright", # Add legend to density
       legend = c("Shape = 5",
                  "Shape = 2",
                  "Shape = 3"),
       col = c("black", "coral2", "green3"),lty = 2, lwd=3)

par(mfrow=c(1,1))

#################################################
#
# 4. Beta Probability Distributions
#
#################################################
# Specify x-values for dbeta function
x_dbeta <- seq(0, 1, by = 0.02)
y_dbeta <- dbeta(x_dbeta, shape1 = 2, shape2 =5) 
y_pbeta <- pbeta(x_dbeta, shape1 = 2, shape2 =5) 
y_qbeta <- qbeta(x_dbeta, shape1 = 2, shape2 =5) 
set.seed(13579) 
N <- 500 
y_rbeta <- rbeta(N, shape1 = 2, shape2 = 5) 
# Combine the Plots
par(mfrow=c(2,2))
plot(y_dbeta, main="Gamma Density plot")
plot(y_pbeta, main="Gamma Cumulative Density plot")
plot(y_qbeta, main="Gamma Quantile plot")
plot(y_rbeta, main="Gamma Scatter Plot Random Samples")

par(mfrow=c(1,2))
par(mfrow=c(1,2))
plot(density(y_rbeta),main = "Density plot")
hist(y_rbeta, main= "Histogram")

par(mfrow=c(1,1))
# Modify values of the shape parameter
y_rbeta2 <- rbeta(N, shape1 = 5, shape2 = 2) 
y_rbeta3 <- rbeta(N, shape1 = 7, shape2 = 7) 
plot(density(y_rbeta), 
     xlim = c(- 0, 2),
     ylim = c(- 0, 3),
     main = "Gamma Distribution in R with different Shapes",lwd=3)
lines(density(y_rbeta2), col = "coral2",lwd=3) 
lines(density(y_rbeta3), col = "green3",lwd=3) 
legend("topright", # Add legend to density
       legend = c("Shape1 = 2, shape2=5",
                  "Shape1 = 5, shape2=2",
                  "Shape1 = 7, shape2=7"),
       col = c("black", "coral2", "green3"),lty = 2, lwd=3)

par(mfrow=c(1,1))

