Code
#Estas librerias serán necesarias
library(tidyverse)
library(readxl)
library(ggfx)
#Importar a R el archivo excel 'endocrino' que previamente se descargó de la dirección web.
telde<-read_excel("endocrino.xlsx",col_names = TRUE)
str(telde)tibble [1,030 × 50] (S3: tbl_df/tbl/data.frame)
$ ID : num [1:1030] 22 65 116 144 204 337 458 541 551 557 ...
$ EDAD : num [1:1030] 51 33 40 62 33 33 68 56 55 46 ...
$ SEXO : num [1:1030] 1 1 1 1 1 1 1 1 1 1 ...
$ PESO : num [1:1030] 86.3 81.8 105 98 124 93 81 99 92 94.3 ...
$ TALLA : num [1:1030] 174 175 173 172 181 177 174 174 179 169 ...
$ SEDENTARIO : num [1:1030] 0 0 1 0 0 1 0 1 1 0 ...
$ INSTRUCCION : chr [1:1030] "Primer grado" "Segundo grado" "Segundo grado" "Primer grado" ...
$ TAS : num [1:1030] 125 120 150 155 130 110 120 110 130 120 ...
$ TAD : num [1:1030] 80 80 100 100 90 70 70 70 80 80 ...
$ HTA_conocida: num [1:1030] 1 0 0 0 0 0 0 0 0 0 ...
$ HTA_OMS : num [1:1030] 1 0 1 1 1 0 0 0 0 0 ...
$ A_DIAB : num [1:1030] 1 0 1 0 1 1 1 0 0 1 ...
$ ECV_B : num [1:1030] 1 0 0 0 0 0 0 0 0 0 ...
$ TABACO : num [1:1030] 0 1 1 1 0 0 0 0 0 1 ...
$ ALCOHOL : num [1:1030] 1 1 1 0 0 1 0 1 1 1 ...
$ STATIN : num [1:1030] 1 0 0 0 0 0 0 1 0 0 ...
$ CINTURA : num [1:1030] 104 86 116 104 130 108 100 114 105 109 ...
$ CADERA : num [1:1030] 102 89 107 103 122 ...
$ OBCENT_ATP : num [1:1030] 1 0 1 1 1 1 0 1 1 1 ...
$ COLESTEROL : num [1:1030] 190 217 288 225 224 163 217 306 283 218 ...
$ HDL : num [1:1030] 50 42 44 45 58 40 49 53 62 44 ...
$ LDL : num [1:1030] 123 144 NA 153 154 111 138 205 186 120 ...
$ LDL_C : chr [1:1030] "120 - 140" "140 - 160" NA "140 - 160" ...
$ TG : num [1:1030] 86 155 448 132 62 59 149 239 175 271 ...
$ CnoHDL : num [1:1030] 140 175 244 180 166 123 168 253 221 174 ...
$ ApoA : num [1:1030] 138.1 93.1 122.7 115.8 135.2 ...
$ ApoB : num [1:1030] 78 94 120 101 86 71 NA 150 130 99 ...
$ LPA : num [1:1030] 4.78 2.39 39.3 7.63 24.9 2.41 15.3 7.31 36.7 28.9 ...
$ A1C : num [1:1030] 6.17 5.58 5.38 5.38 5.19 ...
$ hba1 : num [1:1030] 7.9 7.2 7.1 6.6 6.3 6 8.1 7.7 6.8 7.3 ...
$ CREATININA : num [1:1030] 0.9 1 1 0.9 0.8 0.9 1 1 1.2 1 ...
$ GLUCB : num [1:1030] 101 103 103 109 107 103 104 101 115 101 ...
$ SOG : num [1:1030] 122 100 90 96 69 117 166 94 162 143 ...
$ Tol_Glucosa : chr [1:1030] "IFG" "IFG" "IFG" "IFG" ...
$ DM : num [1:1030] 0 0 0 0 0 0 0 0 0 0 ...
$ conocida : chr [1:1030] "Normal" "Normal" "Normal" "Normal" ...
$ SM : num [1:1030] 1 0 1 1 1 0 0 1 1 1 ...
$ PCR : num [1:1030] 0.34 0.32 0.58 0.32 0.32 0.34 0.34 0.34 0.34 0.49 ...
$ INSULINEMIA : num [1:1030] 16.2 19.8 11.5 17.8 11.6 22.7 14.7 17.2 14.6 15.6 ...
$ PAI_1 : num [1:1030] 47.8 57.2 38.5 32.4 32 71.7 46.3 56.8 71.1 31.6 ...
$ fvw : num [1:1030] 115 17.8 91 96.1 75 117 111 75.4 150 126 ...
$ fibri : num [1:1030] 2.4 2.89 2.71 2.45 3.78 3.53 3.85 3.18 3.2 2.64 ...
$ HMC : num [1:1030] 14 40.72 15.34 15.33 8.64 ...
$ HOMA : num [1:1030] 4.04 5.03 2.92 4.79 3.06 ...
$ IR : num [1:1030] 1 1 1 1 1 1 1 1 1 1 ...
$ ecnos : chr [1:1030] "ab" "bb" "bb" "bb" ...
$ ppr : chr [1:1030] "pp" "pp" "pp" "pp" ...
$ fibratos : chr [1:1030] "No" "No" "No" "No" ...
$ CETP : chr [1:1030] NA NA NA "B1B1" ...
$ PON_192 : chr [1:1030] "QR" "QQ" "QR" "RR" ...