library(arules)
## Loading required package: Matrix
##
## Attaching package: 'arules'
## The following objects are masked from 'package:base':
##
## abbreviate, write
library(caret)
## Loading required package: ggplot2
## Loading required package: lattice
library(catboost)
library(cluster)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:arules':
##
## intersect, recode, setdiff, setequal, union
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(e1071)
library(factoextra)
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
library(ggplot2)
library(glmnet)
## Loaded glmnet 4.1-7
library(lattice)
library(lightgbm)
## Loading required package: R6
##
## Attaching package: 'lightgbm'
## The following object is masked from 'package:dplyr':
##
## slice
library(mlrMBO)
## Loading required package: mlr
## Loading required package: ParamHelpers
## Warning message: 'mlr' is in 'maintenance-only' mode since July 2019.
## Future development will only happen in 'mlr3'
## (<https://mlr3.mlr-org.com>). Due to the focus on 'mlr3' there might be
## uncaught bugs meanwhile in {mlr} - please consider switching.
##
## Attaching package: 'mlr'
## The following object is masked from 'package:e1071':
##
## impute
## The following object is masked from 'package:caret':
##
## train
## Loading required package: smoof
## Loading required package: checkmate
library(randomForest)
## randomForest 4.7-1.1
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:dplyr':
##
## combine
## The following object is masked from 'package:ggplot2':
##
## margin
library(tidyr)
##
## Attaching package: 'tidyr'
## The following objects are masked from 'package:Matrix':
##
## expand, pack, unpack
library(viridis)
## Loading required package: viridisLite
library(xgboost)
##
## Attaching package: 'xgboost'
## The following objects are masked from 'package:lightgbm':
##
## getinfo, setinfo, slice
## The following object is masked from 'package:dplyr':
##
## slice
library(Metrics)
##
## Attaching package: 'Metrics'
## The following objects are masked from 'package:caret':
##
## precision, recall
library(Rtsne)
library(DiceKriging)
##
## Attaching package: 'DiceKriging'
## The following object is masked from 'package:checkmate':
##
## checkNames
source("data_cleaning.r")