#################################################
#
# 5. Chi-Square Probability Distributions
#
#################################################
# Specify x-values for dnorm function
x_dchisq <- seq(0, 20, by = 0.01)
y_dchisq <- dchisq(x_dchisq, df = 3) 
y_pchisq <- pchisq(x_dchisq, df = 3) 
x_dchisq <- seq(0, 1, by = 0.01)
y_qchisq <- qchisq(x_dchisq, df = 3) 
set.seed(13579) 
N <- 500 
y_rchisq <- rchisq(N, df = 3) 
y_rchisq 
##   [1]  9.40875055  2.39449258  0.47390375  0.61063988  3.05346606  0.76055155
##   [7]  4.22813263  2.18121985  8.60938778  0.72189112  0.64786568  0.60733259
##  [13]  3.85738502  5.25352396  1.02763548  2.50508821  1.81485216  3.34653065
##  [19]  1.53994122  5.32058188  2.31422368  1.29958709  1.53846829  3.07388630
##  [25]  5.03972548  4.60117189  3.99952446  0.77051536 11.09975361  2.87102132
##  [31]  2.66297030  0.97438692  9.58511164  2.33491566  1.82202004  0.31053377
##  [37]  1.16993670  1.53529001  2.17679004  0.24911057  4.50328189  4.07550909
##  [43]  0.40882732  2.71601149  1.48556911  2.91149035  3.96544527  1.67145199
##  [49]  1.83814128 10.84706357  4.66938441  4.02486494  0.76251372  8.73986979
##  [55]  5.70158601  4.28402436  1.68905146  0.43773623  3.24213731  3.37263247
##  [61]  0.24698024  3.69817912  4.80063458  0.55473343  0.89342037  2.72203575
##  [67]  0.08623424  6.05450146  7.02666720  0.96049100  5.67837805  8.61924646
##  [73]  1.35375731  1.80854914  0.69764473  2.83765195  5.25771695  2.41057643
##  [79]  1.11184120  0.62286495  6.09394871  4.80252016  1.62857503  1.73419055
##  [85]  4.92319878  1.80697406  5.31603368  0.19579514  4.38843740  2.75813422
##  [91]  4.00974470  0.45875695  1.67968454  2.66826916  4.96100896  0.78192253
##  [97]  1.22483829  4.63359608  9.14422962  3.26457746  6.11886265  2.66934759
## [103]  0.58634909  4.76454979  2.58500924  1.28933392  1.82988799  2.79782366
## [109]  5.10224022  2.26271269  3.23533157  1.96837213  4.55797867  2.45366481
## [115]  2.78623964  8.10259274  2.42613999  0.56502042  2.32045904  1.66553449
## [121]  1.46762928  2.65247223  0.47889745  1.30915620  2.75920500  2.41948240
## [127]  3.59027295  4.86424338  1.08212524  2.00504782  6.44897562  0.95514994
## [133]  4.94106405  2.09732089  0.14170620  2.71284398  1.44311908  1.73813129
## [139]  0.16362987  7.29436551  0.55050084  1.61259287  1.27948111  4.75469346
## [145]  0.57872591  2.05315443  4.54302047  0.98521294  2.68879334  3.94491626
## [151]  1.68234630  1.64471538  1.14256421  6.57604073  8.61550038  3.70421549
## [157]  6.91122006  1.37971364  2.17300697  1.56100089  1.40502243  3.13862807
## [163]  5.12983401  1.65367214  1.75403713  0.43769853  6.01507458  1.62878151
## [169]  1.48207507  0.20140100  0.75355260  3.70300291  5.71393906  2.35147853
## [175]  3.78689980  2.87434325  5.33529802  3.50729683  4.39108038  0.95995393
## [181]  1.46142662  2.22823674  3.59526631  0.35364592  5.50534980  2.00616905
## [187]  4.31321548  1.65105986  2.82351005  2.04212295  3.33770802  1.06056483
## [193]  3.27196332 10.26585822  3.21413594  1.88555689  2.98764668  5.33299335
## [199]  0.89450408  0.14272733 12.37941712  1.50134073  1.88723251  1.23757404
## [205]  7.44252558  5.25712210  0.66368283  6.50434193  0.34326324  2.77502006
## [211]  1.64567030  0.96518556  3.70368460  4.06409428  3.83572403  1.86725197
## [217]  4.07504842  4.96934595  0.96060553  1.83357930  2.06380655  1.99110640
## [223]  2.85363432  1.84919636  6.07530162  1.15887268  4.74273662  4.05098834
## [229]  2.78334812  6.60366867  4.42457647  6.46911889  1.88190257  1.30509407
## [235]  4.44786060  2.64429315  6.22834731  4.49125663  3.19874276  1.75182019
## [241]  2.74365686  2.87658283  4.03175534  2.25393665  0.34867833  3.28062628
## [247]  1.08382098  3.05832296  0.61140000  0.84739619  0.06916182  4.55163499
## [253]  1.89447981  3.17310550  1.64190736  6.27133478  1.94353395  0.36536351
## [259] 11.43281605  2.84261702  0.47264031  0.21345420  1.76941064  9.05192457
## [265]  1.67488721  3.06676889  1.54592061  1.54252576  8.21569440  3.44653629
## [271]  0.61142602  2.45363230  1.96786170  5.08668112 10.91033243  0.87495420
## [277]  7.59095400  1.13252367  2.91214090  2.30518633  0.60818915  0.40056714
## [283]  1.90707014  2.05440314  2.01931560  0.84046939  2.37367838  5.18537588
## [289]  7.42067081  3.67846312  1.05225825  1.58791362  6.64439628  5.35359710
## [295]  6.16092871  2.75834116  0.50649665  1.56081242  3.10216977  3.36822383
## [301]  2.04978656  5.14793534  0.32135644  4.16446275  4.89426116  0.36479863
## [307]  1.09238204  1.22785925  2.31187268  3.18676316  2.71610860  0.29451038
## [313]  3.34124506  5.73558789  0.88006749  2.23945583  0.75896752  2.69230938
## [319]  1.39445491  0.68600927  6.46720639  0.32457497  6.16194856  3.36246320
## [325]  0.95280092  1.87507381  0.91296744  0.17341532  0.93230551  8.01506002
## [331]  2.22132303  1.76855577  0.32680574  1.55297357  2.37164795  4.67099439
## [337]  5.47919441  1.96202854  1.50609117  4.53360140  0.39519184  1.11236453
## [343]  0.28010174  1.32530773  0.22717598  1.53055254  4.93143765  2.15666910
## [349]  3.71864708  3.62219243  0.98808060  2.36746244  0.31068685  1.27407609
## [355]  3.05935082  2.07381453  6.98316264  4.16332313  1.21919812  1.74032200
## [361]  5.31322981  0.71298834  2.45722527  2.56677598  3.39361980  1.68719617
## [367]  3.64543733  1.60842628  1.26145291  7.99994961  0.51836418  0.42602713
## [373]  2.60605595  3.66170012  4.60457431  5.38959526  0.32303946  7.39590159
## [379]  4.63380827  2.86797763  6.73257721  5.02217780  4.54290862  1.72781440
## [385]  2.55165773  0.51903319  7.20794861  4.27637990  6.97893764  5.27277277
## [391]  0.08424638  6.15941751  2.84354613  1.71553448  4.96513986  2.40313404
## [397]  4.65908322  0.91652584  2.35900077  2.18638557  2.38334553  1.47638425
## [403]  4.14813242  2.91230746  1.97241802  0.44100204  3.02057861  2.86459387
## [409]  4.68297548  1.14348297  0.53490983  3.88500157  2.62846223  3.26888076
## [415]  5.05340695  1.71472359  0.46968665  0.58776463  2.73643733  4.06736212
## [421]  3.20706821  1.40642997  2.02054134  3.36314973  1.85166814  2.93743693
## [427]  1.03219509  0.70642856  7.83573200  2.95669980  3.38391454  5.83193738
## [433]  3.10288614  1.05020945  2.89051613  2.35347553  4.76565805  2.84822843
## [439]  2.39680408  3.25089192  3.40390938  4.74646909  1.45606493  1.41568068
## [445]  0.59590329  9.34740023  0.49047683  5.19266202  0.64214743  0.38472440
## [451]  7.80086877  0.82916509  0.76496724  2.59823113  5.60805953  0.89121768
## [457]  4.84986579  0.14638504  6.15821231  0.51456229  3.07447494  2.09832538
## [463]  2.48757543  3.03690522 11.95474282  5.80105280  2.90603751  2.51528917
## [469]  0.53151149  0.82663654  3.24340917  7.98116945  1.17568590  3.16492180
## [475]  3.20115112  0.38249294  7.52764504  2.46744016  2.66668296  8.71035257
## [481]  1.10757543  1.89540619  2.85836319  1.95992748  0.34443267  2.26796444
## [487]  4.72284239  3.64465760  0.62915959  9.69228171  8.18372736  3.82590431
## [493]  0.58277129 14.54554407  1.52259235  5.60318348  6.75510659  3.74061509
## [499]  0.38593359  0.84105710
# Combine the Plots
par(mfrow=c(2,2))
plot(y_dchisq, main="Chi Square Density plot")
plot(y_pchisq, main="Chi Square Cumulative Density plot")
plot(y_qchisq, main="Chi Square Quantile plot")
plot(y_rchisq, main="chisq Scatter Plot Random Samples")