##
## Attaching package: 'psych'
## The following object is masked from 'package:randomForest':
##
## outlier
## The following objects are masked from 'package:ggplot2':
##
## %+%, alpha
##
## Attaching package: 'gridExtra'
## The following object is masked from 'package:randomForest':
##
## combine
## The following object is masked from 'package:dplyr':
##
## combine
##
## Attaching package: 'DescTools'
## The following objects are masked from 'package:psych':
##
## AUC, ICC, SD
## The following objects are masked from 'package:caret':
##
## MAE, RMSE
## corrplot 0.92 loaded
## Total rows & columns: 1460 81
##
## 'data.frame': 1460 obs. of 81 variables:
## $ Id : int 1 2 3 4 5 6 7 8 9 10 ...
## $ MSSubClass : int 60 20 60 70 60 50 20 60 50 190 ...
## $ MSZoning : chr "RL" "RL" "RL" "RL" ...
## $ LotFrontage : int 65 80 68 60 84 85 75 NA 51 50 ...
## $ LotArea : int 8450 9600 11250 9550 14260 14115 10084 10382 6120 7420 ...
## $ Street : chr "Pave" "Pave" "Pave" "Pave" ...
## $ Alley : chr NA NA NA NA ...
## $ LotShape : chr "Reg" "Reg" "IR1" "IR1" ...
## $ LandContour : chr "Lvl" "Lvl" "Lvl" "Lvl" ...
## $ Utilities : chr "AllPub" "AllPub" "AllPub" "AllPub" ...
## $ LotConfig : chr "Inside" "FR2" "Inside" "Corner" ...
## $ LandSlope : chr "Gtl" "Gtl" "Gtl" "Gtl" ...
## $ Neighborhood : chr "CollgCr" "Veenker" "CollgCr" "Crawfor" ...
## $ Condition1 : chr "Norm" "Feedr" "Norm" "Norm" ...
## $ Condition2 : chr "Norm" "Norm" "Norm" "Norm" ...
## $ BldgType : chr "1Fam" "1Fam" "1Fam" "1Fam" ...
## $ HouseStyle : chr "2Story" "1Story" "2Story" "2Story" ...
## $ OverallQual : int 7 6 7 7 8 5 8 7 7 5 ...
## $ OverallCond : int 5 8 5 5 5 5 5 6 5 6 ...
## $ YearBuilt : int 2003 1976 2001 1915 2000 1993 2004 1973 1931 1939 ...
## $ YearRemodAdd : int 2003 1976 2002 1970 2000 1995 2005 1973 1950 1950 ...
## $ RoofStyle : chr "Gable" "Gable" "Gable" "Gable" ...
## $ RoofMatl : chr "CompShg" "CompShg" "CompShg" "CompShg" ...
## $ Exterior1st : chr "VinylSd" "MetalSd" "VinylSd" "Wd Sdng" ...
## $ Exterior2nd : chr "VinylSd" "MetalSd" "VinylSd" "Wd Shng" ...
## $ MasVnrType : chr "BrkFace" "None" "BrkFace" "None" ...
## $ MasVnrArea : int 196 0 162 0 350 0 186 240 0 0 ...
## $ ExterQual : chr "Gd" "TA" "Gd" "TA" ...
## $ ExterCond : chr "TA" "TA" "TA" "TA" ...
## $ Foundation : chr "PConc" "CBlock" "PConc" "BrkTil" ...
## $ BsmtQual : chr "Gd" "Gd" "Gd" "TA" ...
## $ BsmtCond : chr "TA" "TA" "TA" "Gd" ...
## $ BsmtExposure : chr "No" "Gd" "Mn" "No" ...
## $ BsmtFinType1 : chr "GLQ" "ALQ" "GLQ" "ALQ" ...
## $ BsmtFinSF1 : int 706 978 486 216 655 732 1369 859 0 851 ...
## $ BsmtFinType2 : chr "Unf" "Unf" "Unf" "Unf" ...
## $ BsmtFinSF2 : int 0 0 0 0 0 0 0 32 0 0 ...
## $ BsmtUnfSF : int 150 284 434 540 490 64 317 216 952 140 ...
## $ TotalBsmtSF : int 856 1262 920 756 1145 796 1686 1107 952 991 ...
## $ Heating : chr "GasA" "GasA" "GasA" "GasA" ...
## $ HeatingQC : chr "Ex" "Ex" "Ex" "Gd" ...
## $ CentralAir : chr "Y" "Y" "Y" "Y" ...
## $ Electrical : chr "SBrkr" "SBrkr" "SBrkr" "SBrkr" ...
## $ X1stFlrSF : int 856 1262 920 961 1145 796 1694 1107 1022 1077 ...
## $ X2ndFlrSF : int 854 0 866 756 1053 566 0 983 752 0 ...
## $ LowQualFinSF : int 0 0 0 0 0 0 0 0 0 0 ...
## $ GrLivArea : int 1710 1262 1786 1717 2198 1362 1694 2090 1774 1077 ...
## $ BsmtFullBath : int 1 0 1 1 1 1 1 1 0 1 ...
## $ BsmtHalfBath : int 0 1 0 0 0 0 0 0 0 0 ...
## $ FullBath : int 2 2 2 1 2 1 2 2 2 1 ...
## $ HalfBath : int 1 0 1 0 1 1 0 1 0 0 ...
## $ BedroomAbvGr : int 3 3 3 3 4 1 3 3 2 2 ...
## $ KitchenAbvGr : int 1 1 1 1 1 1 1 1 2 2 ...
## $ KitchenQual : chr "Gd" "TA" "Gd" "Gd" ...
## $ TotRmsAbvGrd : int 8 6 6 7 9 5 7 7 8 5 ...
## $ Functional : chr "Typ" "Typ" "Typ" "Typ" ...
## $ Fireplaces : int 0 1 1 1 1 0 1 2 2 2 ...
## $ FireplaceQu : chr NA "TA" "TA" "Gd" ...
## $ GarageType : chr "Attchd" "Attchd" "Attchd" "Detchd" ...
## $ GarageYrBlt : int 2003 1976 2001 1998 2000 1993 2004 1973 1931 1939 ...
## $ GarageFinish : chr "RFn" "RFn" "RFn" "Unf" ...
## $ GarageCars : int 2 2 2 3 3 2 2 2 2 1 ...
## $ GarageArea : int 548 460 608 642 836 480 636 484 468 205 ...
## $ GarageQual : chr "TA" "TA" "TA" "TA" ...
## $ GarageCond : chr "TA" "TA" "TA" "TA" ...
## $ PavedDrive : chr "Y" "Y" "Y" "Y" ...
## $ WoodDeckSF : int 0 298 0 0 192 40 255 235 90 0 ...
## $ OpenPorchSF : int 61 0 42 35 84 30 57 204 0 4 ...
## $ EnclosedPorch: int 0 0 0 272 0 0 0 228 205 0 ...
## $ X3SsnPorch : int 0 0 0 0 0 320 0 0 0 0 ...
## $ ScreenPorch : int 0 0 0 0 0 0 0 0 0 0 ...
## $ PoolArea : int 0 0 0 0 0 0 0 0 0 0 ...
## $ PoolQC : chr NA NA NA NA ...
## $ Fence : chr NA NA NA NA ...
## $ MiscFeature : chr NA NA NA NA ...
## $ MiscVal : int 0 0 0 0 0 700 0 350 0 0 ...
## $ MoSold : int 2 5 9 2 12 10 8 11 4 1 ...
## $ YrSold : int 2008 2007 2008 2006 2008 2009 2007 2009 2008 2008 ...
## $ SaleType : chr "WD" "WD" "WD" "WD" ...
## $ SaleCondition: chr "Normal" "Normal" "Normal" "Abnorml" ...
## $ SalePrice : int 208500 181500 223500 140000 250000 143000 307000 200000 129900 118000 ...
## Number of duplicates: 0 column_name missing_percentage
## PoolQC PoolQC 99.52054795
## MiscFeature MiscFeature 96.30136986
## Alley Alley 93.76712329
## Fence Fence 80.75342466
## FireplaceQu FireplaceQu 47.26027397
## LotFrontage LotFrontage 17.73972603
## GarageType GarageType 5.54794521
## GarageFinish GarageFinish 5.54794521
## GarageQual GarageQual 5.54794521
## GarageCond GarageCond 5.54794521
## BsmtExposure BsmtExposure 2.60273973
## BsmtFinType2 BsmtFinType2 2.60273973
## BsmtQual BsmtQual 2.53424658
## BsmtCond BsmtCond 2.53424658
## BsmtFinType1 BsmtFinType1 2.53424658
## MasVnrType MasVnrType 0.54794521
## MasVnrArea MasVnrArea 0.54794521
## Electrical Electrical 0.06849315
## MSSubClass LotFrontage LotArea OverallQual OverallCond
## MSSubClass 1.000000000 -0.357055878 -0.139781082 0.03262771 -0.059315817
## LotFrontage -0.357055878 1.000000000 0.306794605 0.23419623 -0.052820100
## LotArea -0.139781082 0.306794605 1.000000000 0.10580574 -0.005636270
## OverallQual 0.032627708 0.234196231 0.105805742 1.00000000 -0.091932343
## OverallCond -0.059315817 -0.052820100 -0.005636270 -0.09193234 1.000000000
## YearBuilt 0.027850137 0.117597979 0.014227652 0.57232277 -0.375983196
## YearRemodAdd 0.040581045 0.082745885 0.013788427 0.55068392 0.073741498
## MasVnrArea 0.022894690 0.179283452 0.103960227 0.41023774 -0.127788119
## BsmtFinSF1 -0.069835749 0.215828435 0.214103131 0.23966597 -0.046230856
## BsmtFinSF2 -0.065648579 0.043339566 0.111169745 -0.05911869 0.040229170
## BsmtUnfSF -0.140759481 0.122155600 -0.002618360 0.30815893 -0.136840570
## TotalBsmtSF -0.238518409 0.363357723 0.260833135 0.53780850 -0.171097515
## X1stFlrSF -0.251758352 0.414266394 0.299474579 0.47622383 -0.144202784
## X2ndFlrSF 0.307885721 0.072482666 0.050985948 0.29549288 0.028942116
## LowQualFinSF 0.046473756 0.036848721 0.004778970 -0.03042928 0.025494320
## GrLivArea 0.074853180 0.368391966 0.263116167 0.59300743 -0.079685865
## BsmtFullBath 0.003491026 0.091480992 0.158154531 0.11109779 -0.054941515
## BsmtHalfBath -0.002332535 -0.006419220 0.048045571 -0.04015016 0.117820915
## FullBath 0.131608222 0.180424206 0.126030627 0.55059971 -0.194149489
## HalfBath 0.177354389 0.048258362 0.014259469 0.27345810 -0.060769327
## BedroomAbvGr -0.023438028 0.237023227 0.119689908 0.10167636 0.012980060
## KitchenAbvGr 0.281721040 -0.005804607 -0.017783871 -0.18388223 -0.087000855
## Fireplaces -0.045569340 0.235754565 0.271364010 0.39676504 -0.023819978
## GarageArea -0.098671543 0.323662899 0.180402755 0.56202176 -0.151521371
## WoodDeckSF -0.012579358 0.077106221 0.171697687 0.23892339 -0.003333699
## OpenPorchSF -0.006100121 0.137454496 0.084773809 0.30881882 -0.032588814
## EnclosedPorch -0.012036622 0.009790061 -0.018339734 -0.11393686 0.070356184
## X3SsnPorch -0.043824549 0.062335471 0.020422830 0.03037057 0.025503660
## ScreenPorch -0.026030177 0.037684305 0.043160378 0.06488636 0.054810529
## PoolArea 0.008282708 0.180867647 0.077672392 0.06516584 -0.001984942
## MiscVal -0.007683291 0.001168275 0.038067692 -0.03140621 0.068776806
## MoSold -0.013584643 0.010157807 0.001204988 0.07081517 -0.003510839
## YrSold -0.021407038 0.006768250 -0.014261407 -0.02734671 0.043949746
## SalePrice -0.084284135 0.334900852 0.263843354 0.79098160 -0.077855894
## YearBuilt YearRemodAdd MasVnrArea BsmtFinSF1 BsmtFinSF2
## MSSubClass 0.027850137 0.040581045 0.022894690 -0.069835749 -0.065648579
## LotFrontage 0.117597979 0.082745885 0.179283452 0.215828435 0.043339566
## LotArea 0.014227652 0.013788427 0.103960227 0.214103131 0.111169745
## OverallQual 0.572322769 0.550683924 0.410237736 0.239665966 -0.059118693
## OverallCond -0.375983196 0.073741498 -0.127788119 -0.046230856 0.040229170
## YearBuilt 1.000000000 0.592854976 0.314745023 0.249503197 -0.049106831
## YearRemodAdd 0.592854976 1.000000000 0.179186495 0.128450547 -0.067758514
## MasVnrArea 0.314745023 0.179186495 1.000000000 0.263582388 -0.072302247
## BsmtFinSF1 0.249503197 0.128450547 0.263582388 1.000000000 -0.050117400
## BsmtFinSF2 -0.049106831 -0.067758514 -0.072302247 -0.050117400 1.000000000
## BsmtUnfSF 0.149040392 0.181133087 0.114183659 -0.495251469 -0.209294492
## TotalBsmtSF 0.391452002 0.291065583 0.362452094 0.522396052 0.104809538
## X1stFlrSF 0.281985859 0.240379268 0.342160338 0.445862656 0.097117448
## X2ndFlrSF 0.010307660 0.140023779 0.174019344 -0.137078986 -0.099260316
## LowQualFinSF -0.183784344 -0.062419100 -0.069068105 -0.064502597 0.014806998
## GrLivArea 0.199009714 0.287388520 0.389892916 0.208171130 -0.009639892
## BsmtFullBath 0.187598550 0.119469879 0.085054528 0.649211754 0.158678061
## BsmtHalfBath -0.038161806 -0.012337032 0.026668558 0.067418478 0.070948134
## FullBath 0.468270787 0.439046484 0.275729847 0.058543137 -0.076443862
## HalfBath 0.242655910 0.183330612 0.200802357 0.004262424 -0.032147837
## BedroomAbvGr -0.070651217 -0.040580928 0.102417471 -0.107354677 -0.015728114
## KitchenAbvGr -0.174800246 -0.149597521 -0.037364011 -0.081006851 -0.040751236
## Fireplaces 0.147716399 0.112581318 0.247906285 0.260010920 0.046920709
## GarageArea 0.478953820 0.371599809 0.372567013 0.296970385 -0.018226592
## WoodDeckSF 0.224880142 0.205725920 0.159349430 0.204306145 0.067898326
## OpenPorchSF 0.188685840 0.226297633 0.124965275 0.111760613 0.003092562
## EnclosedPorch -0.387267783 -0.193919147 -0.109848652 -0.102303306 0.036543339
## X3SsnPorch 0.031354513 0.045285810 0.018794814 0.026450506 -0.029993398
## ScreenPorch -0.050364435 -0.038740011 0.061453179 0.062020623 0.088871251
## PoolArea 0.004949728 0.005829372 0.011722909 0.140491286 0.041709055
## MiscVal -0.034383139 -0.010286249 -0.029814762 0.003571473 0.004939781
## MoSold 0.012398471 0.021490002 -0.005939579 -0.015726948 -0.015210738
## YrSold -0.013617680 0.035743247 -0.008183639 0.014358922 0.031705637
## SalePrice 0.522897333 0.507100967 0.475241317 0.386419806 -0.011378121
## BsmtUnfSF TotalBsmtSF X1stFlrSF X2ndFlrSF
## MSSubClass -0.140759481 -0.2385184093 -0.251758352 0.307885721
## LotFrontage 0.122155600 0.3633577228 0.414266394 0.072482666
## LotArea -0.002618360 0.2608331345 0.299474579 0.050985948
## OverallQual 0.308158927 0.5378084986 0.476223829 0.295492879
## OverallCond -0.136840570 -0.1710975146 -0.144202784 0.028942116
## YearBuilt 0.149040392 0.3914520021 0.281985859 0.010307660
## YearRemodAdd 0.181133087 0.2910655826 0.240379268 0.140023779
## MasVnrArea 0.114183659 0.3624520941 0.342160338 0.174019344
## BsmtFinSF1 -0.495251469 0.5223960520 0.445862656 -0.137078986
## BsmtFinSF2 -0.209294492 0.1048095376 0.097117448 -0.099260316
## BsmtUnfSF 1.000000000 0.4153596052 0.317987438 0.004469092
## TotalBsmtSF 0.415359605 1.0000000000 0.819529975 -0.174511950
## X1stFlrSF 0.317987438 0.8195299750 1.000000000 -0.202646181
## X2ndFlrSF 0.004469092 -0.1745119501 -0.202646181 1.000000000
## LowQualFinSF 0.028166688 -0.0332453873 -0.014240673 0.063352950
## GrLivArea 0.240257268 0.4548682025 0.566023969 0.687501064
## BsmtFullBath -0.422900477 0.3073505537 0.244671104 -0.169493952
## BsmtHalfBath -0.095804288 -0.0003145818 0.001955654 -0.023854784
## FullBath 0.288886055 0.3237224136 0.380637495 0.421377983
## HalfBath -0.041117530 -0.0488037386 -0.119915909 0.609707300
## BedroomAbvGr 0.166643317 0.0504499555 0.127400749 0.502900613
## KitchenAbvGr 0.030085868 -0.0689006426 0.068100588 0.059305753
## Fireplaces 0.051574882 0.3395193239 0.410531085 0.194560892
## GarageArea 0.183302698 0.4866654638 0.489781654 0.138346959
## WoodDeckSF -0.005316424 0.2320186091 0.235458623 0.092165418
## OpenPorchSF 0.129005415 0.2472637463 0.211671225 0.208026063
## EnclosedPorch -0.002537855 -0.0954777367 -0.065291701 0.061988691
## X3SsnPorch 0.020764006 0.0373837273 0.056104374 -0.024357648
## ScreenPorch -0.012579273 0.0844889859 0.088758073 0.040606448
## PoolArea -0.035092241 0.1260531321 0.131524976 0.081486878
## MiscVal -0.023836645 -0.0184789224 -0.021095719 0.016196875
## MoSold 0.034888443 0.0131961786 0.031371560 0.035164427
## YrSold -0.041258195 -0.0149686480 -0.013603771 -0.028699914
## SalePrice 0.214479106 0.6135805516 0.605852185 0.319333803
## LowQualFinSF GrLivArea BsmtFullBath BsmtHalfBath
## MSSubClass 0.0464737559 0.074853180 0.0034910258 -0.0023325346
## LotFrontage 0.0368487208 0.368391966 0.0914809919 -0.0064192197
## LotArea 0.0047789699 0.263116167 0.1581545311 0.0480455709
## OverallQual -0.0304292840 0.593007430 0.1110977861 -0.0401501577
## OverallCond 0.0254943199 -0.079685865 -0.0549415154 0.1178209151
## YearBuilt -0.1837843444 0.199009714 0.1875985500 -0.0381618057
## YearRemodAdd -0.0624191001 0.287388520 0.1194698791 -0.0123370321
## MasVnrArea -0.0690681050 0.389892916 0.0850545278 0.0266685579
## BsmtFinSF1 -0.0645025969 0.208171130 0.6492117536 0.0674184779
## BsmtFinSF2 0.0148069979 -0.009639892 0.1586780608 0.0709481337
## BsmtUnfSF 0.0281666881 0.240257268 -0.4229004774 -0.0958042882
## TotalBsmtSF -0.0332453873 0.454868203 0.3073505537 -0.0003145818
## X1stFlrSF -0.0142406727 0.566023969 0.2446711042 0.0019556536
## X2ndFlrSF 0.0633529501 0.687501064 -0.1694939517 -0.0238547839
## LowQualFinSF 1.0000000000 0.134682813 -0.0471434219 -0.0058415048
## GrLivArea 0.1346828130 1.000000000 0.0348360495 -0.0189184832
## BsmtFullBath -0.0471434219 0.034836050 1.0000000000 -0.1478709605
## BsmtHalfBath -0.0058415048 -0.018918483 -0.1478709605 1.0000000000
## FullBath -0.0007095096 0.630011646 -0.0645120486 -0.0545358120
## HalfBath -0.0270800493 0.415771636 -0.0309049591 -0.0123399001
## BedroomAbvGr 0.1056065685 0.521269511 -0.1506728092 0.0465188484
## KitchenAbvGr 0.0075217443 0.100063165 -0.0415025464 -0.0379443502
## Fireplaces -0.0212721434 0.461679134 0.1379277084 0.0289755866
## GarageArea -0.0676014132 0.468997477 0.1791894804 -0.0245355796
## WoodDeckSF -0.0254436480 0.247432821 0.1753151901 0.0401612233
## OpenPorchSF 0.0182510391 0.330223962 0.0673414614 -0.0253237579
## EnclosedPorch 0.0610812378 0.009113210 -0.0499106491 -0.0085553339
## X3SsnPorch -0.0042956104 0.020643190 -0.0001060915 0.0351136309
## ScreenPorch 0.0267994130 0.101510396 0.0231477258 0.0321214072
## PoolArea 0.0621573723 0.170205336 0.0676155562 0.0200246298
## MiscVal -0.0037928708 -0.002415640 -0.0230470249 -0.0073665245
## MoSold -0.0221739606 0.050239681 -0.0253608943 0.0328727052
## YrSold -0.0289208798 -0.036525820 0.0670491377 -0.0465238818
## SalePrice -0.0256061300 0.708624478 0.2271222331 -0.0168441543
## FullBath HalfBath BedroomAbvGr KitchenAbvGr Fireplaces
## MSSubClass 0.1316082224 0.177354389 -0.023438028 0.281721040 -0.045569340
## LotFrontage 0.1804242055 0.048258362 0.237023227 -0.005804607 0.235754565
## LotArea 0.1260306265 0.014259469 0.119689908 -0.017783871 0.271364010
## OverallQual 0.5505997094 0.273458099 0.101676356 -0.183882235 0.396765038
## OverallCond -0.1941494887 -0.060769327 0.012980060 -0.087000855 -0.023819978
## YearBuilt 0.4682707872 0.242655910 -0.070651217 -0.174800246 0.147716399
## YearRemodAdd 0.4390464839 0.183330612 -0.040580928 -0.149597521 0.112581318
## MasVnrArea 0.2757298473 0.200802357 0.102417471 -0.037364011 0.247906285
## BsmtFinSF1 0.0585431369 0.004262424 -0.107354677 -0.081006851 0.260010920
## BsmtFinSF2 -0.0764438620 -0.032147837 -0.015728114 -0.040751236 0.046920709
## BsmtUnfSF 0.2888860555 -0.041117530 0.166643317 0.030085868 0.051574882
## TotalBsmtSF 0.3237224136 -0.048803739 0.050449956 -0.068900643 0.339519324
## X1stFlrSF 0.3806374950 -0.119915909 0.127400749 0.068100588 0.410531085
## X2ndFlrSF 0.4213779829 0.609707300 0.502900613 0.059305753 0.194560892
## LowQualFinSF -0.0007095096 -0.027080049 0.105606569 0.007521744 -0.021272143
## GrLivArea 0.6300116463 0.415771636 0.521269511 0.100063165 0.461679134
## BsmtFullBath -0.0645120486 -0.030904959 -0.150672809 -0.041502546 0.137927708
## BsmtHalfBath -0.0545358120 -0.012339900 0.046518848 -0.037944350 0.028975587
## FullBath 1.0000000000 0.136380589 0.363251983 0.133115214 0.243670503
## HalfBath 0.1363805887 1.000000000 0.226651484 -0.068262549 0.203648508
## BedroomAbvGr 0.3632519830 0.226651484 1.000000000 0.198596758 0.107569681
## KitchenAbvGr 0.1331152142 -0.068262549 0.198596758 1.000000000 -0.123936235
## Fireplaces 0.2436705031 0.203648508 0.107569681 -0.123936235 1.000000000
## GarageArea 0.4056562085 0.163549364 0.065252530 -0.064433047 0.269141238
## WoodDeckSF 0.1877032138 0.108080303 0.046853773 -0.090130273 0.200018796
## OpenPorchSF 0.2599774255 0.199740148 0.093809572 -0.070090610 0.169405327
## EnclosedPorch -0.1150929635 -0.095316526 0.041570435 0.037312385 -0.024821869
## X3SsnPorch 0.0353530166 -0.004972488 -0.024477796 -0.024600359 0.011257239
## ScreenPorch -0.0081060933 0.072425845 0.044299691 -0.051613366 0.184530270
## PoolArea 0.0496038256 0.022381498 0.070702584 -0.014525116 0.095073522
## MiscVal -0.0142898450 0.001290145 0.007766972 0.062340724 0.001408605
## MoSold 0.0558721290 -0.009049888 0.046543860 0.026588907 0.046357102
## YrSold -0.0196688407 -0.010268669 -0.036013893 0.031687207 -0.024095565
## SalePrice 0.5606637627 0.284107676 0.168213154 -0.135907371 0.466928837
## GarageArea WoodDeckSF OpenPorchSF EnclosedPorch X3SsnPorch
## MSSubClass -0.09867154 -0.012579358 -0.006100121 -0.012036622 -0.0438245492
## LotFrontage 0.32366290 0.077106221 0.137454496 0.009790061 0.0623354713
## LotArea 0.18040276 0.171697687 0.084773809 -0.018339734 0.0204228296
## OverallQual 0.56202176 0.238923392 0.308818823 -0.113936859 0.0303705671
## OverallCond -0.15152137 -0.003333699 -0.032588814 0.070356184 0.0255036600
## YearBuilt 0.47895382 0.224880142 0.188685840 -0.387267783 0.0313545131
## YearRemodAdd 0.37159981 0.205725920 0.226297633 -0.193919147 0.0452858098
## MasVnrArea 0.37256701 0.159349430 0.124965275 -0.109848652 0.0187948145
## BsmtFinSF1 0.29697039 0.204306145 0.111760613 -0.102303306 0.0264505062
## BsmtFinSF2 -0.01822659 0.067898326 0.003092562 0.036543339 -0.0299933980
## BsmtUnfSF 0.18330270 -0.005316424 0.129005415 -0.002537855 0.0207640057
## TotalBsmtSF 0.48666546 0.232018609 0.247263746 -0.095477737 