par(mfrow=c(1,2))
par(mfrow=c(1,2))
plot(density(y_rchisq),main = "Density plot")
hist(y_rchisq, main= "Histogram")

par(mfrow=c(1,1))
# Modify values of the shape parameter
y_rchisq2 <- rchisq(N, df = 1) 
y_rchisq3 <- rchisq(N, df = 2) 
plot(density(y_rchisq), 
     xlim = c(- 0, 10),
     ylim = c(- 0, 1.1),
     main = "Chi Square Distribution in R with different degrees of freedom",lwd=3)
lines(density(y_rchisq2), col = "coral2",lwd=3) 
lines(density(y_rchisq3), col = "green3",lwd=3) 
legend("topright", # Add legend to density
       legend = c("df = 3",
                  "df = 1",
                  "df = 2"),
       col = c("black", "coral2", "green3"),lty = 2, lwd=3)

par(mfrow=c(1,1))

#################################################
#
# 6. Students t Probability Distributions
#
#################################################
# Specify x-values for dnorm function
x_dt <- seq(-4, 4, by = 0.01)
y_dt <- dt(x_dt, df = 1) 
y_pt <- pt(x_dt, df = 1) 
x_dt <- seq(0, 1, by = 0.01)
y_qt <- qt(x_dt, df = 1) 
set.seed(91929) 
N <- 500 
y_rt <- rt(N, df = 1) 
y_rt 
##   [1]  -0.206680813   0.687827774   0.097775011  -0.320853310   0.732752143
##   [6]   0.239506538   0.829111987  -0.968523712   2.943826284   1.286777777
##  [11]  -2.267263824   1.354351052   4.312681123   1.080469914   0.638726100
##  [16]  -1.419955543  -0.243128132   0.053082008   1.406649321  21.815783201
##  [21]  -1.626295490  -4.601582677   0.834281511 -11.004810264   2.934937810
##  [26]  -0.336454957  -0.831258982   3.958851185   1.662298533  -0.882703587
##  [31]  -0.810382620   0.681780649  -2.446399374   0.758066790  -0.213445168
##  [36]  -0.743516359  -3.783991229   0.412218027   0.342464072  -0.484595660
##  [41]   0.263298603  -1.136493441  -0.419313003  -0.027935552   2.297732156
##  [46]  -0.831028673  -1.506974454   1.845560699  -2.443561862   0.302679257
##  [51]   1.651117050   1.356164125  -2.405459421  -2.968223150   0.599379697
##  [56]   4.662295938  -0.065611122 -57.858327769   0.517822423   0.958256365
##  [61]   5.081258054   0.866385715  -0.856753660  -0.515367493  -2.781923327
##  [66]   0.745971073  -0.711160846   0.305279358   0.991753204  -1.877920271
##  [71]  -1.164522911  -1.411948308  -1.173261105  22.539142063   0.092592839
##  [76]  -0.376208135  -1.116272186   0.470584966   0.195007956   0.040906665
##  [81]   2.142722847  -0.543800768  -0.307655882   0.452904062   0.032532871
##  [86]  10.045834946  -0.860729053   0.256368832   0.871727596   1.661314283
##  [91]  -1.364645917  -2.048647859  -0.503850398   1.372356305   0.118479068
##  [96]  -1.043361194   0.059507279  -3.133569916  -2.560703884   0.275265477
## [101] -17.779647582  -0.037759774  -2.452026380  -0.157049897   1.514400946
## [106]   0.992970158   0.001793779  -0.911563907   0.769091996  -5.187242304
## [111]   0.969133332  -3.188563317  -6.411608287   0.956685119   0.253864046
## [116]   3.104547101  -0.340563096   1.241340681   0.976833115  -0.163751529
## [121] -69.212656517   0.798819936  -0.569308621   2.122199979   0.276846670
## [126]  -3.191976010   6.981356152   2.342004740   0.569817964  -0.300670837
## [131]  -0.872034108  -0.261438268  -0.514416741 -35.153470607   0.355096217
## [136]  -1.279621823   0.861112020   1.531298364 -15.570277094   4.163489529
## [141]   0.289727931  -6.183919796  -0.008553019   0.704877833  -2.255252963
## [146]   1.143218823  -0.159396613  -0.750181313  -0.049703891  -1.841100844
## [151]  -0.659551461  -0.061989428  -5.940545081   7.130882237  -0.792777384
## [156]   0.828461014  -1.037788914   2.541578804  -1.772900612  -0.424425728
## [161]   0.365794488   0.810918845   5.133561129  -4.377453918  -2.542577584
## [166]   0.932951022   0.003141469 -14.466151581  -3.236182668  -0.023161614
## [171]   1.824483762  -1.130040037   8.455279721  -2.057023129  -0.654306517
## [176] -89.802125908   0.025733970  -0.143730802   0.188770469   3.219218085
## [181]  -1.133995562 -18.010875564  -1.234131948  -5.831395356  -1.163073196
## [186]   0.054316248  -0.645063743   0.136374130   1.434427137  -0.797505939
## [191]  -0.898280717  -0.303451497   3.053033570  -0.841088721   0.158698074
## [196]  -0.639101926  -0.336934985   2.134087611  -0.124843443   0.322523503
## [201]  -1.077315354   0.540014222  -1.099033931  -0.944349095   0.864301460
## [206]  -2.573287892   1.253949450  -1.874308678   1.020442939  -0.809357520
## [211]   0.147526588   2.225650676  17.298929966  -1.034743547  -1.207669329
## [216]  -0.070569855  -1.033665770  -3.331253679   0.327824305   4.646954918
## [221]   0.466907147   0.257442142  -9.450080050  -7.308687659  -0.070353159
## [226]  -0.762487117   0.019082420   0.266731898 -37.050448609  -4.388492330
## [231]  -0.225683481   0.433180501  -1.389130481   0.056516928  -0.998932951
## [236]   1.639358332  -0.185068634  -1.923429067   0.783143766   1.488517093
## [241]  -0.265340417   0.855835109  -0.704330760  -0.332917204  -2.644690384
## [246]  -0.767778952  -0.634889591   2.209728366  -0.517589213  -0.560293415
## [251]   0.270160407  -1.018048931   3.611526569  -0.249010015   0.023089390
## [256]   0.363967699   2.794213653   0.338758245   2.525812345  -0.209189141
## [261]  -2.620461248   0.352409996  -1.571301110  -2.669684838  -0.313992662
## [266]   0.833009866  -1.009821277  -4.639706497  -4.673463929   0.263971348
## [271]   0.561915529   0.572049811   0.585682412   4.493790848   1.517192256
## [276]  -0.107479021   0.744448215  -2.201648909  -2.738124294   0.911005998
## [281]  64.986470660  -0.582820713  -1.300450490  -0.853042511  13.487568471
## [286]   1.101078664  15.017409025  -0.781973640   1.697885045  -2.031655557
## [291]  -0.639941338  11.213121968   0.748636642   0.392709755  43.156220804
## [296]  -0.796788740   0.263809507  -2.385826898  -3.865203484  -2.193934971
## [301]  -0.893555618  -1.373922729   0.270707205  -0.167941033  -0.763187127
## [306]   1.401406555  -0.661468077   0.194387326  -0.707461479   0.879387341
## [311]  -0.277529822  -0.774965318  -0.677816557   1.080948709  -2.053349443
## [316]   0.125442589   1.233581061  -0.042285071  -0.947610248   3.171778911
## [321]  -0.273497251  -0.948441068  -0.232044636  -0.251481896   2.797206862
## [326]  25.604272309  -1.612933594  -8.313805663   0.782409742   0.503845835
## [331]   1.717264262  -0.211119465  -0.450656488  12.096533809   1.141202622
## [336]   0.479245855   8.187343726 -23.480757861   6.311975506  -0.573019748
## [341]   1.199550609  -0.273482269   1.227576810  -0.390158805  -2.816412147
## [346]  -0.994995877  -9.023201355  -0.706133178  -0.032878847  -0.189608409
## [351]  -6.530603310   0.447348177   0.163341145   1.029268620  -1.267392222
## [356]  -0.005770871  -0.142437235 -10.946535408  -2.225425628   1.628219049
## [361]   1.227526223  -0.203279674  -1.156827252  -0.067503263   0.998504927
## [366]   0.046978003   0.238632071   1.715813142  -1.173942188   0.432433159
## [371]  -1.523187763   0.457026892   3.846948669  -1.645788299   3.603034105
## [376]  -4.539786623  -0.143735278  -0.870343937  -0.038701559  -0.086102021
## [381]   0.358450297   1.244308046   0.127274384   1.360470272  -1.265838454
## [386]   0.430305657   0.496592038  -3.244543945  -5.480050034   4.184942539
## [391]  15.065429777   0.235285626   0.855682649  -0.527824646   0.072696463
## [396]   0.029171955  -0.548077317   0.638290935  -2.169507974  -0.190727397
## [401]   0.800164261 -12.792040079  -0.228393666  -2.067483607   1.173279448
## [406]   0.305630175  -0.443008229   0.265011804   0.900396731   0.569747467
## [411]   5.455293066   0.237078198  -3.202576645   1.375390521  -6.138395517
## [416]   1.809315614   6.095788560   0.335552067   0.216036955   0.093069903
## [421]  -1.256168007   0.506617199  -0.643834955  -1.829273486  -0.371929968
## [426]   0.521663592  -0.250761985  -0.715996337   1.797463823   1.149033305
## [431]  -1.192012209  -0.632049618   0.196927733   0.368302959  -0.107413518
## [436]   0.707572596   5.544136495  -0.067094422   1.925835267  -1.361592172
## [441]  -0.883908826   1.460600287   0.304226405  -0.214359444  -0.711777526
## [446]  -1.081616451   0.751022597  30.704746025  34.692301254   2.269407396
## [451]  -0.450654504   0.573028909  -0.018551563   1.884073099  -0.218305514
## [456]  -0.232918146   0.212579426   3.758713754  -2.187723937  -1.118910572
## [461]  -0.623292070  -0.139470191  -0.709325966   1.828023144  -0.227666349
## [466]   0.084369030  -0.245359717   2.026907211  -0.269000414  -0.496034855
## [471]   1.727497655   1.280743082   0.153837527   0.618625551  -2.142471555
## [476]   0.186357444   1.219821528  -2.290075193  -0.736552099  10.473227893
## [481]   4.059547630   1.088285292   2.141971154  -6.087338082   3.610167580
## [486]   2.564431495  -0.830389061   1.506793629  -7.888067967   0.217169451
## [491]   0.181352285  -1.324075549  -4.797856772  -3.421591680   0.431135030
## [496]   0.363778505  -1.318554561   0.676659199   0.773356186  -1.159720300
# Combine the Plots
par(mfrow=c(2,2))
plot(y_dt, main="Students t Density plot")
plot(y_pt, main="Students t Cumulative Density plot")
plot(y_qt, main="Students t Quantile plot")
plot(y_rt, main="Students t Scatter Plot Random Samples")

par(mfrow=c(1,1))
plot(density(y_rt),main = "Density plot",xlim=c(-4,10))

hist(y_rt, main= "Histogram",breaks = 1000,xlim=c(-3,3))

par(mfrow=c(1,1))
# Modify values of the shape parameter
y_rt2 <- rchisq(N, df = 2) 
y_rt3 <- rchisq(N, df = 3) 
plot(density(y_rt), 
     xlim = c(-4, 10),
     main = "Students t Distribution in R with different degrees of freedom",lwd=3)
lines(density(y_rt2), col = "coral2",lwd=3) 
lines(density(y_rt3), col = "green3",lwd=3) 
legend("topright", # Add legend to density
       legend = c("df = 1",
                  "df = 2",
                  "df = 3"),
       col = c("black", "coral2", "green3"),lty = 2, lwd=3)

par(mfrow=c(1,1))