0.0373837273
## X1stFlrSF 0.48978165 0.235458623 0.211671225 -0.065291701 0.0561043745
## X2ndFlrSF 0.13834696 0.092165418 0.208026063 0.061988691 -0.0243576484
## LowQualFinSF -0.06760141 -0.025443648 0.018251039 0.061081238 -0.0042956104
## GrLivArea 0.46899748 0.247432821 0.330223962 0.009113210 0.0206431897
## BsmtFullBath 0.17918948 0.175315190 0.067341461 -0.049910649 -0.0001060915
## BsmtHalfBath -0.02453558 0.040161223 -0.025323758 -0.008555334 0.0351136309
## FullBath 0.40565621 0.187703214 0.259977425 -0.115092963 0.0353530166
## HalfBath 0.16354936 0.108080303 0.199740148 -0.095316526 -0.0049724884
## BedroomAbvGr 0.06525253 0.046853773 0.093809572 0.041570435 -0.0244777964
## KitchenAbvGr -0.06443305 -0.090130273 -0.070090610 0.037312385 -0.0246003587
## Fireplaces 0.26914124 0.200018796 0.169405327 -0.024821869 0.0112572390
## GarageArea 1.00000000 0.224666307 0.241434672 -0.121776720 0.0350867002
## WoodDeckSF 0.22466631 1.000000000 0.058660609 -0.125988888 -0.0327706336
## OpenPorchSF 0.24143467 0.058660609 1.000000000 -0.093079318 -0.0058424993
## EnclosedPorch -0.12177672 -0.125988888 -0.093079318 1.000000000 -0.0373052828
## X3SsnPorch 0.03508670 -0.032770634 -0.005842499 -0.037305283 1.0000000000
## ScreenPorch 0.05141176 -0.074181351 0.074303944 -0.082864245 -0.0314358470
## PoolArea 0.06104727 0.073378207 0.060762111 0.054202562 -0.0079915489
## MiscVal -0.02739991 -0.009551228 -0.018583739 0.018360600 0.0003539653
## MoSold 0.02797380 0.021011044 0.071254885 -0.028887266 0.0294737952
## YrSold -0.02737794 0.022270451 -0.057619360 -0.009915937 0.0186449254
## SalePrice 0.62343144 0.324413445 0.315856227 -0.128577958 0.0445836653
## ScreenPorch PoolArea MiscVal MoSold YrSold
## MSSubClass -0.026030177 0.008282708 -0.0076832913 -0.013584643 -0.021407038
## LotFrontage 0.037684305 0.180867647 0.0011682749 0.010157807 0.006768250
## LotArea 0.043160378 0.077672392 0.0380676920 0.001204988 -0.014261407
## OverallQual 0.064886360 0.065165844 -0.0314062105 0.070815172 -0.027346708
## OverallCond 0.054810529 -0.001984942 0.0687768061 -0.003510839 0.043949746
## YearBuilt -0.050364435 0.004949728 -0.0343831387 0.012398471 -0.013617680
## YearRemodAdd -0.038740011 0.005829372 -0.0102862488 0.021490002 0.035743247
## MasVnrArea 0.061453179 0.011722909 -0.0298147620 -0.005939579 -0.008183639
## BsmtFinSF1 0.062020623 0.140491286 0.0035714735 -0.015726948 0.014358922
## BsmtFinSF2 0.088871251 0.041709055 0.0049397812 -0.015210738 0.031705637
## BsmtUnfSF -0.012579273 -0.035092241 -0.0238366451 0.034888443 -0.041258195
## TotalBsmtSF 0.084488986 0.126053132 -0.0184789224 0.013196179 -0.014968648
## X1stFlrSF 0.088758073 0.131524976 -0.0210957195 0.031371560 -0.013603771
## X2ndFlrSF 0.040606448 0.081486878 0.0161968746 0.035164427 -0.028699914
## LowQualFinSF 0.026799413 0.062157372 -0.0037928708 -0.022173961 -0.028920880
## GrLivArea 0.101510396 0.170205336 -0.0024156396 0.050239681 -0.036525820
## BsmtFullBath 0.023147726 0.067615556 -0.0230470249 -0.025360894 0.067049138
## BsmtHalfBath 0.032121407 0.020024630 -0.0073665245 0.032872705 -0.046523882
## FullBath -0.008106093 0.049603826 -0.0142898450 0.055872129 -0.019668841
## HalfBath 0.072425845 0.022381498 0.0012901448 -0.009049888 -0.010268669
## BedroomAbvGr 0.044299691 0.070702584 0.0077669720 0.046543860 -0.036013893
## KitchenAbvGr -0.051613366 -0.014525116 0.0623407240 0.026588907 0.031687207
## Fireplaces 0.184530270 0.095073522 0.0014086054 0.046357102 -0.024095565
## GarageArea 0.051411762 0.061047272 -0.0273999144 0.027973800 -0.027377940
## WoodDeckSF -0.074181351 0.073378207 -0.0095512282 0.021011044 0.022270451
## OpenPorchSF 0.074303944 0.060762111 -0.0185837390 0.071254885 -0.057619360
## EnclosedPorch -0.082864245 0.054202562 0.0183606001 -0.028887266 -0.009915937
## X3SsnPorch -0.031435847 -0.007991549 0.0003539653 0.029473795 0.018644925
## ScreenPorch 1.000000000 0.051307395 0.0319457608 0.023216992 0.010694106
## PoolArea 0.051307395 1.000000000 0.0296686509 -0.033736640 -0.059688932
## MiscVal 0.031945761 0.029668651 1.0000000000 -0.006494550 0.004906262
## MoSold 0.023216992 -0.033736640 -0.0064945502 1.000000000 -0.145721413
## YrSold 0.010694106 -0.059688932 0.0049062625 -0.145721413 1.000000000
## SalePrice 0.111446571 0.092403549 -0.0211895796 0.046432245 -0.028922585
## SalePrice
## MSSubClass -0.08428414
## LotFrontage 0.33490085
## LotArea 0.26384335
## OverallQual 0.79098160
## OverallCond -0.07785589
## YearBuilt 0.52289733
## YearRemodAdd 0.50710097
## MasVnrArea 0.47524132
## BsmtFinSF1 0.38641981
## BsmtFinSF2 -0.01137812
## BsmtUnfSF 0.21447911
## TotalBsmtSF 0.61358055
## X1stFlrSF 0.60585218
## X2ndFlrSF 0.31933380
## LowQualFinSF -0.02560613
## GrLivArea 0.70862448
## BsmtFullBath 0.22712223
## BsmtHalfBath -0.01684415
## FullBath 0.56066376
## HalfBath 0.28410768
## BedroomAbvGr 0.16821315
## KitchenAbvGr -0.13590737
## Fireplaces 0.46692884
## GarageArea 0.62343144
## WoodDeckSF 0.32441344
## OpenPorchSF 0.31585623
## EnclosedPorch -0.12857796
## X3SsnPorch 0.04458367
## ScreenPorch 0.11144657
## PoolArea 0.09240355
## MiscVal -0.02118958
## MoSold 0.04643225
## YrSold -0.02892259
## SalePrice 1.00000000
## MSSubClass LotFrontage LotArea OverallQual OverallCond
## MSSubClass 1.000000000 -0.357055878 -0.139781082 0.03262771 -0.059315817
## LotFrontage -0.357055878 1.000000000 0.306794605 0.23419623 -0.052820100
## LotArea -0.139781082 0.306794605 1.000000000 0.10580574 -0.005636270
## OverallQual 0.032627708 0.234196231 0.105805742 1.00000000 -0.091932343
## OverallCond -0.059315817 -0.052820100 -0.005636270 -0.09193234 1.000000000
## YearBuilt 0.027850137 0.117597979 0.014227652 0.57232277 -0.375983196
## YearRemodAdd 0.040581045 0.082745885 0.013788427 0.55068392 0.073741498
## MasVnrArea 0.022894690 0.179283452 0.103960227 0.41023774 -0.127788119
## BsmtFinSF1 -0.069835749 0.215828435 0.214103131 0.23966597 -0.046230856
## BsmtFinSF2 -0.065648579 0.043339566 0.111169745 -0.05911869 0.040229170
## BsmtUnfSF -0.140759481 0.122155600 -0.002618360 0.30815893 -0.136840570
## TotalBsmtSF -0.238518409 0.363357723 0.260833135 0.53780850 -0.171097515
## X1stFlrSF -0.251758352 0.414266394 0.299474579 0.47622383 -0.144202784
## X2ndFlrSF 0.307885721 0.072482666 0.050985948 0.29549288 0.028942116
## LowQualFinSF 0.046473756 0.036848721 0.004778970 -0.03042928 0.025494320
## GrLivArea 0.074853180 0.368391966 0.263116167 0.59300743 -0.079685865
## BsmtFullBath 0.003491026 0.091480992 0.158154531 0.11109779 -0.054941515
## BsmtHalfBath -0.002332535 -0.006419220 0.048045571 -0.04015016 0.117820915
## FullBath 0.131608222 0.180424206 0.126030627 0.55059971 -0.194149489
## HalfBath 0.177354389 0.048258362 0.014259469 0.27345810 -0.060769327
## BedroomAbvGr -0.023438028 0.237023227 0.119689908 0.10167636 0.012980060
## KitchenAbvGr 0.281721040 -0.005804607 -0.017783871 -0.18388223 -0.087000855
## Fireplaces -0.045569340 0.235754565 0.271364010 0.39676504 -0.023819978
## GarageArea -0.098671543 0.323662899 0.180402755 0.56202176 -0.151521371
## WoodDeckSF -0.012579358 0.077106221 0.171697687 0.23892339 -0.003333699
## OpenPorchSF -0.006100121 0.137454496 0.084773809 0.30881882 -0.032588814
## EnclosedPorch -0.012036622 0.009790061 -0.018339734 -0.11393686 0.070356184
## X3SsnPorch -0.043824549 0.062335471 0.020422830 0.03037057 0.025503660
## ScreenPorch -0.026030177 0.037684305 0.043160378 0.06488636 0.054810529
## PoolArea 0.008282708 0.180867647 0.077672392 0.06516584 -0.001984942
## MiscVal -0.007683291 0.001168275 0.038067692 -0.03140621 0.068776806
## MoSold -0.013584643 0.010157807 0.001204988 0.07081517 -0.003510839
## YrSold -0.021407038 0.006768250 -0.014261407 -0.02734671 0.043949746
## SalePrice -0.084284135 0.334900852 0.263843354 0.79098160 -0.077855894
## YearBuilt YearRemodAdd MasVnrArea BsmtFinSF1 BsmtFinSF2
## MSSubClass 0.027850137 0.040581045 0.022894690 -0.069835749 -0.065648579
## LotFrontage 0.117597979 0.082745885 0.179283452 0.215828435 0.043339566
## LotArea 0.014227652 0.013788427 0.103960227 0.214103131 0.111169745
## OverallQual 0.572322769 0.550683924 0.410237736 0.239665966 -0.059118693
## OverallCond -0.375983196 0.073741498 -0.127788119 -0.046230856 0.040229170
## YearBuilt 1.000000000 0.592854976 0.314745023 0.249503197 -0.049106831
## YearRemodAdd 0.592854976 1.000000000 0.179186495 0.128450547 -0.067758514
## MasVnrArea 0.314745023 0.179186495 1.000000000 0.263582388 -0.072302247
## BsmtFinSF1 0.249503197 0.128450547 0.263582388 1.000000000 -0.050117400
## BsmtFinSF2 -0.049106831 -0.067758514 -0.072302247 -0.050117400 1.000000000
## BsmtUnfSF 0.149040392 0.181133087 0.114183659 -0.495251469 -0.209294492
## TotalBsmtSF 0.391452002 0.291065583 0.362452094 0.522396052 0.104809538
## X1stFlrSF 0.281985859 0.240379268 0.342160338 0.445862656 0.097117448
## X2ndFlrSF 0.010307660 0.140023779 0.174019344 -0.137078986 -0.099260316
## LowQualFinSF -0.183784344 -0.062419100 -0.069068105 -0.064502597 0.014806998
## GrLivArea 0.199009714 0.287388520 0.389892916 0.208171130 -0.009639892
## BsmtFullBath 0.187598550 0.119469879 0.085054528 0.649211754 0.158678061
## BsmtHalfBath -0.038161806 -0.012337032 0.026668558 0.067418478 0.070948134
## FullBath 0.468270787 0.439046484 0.275729847 0.058543137 -0.076443862
## HalfBath 0.242655910 0.183330612 0.200802357 0.004262424 -0.032147837
## BedroomAbvGr -0.070651217 -0.040580928 0.102417471 -0.107354677 -0.015728114
## KitchenAbvGr -0.174800246 -0.149597521 -0.037364011 -0.081006851 -0.040751236
## Fireplaces 