#################################################
#
# 7. F Probability Distributions
#
#################################################
# Specify x-values for dbeta function
x_df <- seq(0, 20, by = 0.01)
y_df <- df(x_df, df1 = 3, df2 =5) 
y_pf <- pf(x_df, df1 = 30, df2 =5) 
x_df <- seq(0, 1, by = 0.01)
y_qf <- qf(x_df, df1 = 3, df2 =5) 
set.seed(13579) 
N <- 500 
y_rf <- rf(N, df1 = 3, df2 = 5) 
# Combine the Plots
par(mfrow=c(2,2))
plot(y_df, main="Gamma Density plot")
plot(y_pf, main="Gamma Cumulative Density plot")
plot(y_qf, main="Gamma Quantile plot")
plot(y_rf, main="Gamma Scatter Plot Random Samples")

par(mfrow=c(1,2))
par(mfrow=c(1,2))
plot(density(y_rf),main = "Density plot")
hist(y_rf, main= "Histogram")

par(mfrow=c(1,1))
# Modify values of the shape parameter
y_rf2 <- rf(N, df1 = 10, df2 = 6) 
y_rf3 <- rf(N, df1 = 20, df2 = 7) 
plot(density(y_rf), 
     xlim = c(- 0, 5),
     ylim = c(- 0, 1),
     main = "F Distribution in R with degrees of freedom",lwd=3)
lines(density(y_rf2), col = "coral2",lwd=3) 
lines(density(y_rf3), col = "green3",lwd=3) 
legend("topright", # Add legend to density
       legend = c("Shape1 = 2, shape2=5",
                  "Shape1 = 10, shape2=6",
                  "Shape1 = 20, shape2=7"),
       col = c("black", "coral2", "green3"),lty = 2, lwd=3)

par(mfrow=c(1,1))

#################################################
#
# 8. Uniform ContinuousProbability Distributions
#
#################################################
# Specify x-values for dunif
x_dunif <- seq(0, 100, by = 1)
y_dunif <- dunif(x_dunif, min = 10, max = 50) 
y_punif <- punif(x_dunif, min = 10, max = 50) 
x_qunif <- seq(0, 1, by = 0.01) 
y_qunif <- qunif(x_qunif, min = 10, max = 50) 
set.seed(13579) 
N <- 500 
y_runif <- runif(N, min = 10, max = 50) 
# Combine the Plots
par(mfrow=c(2,2))
plot(y_dunif, main="Uniform Continuous Density plot")
plot(y_punif, main="Uniform Continuous Cumulative Density plot")
plot(y_qunif, main="Uniform Continuous Quantile plot")
plot(y_runif, main="Uniform Continuous Scatter Plot Random Samples")

par(mfrow=c(1,2))
par(mfrow=c(1,2))
plot(density(y_runif),main = "Density plot")
hist(y_runif, main= "Histogram")

par(mfrow=c(1,1))
# Modify values of the shape parameter
y_runif2 <- runif(N, min = 10, max = 60) 
y_runif3 <- runif(N, min = 10, max = 70) 
plot(density(y_runif), 
     xlim = c(- 0, 100),
     ylim = c(- 0, .06),
     main = "F Distribution in R with degrees of freedom",lwd=3)
lines(density(y_runif2), col = "coral2",lwd=3) 
lines(density(y_runif3), col = "green3",lwd=3) 
legend("topright", # Add legend to density
       legend = c("Min=10, Max=50",
                  "Min=10, Max=60",
                  "Min=10, Max=70"),
       col = c("black", "coral2", "green3"),lty = 2, lwd=3)

par(mfrow=c(1,1))


##################################
## DISCRETE DISTRIBUTIONS
##################################
#################################################
#
# 1. Binomial Discrete Probability Distributions
#
#################################################
# Specify x-values for dbeta function
x_dbinom <- seq(0, 100, by = 1)
y_dbinom <- dbinom(x_dbinom, size = 100, prob = 0.5) 
y_pbinom <- pbinom(x_dbinom, size = 100, prob = 0.5) 
x_qbinom <- seq(0, 1, by = 0.01) 
y_qbinom <- qbinom(x_qbinom, size = 100, prob = 0.5) 
set.seed(13579) 
N <- 500 
y_rbinom <- rbinom(N, size = 100, prob = 0.5) 
y_rbinom
##   [1] 45 44 55 43 35 47 56 52 49 51 47 50 51 54 53 48 57 55 51 52 48 44 46 49 50
##  [26] 59 55 46 54 51 61 45 49 45 49 50 40 52 44 60 45 50 55 51 43 49 58 43 44 51
##  [51] 56 42 53 50 53 47 44 49 42 56 60 51 53 49 57 51 51 51 51 54 53 56 45 48 49
##  [76] 40 49 50 51 50 50 55 41 52 55 47 47 52 49 51 47 49 46 53 51 56 50 47 49 51
## [101] 41 49 50 52 56 57 48 54 51 41 46 54 54 43 52 56 49 56 47 52 48 51 50 53 40
## [126] 43 48 44 49 46 46 57 42 49 47 53 49 54 37 54 52 49 50 42 47 48 55 61 54 53
## [151] 33 48 52 58 46 53 48 54 48 56 50 43 48 46 50 57 38 37 50 49 50 48 56 52 51
## [176] 50 52 58 53 49 52 44 45 49 45 51 56 52 41 50 51 52 53 46 51 43 49 55 46 44
## [201] 51 37 56 48 55 50 54 44 59 48 47 44 53 54 41 51 51 46 48 51 47 43 58 51 51
## [226] 47 49 43 55 53 50 49 56 56 54 49 55 48 53 63 49 53 50 48 48 59 41 40 49 48
## [251] 44 42 64 53 45 50 50 46 52 52 52 58 52 52 49 40 57 59 52 50 52 44 50 52 48
## [276] 41 58 43 53 48 59 50 57 48 45 45 56 42 47 50 52 51 44 55 52 47 47 50 42 48
## [301] 49 56 55 55 46 60 47 43 44 52 56 43 54 43 54 47 49 51 40 61 37 41 47 48 46
## [326] 52 49 50 54 43 49 56 50 55 52 53 54 49 49 38 48 51 50 60 60 46 49 56 53 44
## [351] 42 43 45 43 46 56 48 41 51 55 52 51 50 60 46 60 53 52 51 56 39 49 53 60 44
## [376] 46 43 42 51 56 61 49 48 55 44 53 50 53 58 47 42 44 51 55 49 57 53 45 48 35
## [401] 52 57 57 49 51 53 38 47 52 52 59 57 54 47 49 59 58 47 54 55 55 49 57 47 54
## [426] 52 51 45 52 43 44 50 61 53 55 45 47 44 41 41 47 53 49 48 44 50 60 57 53 49
## [451] 46 45 47 50 46 47 56 50 53 53 48 57 55 49 49 50 46 54 45 52 54 45 44 51 52
## [476] 50 54 51 51 42 47 48 52 49 47 58 42 58 51 58 38 50 44 56 47 50 50 50 49 45
# Combine the Plots
par(mfrow=c(2,2))
plot(y_dbinom, main="Binomial Density plot")
plot(y_pf, main="Gamma Cumulative Density plot")
plot(y_qf, main="Gamma Quantile plot")
plot(y_rf, main="Gamma Scatter Plot Random Samples")

par(mfrow=c(1,2))
par(mfrow=c(1,2))
plot(density(y_rbinom),main = "Density plot")
hist(y_rbinom, main= "Histogram")

par(mfrow=c(1,1))
# Modify values of the shape parameter
y_rbinom2 <- rbinom(N,size = 100, prob = 0.7) 
y_rbinom3 <- rbinom(N,size = 100, prob = 0.3) 
plot(density(y_rbinom), 
     xlim= c(1,100),
     main = "Binomial Distribution in R with degrees of freedom",lwd=3)
lines(density(y_rbinom2), col = "coral2",lwd=3) 
lines(density(y_rbinom3), col = "green3",lwd=3) 
legend("topright", # Add legend to density
       legend = c("P Value = 0.5",
                  "P value = 0.7",
                  "P Value = 0.3"),
       col = c("black", "coral2", "green3"),lty = 2, lwd=3)

par(mfrow=c(1,1))

#################################################
#
# 2. Poisson Discrete Probability Distributions
#
#################################################
# Specify x-values for dbeta function
x_dpois <- seq(-5, 30, by = 1)
y_dpois <- dpois(x_dpois, lambda = 10) 
y_ppois <- ppois(x_dpois, lambda = 10) 
x_qpois <- seq(0, 1, by = 0.005)
y_qpois <- qpois(x_qpois, lambda = 10) 
set.seed(13579) 
N <- 500 
y_rpois <- rpois(N, lambda = 10) 
y_rpois
##   [1]  6 14  8 16  6 12 10  6  7 11  7 12 10 16  7  7  7 19 13 15 10  9 12 10 10
##  [26] 14 11 10  8 11 15  9 14 11 10  8  8 10 12 15  8  4 17 12 11 10  2 10  9 11
##  [51]  9 17 10  9 11  8  8 11 10 10  5 13 12  6 11  9 14  9  9 11  9  9  6 10 11
##  [76] 15  9 14 10  8  5 13 12 14  9 11 14 12  9 12  8 11 11  5 12 13  7  7 11  4
## [101] 14 15  8 10 11  7  6  9 12 11 13 10  8  6  9 10  3  4 13 11 12 13  5 13 11
## [126] 13  6  9 12  8 13 17 11 15 10  7  4  8 13 11 10  8 14 11 11  5 12 13 10 10
## [151] 11  9 11 11  7 16 10  7 10  9  9 14 10  6  8 13  5 12 13  8 11 11  4  4  8
## [176]  9 15  8 11  9 13 12  6  4  9  7  8  8  9  8  8  5  4  4 10  7  5  9 13  7
## [201] 10 13  8  3 12  9  7 10 11 15 16 12 14  6  5 10  4  7 11  8 11 13 11  9 10
## [226]  2  7 17 16  5 17 18 10 10 12 11 14 12 13  8  9 15 10 12  6 14 10 12  9  9
## [251] 15  5  8 11  7 12  8  6 14  6 14 10 18 14 15  9  9 14 10 11  5 19  9  9  8
## [276]  8 16 12 11 11  9 12 13 12 12 12  9 10 12 11 11  9  8  5 10 13  9 14  8  9
## [301]  5 11 15 13 15  9 10 10 13 10  4 10 13 11  9  7 11 12 10  6 11  8  9 10 18
## [326]  4 13  9 13 10  9  5 10 13 13  8 10  6 20 12 10 10  7 12 11  9  6  8 13 12
## [351]  9 12 11 10 16  7  8  9 12  6 10  5 16  9  9  9  5 11  7 10  9 10  7  7  8
## [376] 13 15 13 10 13 17  7 15  8  8 12  8  9  6 11 10 10  7 10 13 15 12  8 14 11
## [401] 13  6  7  7 10 14 10  9 13  9  8 13  9  7  3 11 14 12 14  9 11  6 12 13  6
## [426]  4  6 12 10 11 11  6 11 14  7 10  7 11  8 14 11 15  6 14  0 12  6  7  8  5
## [451] 14 18  7  4  7 11  9 12  9 12 10 10  4  5  7  9 13  6  8  9 12  9  8  8 16
## [476] 15 11 13 10  6  8  5 10 15 12  8  3  8  7 10 12 15 13 10 12  9  9 12 16  6
# combine plots
par(mfrow=c(2,2))
plot(y_dpois, main="Poisson Density plot")
plot(y_ppois, main="Poisson Cumulative Density plot")
plot(y_qpois, main="Poisson Quantile plot")
plot(y_rpois, main="Poisson Scatter Plot Random Samples")