0.147716399 0.112581318 0.247906285 0.260010920 0.046920709
## GarageArea 0.478953820 0.371599809 0.372567013 0.296970385 -0.018226592
## WoodDeckSF 0.224880142 0.205725920 0.159349430 0.204306145 0.067898326
## OpenPorchSF 0.188685840 0.226297633 0.124965275 0.111760613 0.003092562
## EnclosedPorch -0.387267783 -0.193919147 -0.109848652 -0.102303306 0.036543339
## X3SsnPorch 0.031354513 0.045285810 0.018794814 0.026450506 -0.029993398
## ScreenPorch -0.050364435 -0.038740011 0.061453179 0.062020623 0.088871251
## PoolArea 0.004949728 0.005829372 0.011722909 0.140491286 0.041709055
## MiscVal -0.034383139 -0.010286249 -0.029814762 0.003571473 0.004939781
## MoSold 0.012398471 0.021490002 -0.005939579 -0.015726948 -0.015210738
## YrSold -0.013617680 0.035743247 -0.008183639 0.014358922 0.031705637
## SalePrice 0.522897333 0.507100967 0.475241317 0.386419806 -0.011378121
## BsmtUnfSF TotalBsmtSF X1stFlrSF X2ndFlrSF
## MSSubClass -0.140759481 -0.2385184093 -0.251758352 0.307885721
## LotFrontage 0.122155600 0.3633577228 0.414266394 0.072482666
## LotArea -0.002618360 0.2608331345 0.299474579 0.050985948
## OverallQual 0.308158927 0.5378084986 0.476223829 0.295492879
## OverallCond -0.136840570 -0.1710975146 -0.144202784 0.028942116
## YearBuilt 0.149040392 0.3914520021 0.281985859 0.010307660
## YearRemodAdd 0.181133087 0.2910655826 0.240379268 0.140023779
## MasVnrArea 0.114183659 0.3624520941 0.342160338 0.174019344
## BsmtFinSF1 -0.495251469 0.5223960520 0.445862656 -0.137078986
## BsmtFinSF2 -0.209294492 0.1048095376 0.097117448 -0.099260316
## BsmtUnfSF 1.000000000 0.4153596052 0.317987438 0.004469092
## TotalBsmtSF 0.415359605 1.0000000000 0.819529975 -0.174511950
## X1stFlrSF 0.317987438 0.8195299750 1.000000000 -0.202646181
## X2ndFlrSF 0.004469092 -0.1745119501 -0.202646181 1.000000000
## LowQualFinSF 0.028166688 -0.0332453873 -0.014240673 0.063352950
## GrLivArea 0.240257268 0.4548682025 0.566023969 0.687501064
## BsmtFullBath -0.422900477 0.3073505537 0.244671104 -0.169493952
## BsmtHalfBath -0.095804288 -0.0003145818 0.001955654 -0.023854784
## FullBath 0.288886055 0.3237224136 0.380637495 0.421377983
## HalfBath -0.041117530 -0.0488037386 -0.119915909 0.609707300
## BedroomAbvGr 0.166643317 0.0504499555 0.127400749 0.502900613
## KitchenAbvGr 0.030085868 -0.0689006426 0.068100588 0.059305753
## Fireplaces 0.051574882 0.3395193239 0.410531085 0.194560892
## GarageArea 0.183302698 0.4866654638 0.489781654 0.138346959
## WoodDeckSF -0.005316424 0.2320186091 0.235458623 0.092165418
## OpenPorchSF 0.129005415 0.2472637463 0.211671225 0.208026063
## EnclosedPorch -0.002537855 -0.0954777367 -0.065291701 0.061988691
## X3SsnPorch 0.020764006 0.0373837273 0.056104374 -0.024357648
## ScreenPorch -0.012579273 0.0844889859 0.088758073 0.040606448
## PoolArea -0.035092241 0.1260531321 0.131524976 0.081486878
## MiscVal -0.023836645 -0.0184789224 -0.021095719 0.016196875
## MoSold 0.034888443 0.0131961786 0.031371560 0.035164427
## YrSold -0.041258195 -0.0149686480 -0.013603771 -0.028699914
## SalePrice 0.214479106 0.6135805516 0.605852185 0.319333803
## LowQualFinSF GrLivArea BsmtFullBath BsmtHalfBath
## MSSubClass 0.0464737559 0.074853180 0.0034910258 -0.0023325346
## LotFrontage 0.0368487208 0.368391966 0.0914809919 -0.0064192197
## LotArea 0.0047789699 0.263116167 0.1581545311 0.0480455709
## OverallQual -0.0304292840 0.593007430 0.1110977861 -0.0401501577
## OverallCond 0.0254943199 -0.079685865 -0.0549415154 0.1178209151
## YearBuilt -0.1837843444 0.199009714 0.1875985500 -0.0381618057
## YearRemodAdd -0.0624191001 0.287388520 0.1194698791 -0.0123370321
## MasVnrArea -0.0690681050 0.389892916 0.0850545278 0.0266685579
## BsmtFinSF1 -0.0645025969 0.208171130 0.6492117536 0.0674184779
## BsmtFinSF2 0.0148069979 -0.009639892 0.1586780608 0.0709481337
## BsmtUnfSF 0.0281666881 0.240257268 -0.4229004774 -0.0958042882
## TotalBsmtSF -0.0332453873 0.454868203 0.3073505537 -0.0003145818
## X1stFlrSF -0.0142406727 0.566023969 0.2446711042 0.0019556536
## X2ndFlrSF 0.0633529501 0.687501064 -0.1694939517 -0.0238547839
## LowQualFinSF 1.0000000000 0.134682813 -0.0471434219 -0.0058415048
## GrLivArea 0.1346828130 1.000000000 0.0348360495 -0.0189184832
## BsmtFullBath -0.0471434219 0.034836050 1.0000000000 -0.1478709605
## BsmtHalfBath -0.0058415048 -0.018918483 -0.1478709605 1.0000000000
## FullBath -0.0007095096 0.630011646 -0.0645120486 -0.0545358120
## HalfBath -0.0270800493 0.415771636 -0.0309049591 -0.0123399001
## BedroomAbvGr 0.1056065685 0.521269511 -0.1506728092 0.0465188484
## KitchenAbvGr 0.0075217443 0.100063165 -0.0415025464 -0.0379443502
## Fireplaces -0.0212721434 0.461679134 0.1379277084 0.0289755866
## GarageArea -0.0676014132 0.468997477 0.1791894804 -0.0245355796
## WoodDeckSF -0.0254436480 0.247432821 0.1753151901 0.0401612233
## OpenPorchSF 0.0182510391 0.330223962 0.0673414614 -0.0253237579
## EnclosedPorch 0.0610812378 0.009113210 -0.0499106491 -0.0085553339
## X3SsnPorch -0.0042956104 0.020643190 -0.0001060915 0.0351136309
## ScreenPorch 0.0267994130 0.101510396 0.0231477258 0.0321214072
## PoolArea 0.0621573723 0.170205336 0.0676155562 0.0200246298
## MiscVal -0.0037928708 -0.002415640 -0.0230470249 -0.0073665245
## MoSold -0.0221739606 0.050239681 -0.0253608943 0.0328727052
## YrSold -0.0289208798 -0.036525820 0.0670491377 -0.0465238818
## SalePrice -0.0256061300 0.708624478 0.2271222331 -0.0168441543
## FullBath HalfBath BedroomAbvGr KitchenAbvGr Fireplaces
## MSSubClass 0.1316082224 0.177354389 -0.023438028 0.281721040 -0.045569340
## LotFrontage 0.1804242055 0.048258362 0.237023227 -0.005804607 0.235754565
## LotArea 0.1260306265 0.014259469 0.119689908 -0.017783871 0.271364010
## OverallQual 0.5505997094 0.273458099 0.101676356 -0.183882235 0.396765038
## OverallCond -0.1941494887 -0.060769327 0.012980060 -0.087000855 -0.023819978
## YearBuilt 0.4682707872 0.242655910 -0.070651217 -0.174800246 0.147716399
## YearRemodAdd 0.4390464839 0.183330612 -0.040580928 -0.149597521 0.112581318
## MasVnrArea 0.2757298473 0.200802357 0.102417471 -0.037364011 0.247906285
## BsmtFinSF1 0.0585431369 0.004262424 -0.107354677 -0.081006851 0.260010920
## BsmtFinSF2 -0.0764438620 -0.032147837 -0.015728114 -0.040751236 0.046920709
## BsmtUnfSF 0.2888860555 -0.041117530 0.166643317 0.030085868 0.051574882
## TotalBsmtSF 0.3237224136 -0.048803739 0.050449956 -0.068900643 0.339519324
## X1stFlrSF 0.3806374950 -0.119915909 0.127400749 0.068100588 0.410531085
## X2ndFlrSF 0.4213779829 0.609707300 0.502900613 0.059305753 0.194560892
## LowQualFinSF -0.0007095096 -0.027080049 0.105606569 0.007521744 -0.021272143
## GrLivArea 0.6300116463 0.415771636 0.521269511 0.100063165 0.461679134
## BsmtFullBath -0.0645120486 -0.030904959 -0.150672809 -0.041502546 0.137927708
## BsmtHalfBath -0.0545358120 -0.012339900 0.046518848 -0.037944350 0.028975587
## FullBath 1.0000000000 0.136380589 0.363251983 0.133115214 0.243670503
## HalfBath 0.1363805887 1.000000000 0.226651484 -0.068262549 0.203648508
## BedroomAbvGr 0.3632519830 0.226651484 1.000000000 0.198596758 0.107569681
## KitchenAbvGr 0.1331152142 -0.068262549 0.198596758 1.000000000 -0.123936235
## Fireplaces 0.2436705031 0.203648508 0.107569681 -0.123936235 1.000000000
## GarageArea 0.4056562085 0.163549364 0.065252530 -0.064433047 0.269141238
## WoodDeckSF 0.1877032138 0.108080303 0.046853773 -0.090130273 0.200018796
## OpenPorchSF 0.2599774255 0.199740148 0.093809572 -0.070090610 0.169405327
## EnclosedPorch -0.1150929635 -0.095316526 0.041570435 0.037312385 -0.024821869
## X3SsnPorch 0.0353530166 -0.004972488 -0.024477796 -0.024600359 0.011257239
## ScreenPorch -0.0081060933 0.072425845 0.044299691 -0.051613366 0.184530270
## PoolArea 0.0496038256 0.022381498 0.070702584 -0.014525116 0.095073522
## MiscVal -0.0142898450 0.001290145 0.007766972 0.062340724 0.001408605
## MoSold 0.0558721290 -0.009049888 0.046543860 0.026588907 0.046357102
## YrSold -0.0196688407 -0.010268669 -0.036013893 0.031687207 -0.024095565
## SalePrice 0.5606637627 0.284107676 0.168213154 -0.135907371 0.466928837
## GarageArea WoodDeckSF OpenPorchSF EnclosedPorch X3SsnPorch
## MSSubClass -0.09867154 -0.012579358 -0.006100121 -0.012036622 -0.0438245492
## LotFrontage 0.32366290 0.077106221 0.137454496 0.009790061 0.0623354713
## LotArea 0.18040276 0.171697687 0.084773809 -0.018339734 0.0204228296
## OverallQual 0.56202176 0.238923392 0.308818823 -0.113936859 0.0303705671
## OverallCond -0.15152137 -0.003333699 -0.032588814 0.070356184 0.0255036600
## YearBuilt 0.47895382 0.224880142 0.188685840 -0.387267783 0.0313545131
## YearRemodAdd 0.37159981 0.205725920 0.226297633 -0.193919147 0.0452858098
## MasVnrArea 0.37256701 0.159349430 0.124965275 -0.109848652 0.0187948145
## BsmtFinSF1 0.29697039 0.204306145 0.111760613 -0.102303306 0.0264505062
## BsmtFinSF2 -0.01822659 0.067898326 0.003092562 0.036543339 -0.0299933980
## BsmtUnfSF 0.18330270 -0.005316424 0.129005415 -0.002537855 0.0207640057
## TotalBsmtSF 0.48666546 0.232018609 0.247263746 -0.095477737 0.0373837273
## X1stFlrSF 0.48978165 0.235458623 0.211671225 -0.065291701 0.0561043745
## X2ndFlrSF 0.13834696 0.092165418 0.208026063 0.061988691 -0.0243576484
## LowQualFinSF -0.06760141 -0.025443648 0.018251039 0.061081238 -0.0042956104
## GrLivArea 0.46899748 0.247432821 0.330223962 0.009113210 0.0206431897
## BsmtFullBath 0.17918948 0.175315190 0.067341461 -0.049910649 -0.0001060915
## BsmtHalfBath -0.02453558 0.040161223 -0.025323758 -0.008555334 0.0351136309
## FullBath 0.40565621 0.187703214 