par(mfrow=c(1,2))
par(mfrow=c(1,2))
plot(density(y_rpois),main = "Density plot")
hist(y_rpois, main= "Histogram")

par(mfrow=c(1,1))
# Modify values of the shape parameter
y_rpois2 <- rpois(N, lambda = 15) 
y_rpois3 <- rpois(N, lambda = 20) 
plot(density(y_rpois), 
     xlim= c(0,60),
     main = "Poisson Distribution in R with lambda parameters",lwd=3)
lines(density(y_rpois2), col = "coral2",lwd=3) 
lines(density(y_rpois3), col = "green3",lwd=3) 
legend("topright", # Add legend to density
       legend = c("lambda = 10",
                  "lambda = 15",
                  ";lambda = 20"),
       col = c("black", "coral2", "green3"),lty = 2, lwd=3)

par(mfrow=c(1,1))

#################################################
#
# 3. Geometric Discrete Probability Distributions
#
#################################################
# Specify x-values for dbeta function
x_dgeom <- seq(0, 20, by = 1)
y_dgeom <- dgeom(x_dgeom, prob = 0.5) 
y_pgeom <- pgeom(x_dgeom, prob = 0.5) 
x_qgeom <- seq(0, 1, by = 0.01) 
y_qgeom <- qgeom(x_qgeom, prob = 0.5) 
set.seed(13579) 
N <- 500 
y_rgeom <- rgeom(N, prob = 0.5) 
y_rgeom
##   [1]  4  1  5  0  1  0  2  0  1  0  3  1  3  2  1  0  0  2  4  0  1  1  1  0  0
##  [26]  1  2  1  0  0  0  0  0  0  0  2  3  2  1  0  1  2  0  0  1  0  0  1  0  1
##  [51]  4  0  0  0  1  4  5  0  0  1  1  1  1  2  0  1  0  1  1  0  4  0  0  0  0
##  [76]  1  1  0  1  0  5  1  0  1  3  0  0  0  0  0  2  0  0  1  0  2  0  0  0  6
## [101]  1  0  0  1  1  2  4  0  0  1  2  3  0  3  0  1  0  1  1  1  0  2  1  0  0
## [126]  1  1  1  1  1  7  0  1  0  0  2  0  1  2  1  1  1  2  1  0  1  1  1  0  0
## [151]  0  1  0  0  2  0  0  0  1  0  0  0  0  1  1  3  1  0  1  1  0  1  4  2  0
## [176]  3  1  2  0  6  0  0  0  0  0  0  2  2  4  0  0  3  1  0  1  2  1  0  0  0
## [201]  0  0  2  2  1  2  4  0  1  0  2  0  0  1  2  0  0  2  0  0  0  1  1  1  0
## [226]  2  1  0  0  1  0  0  1  0  0  1  1  3  0  0  7  1  5  0  0  0  2  1  3  1
## [251]  1  1  0  0  1  0  1  0  0  1  2  0  1  0  0  2  1  2  2  1  0  1  1  2  1
## [276]  2  1  1  0  1  0  1  0  1  2  0  2  1  2  4  2  0  0  2  1  0  2  1  2  0
## [301]  1  3  0  3  0  0  1  1  1  3  3  0  2  0  1  1  1  1  1  0  5  0  0  0  0
## [326]  2  3  2  1  2  0  0  1  0  3  0  1  1  0  2  1  2  0  2  0  0  5  1  3  3
## [351]  0  1  1  0  1  0  2  0  1  3 10  0  2  1  1  1  0  0  0  0  0  1  0  1  0
## [376]  3  1  2  0  0  8  0  3  0  6  0  3  0  3  1  0  0  2  0  0  0  0  1  0  0
## [401]  1  0  1  0  7  0  0  1  2  2  0  0  1  0  0  2  0  0  0  0  1  0  2  0  1
## [426]  2  4  1  1  0  2  1  1  2  1  0  0  0  3  2  1  0  2  1  0  0  1  1  1  3
## [451]  1  2  2  0  2  0  0  2  2  1  0  4  2  0  0  0  0  3  0  0  0  1  4  3  5
## [476]  1  3  0  1  0  1  2  2  4  2  1  0  1  0  2  1  1  3  1  1  1  1  0  4  0
# Combine the Plots
par(mfrow=c(2,2))
plot(y_dgeom, main="Geometric Density plot")
plot(y_pgeom, main="Geometric Cumulative Density plot")
plot(y_qgeom, main="Geometric Quantile plot")
plot(y_rgeom, main="Geometric Scatter Plot Random Samples")

par(mfrow=c(1,2))
par(mfrow=c(1,2))
plot(density(y_rgeom),main = "Density plot")
hist(y_rgeom, main= "Histogram")

par(mfrow=c(1,1))
# Modify values of the shape parameter
y_rgeom2 <- rgeom(N, prob = 0.7) 
y_rgeom3 <- rgeom(N, prob = 0.3) 
plot(density(y_rpois), 
     xlim= c(0,50),
     main = "Geomtric Distribution in R with Probababilities",lwd=3)
lines(density(y_rgeom2), col = "coral2",lwd=3) 
lines(density(y_rgeom3), col = "green3",lwd=3) 
legend("topright", # Add legend to density
       legend = c("P value = 0.5",
                  "P value = 0.7",
                  "P value = 0.3"),
       col = c("black", "coral2", "green3"),lty = 2, lwd=3)

par(mfrow=c(1,1))

#################################################
#
# 4. Binomial Discrete Probability Distributions
#
#################################################
# Specify x-values for dbeta function
x_dnbinom <- seq(0, 100, by = 1)
y_dnbinom <- dnbinom(x_dnbinom, size = 100, prob = 0.5) 
y_pnbinom <- pnbinom(x_dnbinom, size = 100, prob = 0.5) 
x_dnbinom <- seq(0, 1, by = 0.01)
y_qnbinom <- qnbinom(x_dnbinom, size = 100, prob = 0.5) 
set.seed(13579) 
N <- 500 
y_rnbinom <- rnbinom(N, size = 100, prob = 0.5) 
y_rnbinom
##   [1]  99 105 134  91  95 100 121  83  81 102  92 100 109  89 107 124 121 105
##  [19]  78  77  93 106 118  75 131 106  78  98  99 124 100  99  96  87 118  91
##  [37] 100 106  77  99 100  86  97 120 122  99  93 103  83 118  83  86 133 106
##  [55] 118  90 115  96 105 108 109 111  95  78  98 100 103 105 129  78  93  78
##  [73]  91  94  82 120 101 104 110 110  92  99 101  98 103 108 105  72  78  88
##  [91] 111  74  79 110  92 105  96  93  84 100 109  96 106  94 120 130  83  77
## [109]  82  97  88  75 102 112  83  98  82 104 111 119 102  97  94 113 107  98
## [127]  99  79  99 105  94  61 127  90  85 105 105 107 112  96  93 114 101 117
## [145] 115 106 105 107  98 103 113 105 111 126 115 103 112  83 115 101 112  89
## [163]  99  95  76 109 112  93 115  83 107 115 140  77  92  85  85  92 112 122
## [181]  87  84  87 122  89 112 105 111  72 101  97  87  98 113 105  80  84 129
## [199]  96 106  78 106 100  83 113 100 107 110 113 121 113  91 120  72  97 106
## [217]  90 119  94  95  88 103  82  94  86  92  80  83  95  96  94 107  83  77
## [235] 109 101  84 112 114  95  83 104 127  93 103 104 103 104 114  79 109 123
## [253]  74 100 105 128  83 127 126  91  93 112 128 131  98 101 113 103 102  98
## [271] 112  76  83 106 105  90 114  85 110 117  87  93 113  96  76  78  76 109
## [289]  73 129 105  98 112 105  81  87  94 116  93  71 100 108 101  80  72 105
## [307]  94 106  95  86  94 102  89 108  76  97 115 110  71 104  76 124  81 117
## [325]  86  91 101 100 113  85  92 106  79 102  89  84 132 112  93 102  93 119
## [343]  95  89  99  82  96  75  93  97 114 132 100  95 117 117  94 126 115 108
## [361]  91  95 100  91  85  94  95 114  99  99  95 106  98 114 100 133 135 103
## [379]  92 125 117 102  92  96  83  90  96 103  89  92 104  95  90 102  64 105
## [397]  99  95  88 120 102 110  85 107  99  98 109  99  83  96  85  90 123 121
## [415]  78 117  80  90 114 120  87 106 113  68  83  86 106  98  92  75  93  96
## [433] 103 115 106  95 123  78 105 108  92 100 103 108  97 110  84  91  91  85
## [451]  97 119  96  91  88  92  88 105 122 109  82 100 100  74  98  96  90  88
## [469] 100 118 113  93 105  90 101 101  84  93  97 105 100 100 110 104  94 109
## [487]  99  82 125 124  86 130 114 114  90 100  94 113  96  97
# Combine the Plots
par(mfrow=c(2,2))
plot(y_dnbinom, main="Negative Binomial Density plot")
plot(y_pnbinom, main="Negative Binomial Cumulative Density plot")
plot(y_qnbinom, main="Negative Binomial Quantile plot")
plot(y_rnbinom, main="Negative Binomial Scatter Plot Random Samples")

par(mfrow=c(1,2))
par(mfrow=c(1,2))
plot(density(y_rnbinom),main = "Density plot")
hist(y_rnbinom, main= "Histogram")

par(mfrow=c(1,1))
# Modify values of the shape parameter
y_rnbinom2 <- rnbinom(N,size = 100, prob = 0.7) 
y_rnbinom3 <- rnbinom(N,size = 100, prob = 0.3) 
plot(density(y_rnbinom), 
     xlim= c(0,300),
     ylim= c(0,0.07),
     main = "Binomial Distribution in R with degrees of freedom",lwd=3)
lines(density(y_rnbinom2), col = "coral2",lwd=3) 
lines(density(y_rnbinom3), col = "green3",lwd=3) 
legend("topright", # Add legend to density
       legend = c("P Value = 0.5",
                  "P value = 0.7",
                  "P Value = 0.3"),
       col = c("black", "coral2", "green3"),lty = 2, lwd=3)

par(mfrow=c(1,1))