0.259977425 -0.115092963 0.0353530166
## HalfBath 0.16354936 0.108080303 0.199740148 -0.095316526 -0.0049724884
## BedroomAbvGr 0.06525253 0.046853773 0.093809572 0.041570435 -0.0244777964
## KitchenAbvGr -0.06443305 -0.090130273 -0.070090610 0.037312385 -0.0246003587
## Fireplaces 0.26914124 0.200018796 0.169405327 -0.024821869 0.0112572390
## GarageArea 1.00000000 0.224666307 0.241434672 -0.121776720 0.0350867002
## WoodDeckSF 0.22466631 1.000000000 0.058660609 -0.125988888 -0.0327706336
## OpenPorchSF 0.24143467 0.058660609 1.000000000 -0.093079318 -0.0058424993
## EnclosedPorch -0.12177672 -0.125988888 -0.093079318 1.000000000 -0.0373052828
## X3SsnPorch 0.03508670 -0.032770634 -0.005842499 -0.037305283 1.0000000000
## ScreenPorch 0.05141176 -0.074181351 0.074303944 -0.082864245 -0.0314358470
## PoolArea 0.06104727 0.073378207 0.060762111 0.054202562 -0.0079915489
## MiscVal -0.02739991 -0.009551228 -0.018583739 0.018360600 0.0003539653
## MoSold 0.02797380 0.021011044 0.071254885 -0.028887266 0.0294737952
## YrSold -0.02737794 0.022270451 -0.057619360 -0.009915937 0.0186449254
## SalePrice 0.62343144 0.324413445 0.315856227 -0.128577958 0.0445836653
## ScreenPorch PoolArea MiscVal MoSold YrSold
## MSSubClass -0.026030177 0.008282708 -0.0076832913 -0.013584643 -0.021407038
## LotFrontage 0.037684305 0.180867647 0.0011682749 0.010157807 0.006768250
## LotArea 0.043160378 0.077672392 0.0380676920 0.001204988 -0.014261407
## OverallQual 0.064886360 0.065165844 -0.0314062105 0.070815172 -0.027346708
## OverallCond 0.054810529 -0.001984942 0.0687768061 -0.003510839 0.043949746
## YearBuilt -0.050364435 0.004949728 -0.0343831387 0.012398471 -0.013617680
## YearRemodAdd -0.038740011 0.005829372 -0.0102862488 0.021490002 0.035743247
## MasVnrArea 0.061453179 0.011722909 -0.0298147620 -0.005939579 -0.008183639
## BsmtFinSF1 0.062020623 0.140491286 0.0035714735 -0.015726948 0.014358922
## BsmtFinSF2 0.088871251 0.041709055 0.0049397812 -0.015210738 0.031705637
## BsmtUnfSF -0.012579273 -0.035092241 -0.0238366451 0.034888443 -0.041258195
## TotalBsmtSF 0.084488986 0.126053132 -0.0184789224 0.013196179 -0.014968648
## X1stFlrSF 0.088758073 0.131524976 -0.0210957195 0.031371560 -0.013603771
## X2ndFlrSF 0.040606448 0.081486878 0.0161968746 0.035164427 -0.028699914
## LowQualFinSF 0.026799413 0.062157372 -0.0037928708 -0.022173961 -0.028920880
## GrLivArea 0.101510396 0.170205336 -0.0024156396 0.050239681 -0.036525820
## BsmtFullBath 0.023147726 0.067615556 -0.0230470249 -0.025360894 0.067049138
## BsmtHalfBath 0.032121407 0.020024630 -0.0073665245 0.032872705 -0.046523882
## FullBath -0.008106093 0.049603826 -0.0142898450 0.055872129 -0.019668841
## HalfBath 0.072425845 0.022381498 0.0012901448 -0.009049888 -0.010268669
## BedroomAbvGr 0.044299691 0.070702584 0.0077669720 0.046543860 -0.036013893
## KitchenAbvGr -0.051613366 -0.014525116 0.0623407240 0.026588907 0.031687207
## Fireplaces 0.184530270 0.095073522 0.0014086054 0.046357102 -0.024095565
## GarageArea 0.051411762 0.061047272 -0.0273999144 0.027973800 -0.027377940
## WoodDeckSF -0.074181351 0.073378207 -0.0095512282 0.021011044 0.022270451
## OpenPorchSF 0.074303944 0.060762111 -0.0185837390 0.071254885 -0.057619360
## EnclosedPorch -0.082864245 0.054202562 0.0183606001 -0.028887266 -0.009915937
## X3SsnPorch -0.031435847 -0.007991549 0.0003539653 0.029473795 0.018644925
## ScreenPorch 1.000000000 0.051307395 0.0319457608 0.023216992 0.010694106
## PoolArea 0.051307395 1.000000000 0.0296686509 -0.033736640 -0.059688932
## MiscVal 0.031945761 0.029668651 1.0000000000 -0.006494550 0.004906262
## MoSold 0.023216992 -0.033736640 -0.0064945502 1.000000000 -0.145721413
## YrSold 0.010694106 -0.059688932 0.0049062625 -0.145721413 1.000000000
## SalePrice 0.111446571 0.092403549 -0.0211895796 0.046432245 -0.028922585
## SalePrice
## MSSubClass -0.08428414
## LotFrontage 0.33490085
## LotArea 0.26384335
## OverallQual 0.79098160
## OverallCond -0.07785589
## YearBuilt 0.52289733
## YearRemodAdd 0.50710097
## MasVnrArea 0.47524132
## BsmtFinSF1 0.38641981
## BsmtFinSF2 -0.01137812
## BsmtUnfSF 0.21447911
## TotalBsmtSF 0.61358055
## X1stFlrSF 0.60585218
## X2ndFlrSF 0.31933380
## LowQualFinSF -0.02560613
## GrLivArea 0.70862448
## BsmtFullBath 0.22712223
## BsmtHalfBath -0.01684415
## FullBath 0.56066376
## HalfBath 0.28410768
## BedroomAbvGr 0.16821315
## KitchenAbvGr -0.13590737
## Fireplaces 0.46692884
## GarageArea 0.62343144
## WoodDeckSF 0.32441344
## OpenPorchSF 0.31585623
## EnclosedPorch -0.12857796
## X3SsnPorch 0.04458367
## ScreenPorch 0.11144657
## PoolArea 0.09240355
## MiscVal -0.02118958
## MoSold 0.04643225
## YrSold -0.02892259
## SalePrice 1.00000000
## Warning: `aes_string()` was deprecated in ggplot2 3.0.0.
## ℹ Please use tidy evaluation idioms with `aes()`.
## ℹ See also `vignette("ggplot2-in-packages")` for more information.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
Split the numerical variables into features and the target variable.
X_num <- subset(numerical_data, select = -c(SalePrice))
y <- subset(numerical_data, select = c(SalePrice))$SalePrice
Log Transformation for numerical features.
skewness_before <- sapply(X_num, function(x) {
e1071::skewness(x)
})
X_num_skewed <- skewness_before[abs(skewness_before) > 0.75]
for (x in names(X_num_skewed)) {
# bc <- BoxCoxTrans(X_num[[x]], lambda = 0.15)
# X_num[[x]] <- predict(bc, X_num[[x]])
X_num[[x]] <- log1p(X_num[[x]])
}
skewness_after <- sapply(X_num, function(x) {
e1071::skewness(x)
})
data.frame(skewness_before, skewness_after)
## skewness_before skewness_after
## MSSubClass 1.40476562 0.248485705
## LotFrontage 2.38005182 -0.890144743
## LotArea 12.18261502 -0.137122272
## OverallQual 0.21649836 0.216498356
## OverallCond 0.69164401 0.691644012
## YearBuilt -0.61220121 -0.612201211
## YearRemodAdd -0.50252776 -0.502527759
## MasVnrArea 2.67091482 0.480131975
## BsmtFinSF1 1.68204129 -0.617139693
## BsmtFinSF2 4.24652141 2.518510460
## BsmtUnfSF 0.91837835 -2.182012816
## TotalBsmtSF 1.52112395 -5.144083032
## X1stFlrSF 1.37392896 0.079949547
## X2ndFlrSF 0.81135997 0.289048572
## LowQualFinSF 8.99283329 7.444994097
## GrLivArea 1.36375364 -0.006127642
## BsmtFullBath 0.59484237 0.594842375
## BsmtHalfBath 4.09497490 3.924985577
## FullBath 0.03648647 0.036486466
## HalfBath 0.67450925 0.674509252
## BedroomAbvGr 0.21135511 0.211355110
## KitchenAbvGr 4.47917826 3.861466484
## Fireplaces 0.64823107 0.648231070
## GarageArea 0.17961125 0.179611252
## WoodDeckSF 1.53820999 0.153221248
## OpenPorchSF 2.35948572 -0.023349240
## EnclosedPorch 3.08352575 2.107936639
## X3SsnPorch 10.28317840 7.719088344
## ScreenPorch 4.11374731 3.143938375
## PoolArea 14.79791829 14.333602712
## MiscVal 24.42652237 5.160083979
## MoSold 0.21161746 0.211617459
## YrSold 0.09607079 0.096070792
Log Transformation for the target variable.
skewness_before <- e1071::skewness(y)
y_t <- log1p(y)
skewness_after <- e1071::skewness(y_t)
sprintf("Before: %f, After: %f", skewness_before, skewness_after)
## [1] "Before: 1.879009, After: 0.121097"
Scaling
X_num <- scale(X_num)
One-Hot Encoding for categorical variables.
encoder <- dummyVars(~., data = categorical_data)
X_cat <- predict(encoder, newdata = categorical_data)
X_cat <- data.frame(X_cat)
Split into train and validation and test sets.
X <- cbind(X_cat, X_num)
train_idx <- createDataPartition(y_t, p = 0.7, list = F)
X_train <- X[train_idx, ]
y_train <- y_t[train_idx]
X_test <- X[-train_idx, ]
y_test <- y_t[-train_idx]
train_val_idx <- createDataPartition(y_train, p = 0.8, list = FALSE)
X_train <- X_train[train_val_idx, ]
y_train <- y_train[train_val_idx]
X_val <- X_train[-train_val_idx, ]
y_val <- y_train[-train_val_idx]
X_train_val <- rbind(X_train, X_val)
y_train_val <- c(y_train, y_val)
dim(X)
## [1] 1460 251
length(y)
## [1] 1460
dim(X_train)
## [1] 821 251
length(y_train)
## [1] 821
dim(X_val)
## [1] 170 251
length(y_val)
## [1] 170
names(X)
## [1] "MSZoningC..all." "MSZoningFV" "MSZoningRH"
## [4] "MSZoningRL" "MSZoningRM" "StreetGrvl"
## [7] "StreetPave" "LotShapeIR1" "LotShapeIR2"
## [10] "LotShapeIR3" "LotShapeReg" "LandContourBnk"
## [13] "LandContourHLS" "LandContourLow" "LandContourLvl"
## [16] "UtilitiesAllPub" "UtilitiesNoSeWa" "LotConfigCorner"
## [19] "LotConfigCulDSac" "LotConfigFR2" "LotConfigFR3"
## [22] "LotConfigInside" "LandSlopeGtl" "LandSlopeMod"
## [25] "LandSlopeSev" "NeighborhoodBlmngtn" "NeighborhoodBlueste"
## [28] "NeighborhoodBrDale" "NeighborhoodBrkSide" "NeighborhoodClearCr"
## [31] "NeighborhoodCollgCr" "NeighborhoodCrawfor" "NeighborhoodEdwards"
## [34] "NeighborhoodGilbert" "NeighborhoodIDOTRR" "NeighborhoodMeadowV"
## [37] "NeighborhoodMitchel" "NeighborhoodNAmes" "NeighborhoodNoRidge"
## [40] "NeighborhoodNPkVill" "NeighborhoodNridgHt" "NeighborhoodNWAmes"
## [43] "NeighborhoodOldTown" "NeighborhoodSawyer" "NeighborhoodSawyerW"
## [46] "NeighborhoodSomerst" "NeighborhoodStoneBr" "NeighborhoodSWISU"
## [49] "NeighborhoodTimber" "NeighborhoodVeenker" "Condition1Artery"
## [52] "Condition1Feedr" "Condition1Norm" "Condition1PosA"
## [55] "Condition1PosN" "Condition1RRAe" "Condition1RRAn"
## [58] "Condition1RRNe" "Condition1RRNn" "Condition2Artery"
## [61] "Condition2Feedr" "Condition2Norm" "Condition2PosA"
## [64] "Condition2PosN" "Condition2RRAe" "Condition2RRAn"
## [67] "Condition2RRNn" "BldgType1Fam" "BldgType2fmCon"
## [70] "BldgTypeDuplex" "BldgTypeTwnhs" "BldgTypeTwnhsE"
## [73] "HouseStyle1.5Fin" "HouseStyle1.5Unf" "HouseStyle1Story"
## [76] "HouseStyle2.5Fin" "HouseStyle2.5Unf" "HouseStyle2Story"
## [79] "HouseStyleSFoyer" "HouseStyleSLvl" "RoofStyleFlat"
## [82] "RoofStyleGable" "RoofStyleGambrel" "RoofStyleHip"
## [85] "RoofStyleMansard" "RoofStyleShed" "RoofMatlClyTile"
## [88] "RoofMatlCompShg" "RoofMatlMembran" "RoofMatlMetal"
## [91] "RoofMatlRoll" "RoofMatlTar.Grv" "RoofMatlWdShake"
## [94] "RoofMatlWdShngl" "Exterior1stAsbShng" "Exterior1stAsphShn"
## [97] "Exterior1stBrkComm" "Exterior1stBrkFace" "Exterior1stCBlock"
## [100] "Exterior1stCemntBd" "Exterior1stHdBoard" "Exterior1stImStucc"
## [103] "Exterior1stMetalSd" "Exterior1stPlywood" "Exterior1stStone"
## [106] "Exterior1stStucco" "Exterior1stVinylSd" "Exterior1stWd.Sdng"
## [109] "Exterior1stWdShing" "MasVnrTypeBrkCmn" "MasVnrTypeBrkFace"
## [112] "MasVnrTypeNone" "MasVnrTypeStone" "ExterQualEx"
## [115] "ExterQualFa" "ExterQualGd" "ExterQualTA"
## [118] "ExterCondEx" "ExterCondFa" "ExterCondGd"
## [121] "ExterCondPo" "ExterCondTA" "FoundationBrkTil"
## [124] "FoundationCBlock" "FoundationPConc" "FoundationSlab"
## [127] "FoundationStone" "FoundationWood" "BsmtQualEx"
## [130] "BsmtQualFa" "BsmtQualGd" "BsmtQualTA"
## [133] "BsmtCondFa" "BsmtCondGd" "BsmtCondPo"
## [136] "BsmtCondTA" "BsmtExposureAv" "BsmtExposureGd"
## [139] "BsmtExposureMn" "BsmtExposureNo" "BsmtFinType1ALQ"
## [142] "BsmtFinType1BLQ" "BsmtFinType1GLQ" "BsmtFinType1LwQ"
## [145] "BsmtFinType1Rec" "BsmtFinType1Unf" "BsmtFinType2ALQ"
## [148] "BsmtFinType2BLQ" "BsmtFinType2GLQ" "BsmtFinType2LwQ"
## [151] "BsmtFinType2Rec" "BsmtFinType2Unf" "HeatingFloor"
## [154] "HeatingGasA" "HeatingGasW" "HeatingGrav"
## [157] "HeatingOthW" "HeatingWall" "HeatingQCEx"
## [160] "HeatingQCFa" "HeatingQCGd" "HeatingQCPo"
## [163] "HeatingQCTA" "CentralAirN" "CentralAirY"
## [166] "ElectricalFuseA" "ElectricalFuseF" "ElectricalFuseP"
## [169] "ElectricalMix" "ElectricalSBrkr" "KitchenQualEx"
## [172] "KitchenQualFa" "KitchenQualGd" "KitchenQualTA"
## [175] "FunctionalMaj1" "FunctionalMaj2" "FunctionalMin1"
## [178] "FunctionalMin2" "FunctionalMod" "FunctionalSev"
## [181] "FunctionalTyp" "GarageType2Types" "GarageTypeAttchd"
## [184] "GarageTypeBasment" "GarageTypeBuiltIn" "GarageTypeCarPort"
## [187] "GarageTypeDetchd" "GarageFinishFin" "GarageFinishRFn"
## [190] "GarageFinishUnf" "GarageQualEx" "GarageQualFa"
## [193] "GarageQualGd" "GarageQualPo" "GarageQualTA"
## [196] "GarageCondEx" "GarageCondFa" "GarageCondGd"
## [199] "GarageCondPo" "GarageCondTA" "PavedDriveN"
## [202] "PavedDriveP" "PavedDriveY" "SaleTypeCOD"
## [205] "SaleTypeCon" "SaleTypeConLD" "SaleTypeConLI"
## [208] "SaleTypeConLw" "SaleTypeCWD" "SaleTypeNew"
## [211] "SaleTypeOth" "SaleTypeWD" "SaleConditionAbnorml"
## [214] "SaleConditionAdjLand" "SaleConditionAlloca" "SaleConditionFamily"
## [217] "SaleConditionNormal" "SaleConditionPartial" "MSSubClass"
## [220] "LotFrontage" "LotArea" "OverallQual"
## [223] "OverallCond" "YearBuilt" "YearRemodAdd"
## [226] "MasVnrArea" "BsmtFinSF1" "BsmtFinSF2"
## [229] "BsmtUnfSF" "TotalBsmtSF" "X1stFlrSF"
## [232] "X2ndFlrSF" "LowQualFinSF" "GrLivArea"
## [235] "BsmtFullBath" "BsmtHalfBath" "FullBath"
## [238] "HalfBath" "BedroomAbvGr" "KitchenAbvGr"
## [241] "Fireplaces" "GarageArea" "WoodDeckSF"
## [244] "OpenPorchSF" "EnclosedPorch" "X3SsnPorch"
## [247] "ScreenPorch" "PoolArea" "MiscVal"
## [250] "MoSold" "YrSold"
# Load the necessary libraries
library(stats)
library(factoextra)
# Perform PCA on the data matrix
pca_result <- prcomp(X)
# Extract the principal components
principal_components <- as.data.frame(pca_result$x)
# Determine the optimal number of clusters using the elbow method
fviz_nbclust(principal_components, kmeans, method = "wss")
k <- 3
# Perform K-means clustering on the principal components
kmeans_result <- kmeans(principal_components, centers = k)
cluster_assignments <- kmeans_result$cluster
print(cluster_assignments)
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
## 3 2 3 2 3 2 3 3 2 2 2 3 2 3 2 2
## 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
## 2 2 2 2 3 2 3 1 2 3 2 3 2 2 2 2
## 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
## 3 2 3 3 3 2 2 2 2 2 2 2 2 3 3 3
## 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
## 2 2 3 2 2 3 2 2 1 3 3 2 3 2 1 2
## 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
## 3 3 3 3 2 2 3 2 3 2 2 1 2 2 2 2
## 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
## 3 1 3 2 3 3 3 1 2 2 2 2 2 2 3 3
## 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
## 3 2 2 2 3 3 2 3 2 3 2 2 2 3 2 3
## 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
## 3 3 2 1 2 2 3 3 2 2 2 1 2 2 1 2
## 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
## 2 2 3 3 2 3 2 3 2 3 3 3 2 3 2 3
## 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
## 2 1 2 3 2 2 2 3 3 2 2 2 2 3 3 3
## 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
## 2 3 3 2 2 2 2 3 3 3 2 3 1 2 3 2
## 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
## 3 2 3 2 1 2 2 3 2 3 3 2 2 1 3 2
## 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
## 3 1 2 1 3 3 2 3 2 2 2 1 2 3 2 2
## 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
## 3 2 2 3 3 2 2 2 3 2 3 1 3 3 3 2
## 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
## 3 1 3 1 2 1 2 3 1 2 3 1 3 3 3 2
## 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
## 3 2 2 2 3 3 2 2 3 3 2 1 3 2 2 3
## 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
## 3 3 3 2 2 3 2 2 2 3 3 2 2 2 3 2
## 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
## 3 2 2 2 3 2 3 3 3 3 1 3 1 1 2 2
## 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
## 2 2 3 2 2 3 2 2 2 3 2 2 2 3 3 2
## 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
## 3 3 3 2 2 3 3 2 2 3 2 3 3 3 3 3
## 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
## 3 3 3 2 3 2 1 2 2 2 2 2 3 1 3 3
## 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
## 3 3 3 2 3 2 2 3 1 2 2 2 1 3 3 3
## 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
## 2 2 2 3 3 1 2 3 2 2 3 1 3 2 3 2
## 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
## 2 2 3 2 1 2 3 2 2 3 3 3 2 3 3 2
## 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
## 3 1 2 2 3 3 2 3 2 2 2 2 2 2 2 3
## 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
## 1 3 2 3 3 2 2 2 3 3 2 2 3 2 3 3
## 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
## 2 2 2 2 1 3 2 3 2 2 3 2 3 2 1 2
## 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
## 1 3 1 3 2 2 2 2 3 2 2 1 3 2 3 3
## 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
## 2 2 2 3 3 3 2 2 2 3 2 2 3 2 2 2
## 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
## 2 1 2 2 3 3 1 3 1 3 1 2 3 3 3 2
## 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
## 3 3 2 1 2 2 2 2 2 1 1 2 3 2 2 2
## 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
## 3 2 2 2 1 3 2 3 1 2 3 3 2 2 2 1
## 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
## 2 2 2 3 3 3 3 2 2 2 2 3 3 3 2 3
## 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
## 2 3 3 2 2 2 3 2 3 2 2 3 3 3 3 1
## 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
## 3 3 2 2 2 3 1 2 3 2 3 2 2 2 3 1
## 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
## 2 2 2 2 3 2 3 3 3 2 2 2 3 3 2 2
## 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
## 2 2 1 2 2 3 2 3 2 3 2 2 2 2 3 3
## 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
## 2 1 2 3 2 1 2 1 3 2 3 1 3 3 2 2
## 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
## 3 2 3 2 3 2 1 2 3 2 3 3 2 3 2 1
## 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
## 3 2 2 2 3 2 2 1 3 2 2 2 2 2 2 1
## 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
## 3 3 3 2 3 2 2 2 2 1 3 2 3 2 3 1
## 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
## 2 2 2 2 3 3 2 2 3 3 3 3 2 2 3 2
## 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
## 2 3 2 1 2 2 3 2 1 2 1 3 3 3 3 1
## 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
## 3 3 1 3 3 2 2 2 2 2 2 1 3 2 3 2
## 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
## 3 2 3 1 3 2 2 2 1 2 3 2 2 2 3 2
## 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
## 3 1 2 2 3 2 3 3 2 2 1 3 3 2 2 2
## 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
## 2 3 2 3 2 2 3 2 1 3 3 2 3 2 2 3
## 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
## 3 3 2 1 3 3 1 3 2 2 3 3 1 3 3 2
## 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
## 3 3 2 2 2 2 3 1 3 2 2 2 3 3 3 1
## 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
## 2 2 2 3 2 3 1 2 3 3 3 3 2 2 3 2
## 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
## 3 2 3 3 2 3 2 3 2 2 2 1 2 2 2 3
## 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
## 2 3 2 1 3 2 3 2 3 3 2 3 2 1 2 1
## 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
## 3 2 2 2 2 1 2 2 2 2 2 2 2 2 3 2
## 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
## 3 3 1 1 2 2 2 2 2 3 2 3 2 2 2 2
## 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
## 3 2 3 2 2 3 2 3 2 2 2 3 2 3 2 2
## 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
## 2 3 3 2 2 1 3 2 3 2 2 3 2 2 2 2
## 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
## 2 2 3 2 2 2 3 3 2 2 3 2 2 3 2 2
## 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
## 2 2 1 1 2 2 3 2 3 2 3 1 3 2 3 3
## 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
## 3 3 3 2 3 3 3 2 3 3 3 2 2 3 2 2
## 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
## 2 2 2 3 3 2 2 2 2 3 1 2 1 2 3 1
## 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
## 2 3 1 3 3 3 2 2 2 2 2 1 2 3 2 1
## 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
## 2 1 2 2 2 3 1 3 2 2 2 3 3 3 3 2
## 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
## 3 3 3 2 2 2 2 3 2 2 3 2 1 2 2 1
## 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
## 3 2 2 2 2 2 2 3 3 1 3 1 3 3 2 1
## 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
## 3 2 2 3 2 1 2 3 3 3 2 2 3 3 1 1
## 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
## 2 2 1 3 3 2 3 2 2 2 3 3 2 2 3 2
## 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
## 1 3 3 2 1 2 2 2 2 3 3 2 1 2 2 2
## 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
## 2 2 3 2 2 2 1 2 3 2 3 2 3 2 1 3
## 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
## 1 1 2 1 2 2 2 3 2 1 2 3 2 2 2 2
## 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
## 1 3 3 3 3 3 3 3 2 2 2 3 3 2 2 2
## 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
## 2 3 2 2 3 2 1 3 3 1 2 2 2 3 3 2
## 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
## 2 2 3 2 2 3 3 2 2 2 3 2 2 2 2 3
## 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
## 2 2 3 3 2 1 3 3 1 3 2 2 3 3 3 3
## 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
## 2 3 2 2 1 2 2 3 2 2 2 2 3 3 3 2
## 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
## 3 2 2 3 3 3 3 1 2 1 2 3 3 2 3 2
## 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
## 2 3 2 3 2 3 2 3 2 3 3 3 2 2 2 2
## 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
## 2 3 2 1 2 2 2 2 3 2 3 2 3 2 3 2
## 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
## 2 2 2 2 1 3 2 3 3 3 3 3 2 3 3 2
## 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
## 2 2 3 1 2 3 3 2 3 2 3 2 3 2 2 2
## 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
## 1 1 2 3 3 2 3 2 2 2 2 2 2 3 3 2
## 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
## 3 3 2 2 2 2 2 2 1 3 2 1 2 3 2 2
## 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
## 2 1 3 2 3 2 3 3 1 3 1 2 2 3 3 3
## 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
## 3 3 2 3 3 1 3 2 2 2 3 2 3 2 2 2
## 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
## 2 3 3 2 2 2 1 2 2 2 3 2 2 2 3 2
## 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
## 3 2 3 3 3 2 3 2 2 3 3 3 2 2 1 3
## 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
## 2 3 2 3 1 3 3 1 1 3 2 2 3 3 3 3
## 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
## 2 2 1 3 2 3 2 2 2 2 3 2 3 2 3 2
## 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
## 2 2 1 3 2 2 2 2 2 3 3 3 2 1 2 2
## 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
## 2 3 3 2 2 3 2 1 2 3 2 3 3 1 1 3
## 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
## 2 2 3 2 2 3 3 1 2 3 2 3 2 3 2 3
## 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
## 2 1 3 2 3 2 2 3 2 1 2 3 1 2 3 3
## 1457 1458 1459 1460
## 3 3 2 2
# Add the cluster assignments to the principal components data
principal_components$cluster <- as.factor(cluster_assignments)
ggplot(principal_components, aes(PC1, PC2, color = cluster)) +
geom_point() +
labs(x = "Principal Component 1", y = "Principal Component 2") +
scale_color_discrete(name = "Cluster") +
theme_minimal()
tsne <- Rtsne(X)
tsne_df <- data.frame(tsne)
dist_mat <- dist(tsne$Y, method = "euclidean")
hclust_avg <- hclust(dist_mat, method = "average")
dend <- as.dendrogram(hclust_avg)
plot(dend)
k = 15
cut_avg <- cutree(hclust_avg, k)
tsne_df$cluster <- cut_avg
getCentroid <- function(points) {
xy <- numeric(2)
xy[1] = mean(points[, 1])
xy[2] = mean(points[, 2])
return(xy)
}
centroids = matrix(0, k, 2)
for (i in unique(cut_avg)) centroids[i, ] <- getCentroid(tsne$Y[cut_avg == i,])
tsne_df
## N Y.1 Y.2 costs itercosts origD perplexity
## 1 1460 1.986541e+01 0.61696248 6.312128e-04 73.771148 50 30
## 2 1460 3.704116e+00 17.12829597 8.232540e-04 71.150987 50 30
## 3 1460 2.014823e+01 -0.70238402 8.511462e-04 71.034367 50 30
## 4 1460 -2.776097e+01 7.42146480 3.518235e-04 71.035404 50 30
## 5 1460 2.049439e+01 -2.68081918 5.377578e-04 71.037731 50 30
## 6 1460 8.551878e+00 -9.86640159 1.835220e-04 1.555216 50 30
## 7 1460 -1.365457e-01 -19.74222937 1.439053e-03 1.312321 50 30
## 8 1460 7.018594e+00 24.49087648 8.079059e-04 1.228241 50 30
## 9 1460 -2.974571e+01 -9.98391754 5.951550e-04 1.196858 50 30
## 10 1460 -3.572762e+00 -2.29372078 8.088329e-04 1.176920 50 30
## 11 1460 -8.876179e+00 5.88658564 1.742382e-03 1.164909 50 30
## 12 1460 2.327253e+01 -6.33412442 3.948003e-04 1.155632 50 30
## 13 1460 3.767144e+00 -0.01074932 8.627069e-04 1.148755 50 30
## 14 1460 -2.724445e+00 -27.21039124 5.896907e-04 1.143827 50 30
## 15 1460 -6.929143e+00 -2.70460989 9.837242e-04 1.139748 50 30
## 16 1460 -1.866745e+01 8.81821619 7.690628e-04 1.135437 50 30
## 17 1460 -5.033253e+00 19.69411388 1.129143e-03 1.131049 50 30
## 18 1460 -2.249028e+01 29.56426190 2.261055e-04 1.127886 50 30
## 19 1460 -1.260445e+01 -11.32737087 1.099444e-03 1.125117 50 30
## 20 1460 -1.189045e+01 4.14226659 1.052478e-03 1.123256 50 30
## 21 1460 2.828610e+01 -3.24507358 4.173264e-04 73.771148 50 30
## 22 1460 -2.255078e+01 11.97767458 7.400350e-04 71.150987 50 30
## 23 1460 -4.039918e+00 -27.97222117 7.656355e-04 71.034367 50 30
## 24 1460 7.770521e+00 -5.53522565 1.558227e-03 71.035404 50 30
## 25 1460 7.334040e-01 10.27577087 7.199786e-04 71.037731 50 30
## 26 1460 -2.375303e+00 -25.78658325 4.094778e-04 1.555216 50 30
## 27 1460 2.885874e+00 19.20802716 4.868814e-04 1.312321 50 30
## 28 1460 -3.038099e-01 -21.78084086 1.050677e-03 1.228241 50 30
## 29 1460 -4.256321e+00 -5.49863836 5.379093e-04 1.196858 50 30
## 30 1460 -1.994594e+01 13.78177044 2.389868e-04 1.176920 50 30
## 31 1460 -2.439541e+01 13.23623861 9.066452e-04 1.164909 50 30
## 32 1460 -1.414430e+01 -5.07683992 1.486820e-03 1.155632 50 30
## 33 1460 -8.564948e+00 -25.51218076 2.359553e-04 1.148755 50 30
## 34 1460 4.226560e+00 14.97345959 5.513542e-04 1.143827 50 30
## 35 1460 1.025058e+01 -22.37488610 6.141026e-04 1.139748 50 30
## 36 1460 2.780281e+01 -2.87848877 4.092666e-04 1.135437 50 30
## 37 1460 -1.511928e+01 -12.21702278 1.154713e-03 1.131049 50 30
## 38 1460 4.070995e+00 16.12912804 8.755048e-04 1.127886 50 30
## 39 1460 -8.898812e+00 9.37688585 8.266751e-04 1.125117 50 30
## 40 1460 -2.208428e+01 30.39641844 1.668854e-04 1.123256 50 30
## 41 1460 -8.200685e+00 -3.66998674 1.044667e-03 73.771148 50 30
## 42 1460 4.179280e+00 15.00092016 6.410947e-04 71.150987 50 30
## 43 1460 -2.915433e+00 5.21787108 7.706347e-04 71.034367 50 30
## 44 1460 -7.690188e-01 7.63334436 4.243941e-04 71.035404 50 30
## 45 1460 -1.810113e+00 8.53811196 1.030059e-03 71.037731 50 30
## 46 1460 9.933275e+00 -22.66429833 4.929111e-04 1.555216 50 30
## 47 1460 1.337784e+01 -14.37573786 7.182959e-04 1.312321 50 30
## 48 1460 -5.131762e+00 -24.05535921 4.866584e-04 1.228241 50 30
## 49 1460 -2.911821e+01 -11.21216077 2.437323e-04 1.196858 50 30
## 50 1460 -8.860755e+00 6.10262860 1.134323e-03 1.176920 50 30
## 51 1460 8.619451e+00 17.62880279 7.982909e-04 1.164909 50 30
## 52 1460 -3.615796e+01 6.94109880 6.071872e-04 1.155632 50 30
## 53 1460 4.220717e-01 5.80851697 3.188263e-04 1.148755 50 30
## 54 1460 1.335188e+01 -10.28527035 7.715632e-04 1.143827 50 30
## 55 1460 -1.307171e+01 1.08902214 9.764671e-04 1.139748 50 30
## 56 1460 7.070279e+00 -10.40681970 6.254991e-04 1.135437 50 30
## 57 1460 3.922133e+01 -1.67168525 3.399996e-04 1.131049 50 30
## 58 1460 2.877218e+01 3.83968560 5.696405e-04 1.127886 50 30
## 59 1460 2.759604e+01 -4.56450990 2.092763e-04 1.125117 50 30
## 60 1460 -9.355720e+00 5.14343379 8.723019e-04 1.123256 50 30
## 61 1460 -1.278215e+01 -11.46681586 6.454594e-04 73.771148 50 30
## 62 1460 -2.743416e+01 12.32781556 1.314707e-03 71.150987 50 30
## 63 1460 1.238512e+01 -23.13568151 6.718501e-04 71.034367 50 30
## 64 1460 -2.816901e+01 9.28321673 6.910749e-04 71.035404 50 30
## 65 1460 1.884554e+01 -0.62760277 5.203892e-04 71.037731 50 30
## 66 1460 2.767114e+01 -2.30007907 7.324863e-04 1.555216 50 30
## 67 1460 -1.358972e+00 -13.04916481 8.538453e-04 1.312321 50 30
## 68 1460 -1.854762e+00 -19.00474759 1.186887e-03 1.228241 50 30
## 69 1460 -1.600896e+01 6.76850500 6.052313e-04 1.196858 50 30
## 70 1460 -2.502587e+01 7.93620533 7.736814e-04 1.176920 50 30
## 71 1460 -1.760768e+00 -12.65743519 7.980831e-04 1.164909 50 30
## 72 1460 -9.611671e+00 7.21427195 1.164541e-03 1.155632 50 30
## 73 1460 1.958520e+01 13.47004709 6.768649e-04 1.148755 50 30
## 74 1460 -1.042616e+00 9.97945517 1.129621e-03 1.143827 50 30
## 75 1460 -2.902196e+01 -10.39267675 5.901708e-04 1.139748 50 30
## 76 1460 4.437559e+01 4.15370884 4.325591e-04 1.135437 50 30
## 77 1460 -1.192425e+01 5.83571674 9.663715e-04 1.131049 50 30
## 78 1460 -1.829393e+01 1.41226079 1.142798e-03 1.127886 50 30
## 79 1460 -2.469038e+01 -12.14785163 6.003784e-04 1.125117 50 30
## 80 1460 -2.658901e+01 11.18415777 9.079538e-04 1.123256 50 30
## 81 1460 1.698581e+01 13.79843493 1.214593e-03 73.771148 50 30
## 82 1460 2.024836e+01 -21.64242229 4.668457e-04 71.150987 50 30
## 83 1460 -3.664736e+00 -27.17467033 8.833755e-04 71.034367 50 30
## 84 1460 -1.109128e+01 -1.95825988 9.807902e-04 71.035404 50 30
## 85 1460 7.127931e+00 25.90282402 9.266649e-04 71.037731 50 30
## 86 1460 2.633685e+01 -2.03124625 3.126195e-04 1.555216 50 30
## 87 1460 2.485586e+01 5.75887278 4.349472e-04 1.312321 50 30
## 88 1460 3.718150e+01 -2.80876040 2.901393e-04 1.228241 50 30
## 89 1460 -3.632818e+01 5.76311003 1.928239e-04 1.196858 50 30
## 90 1460 -1.392597e+01 -9.45359175 1.032273e-03 1.176920 50 30
## 91 1460 -2.005805e+01 28.31187351 3.961537e-04 1.164909 50 30
## 92 1460 -1.005284e+01 -1.11494547 6.325959e-04 1.155632 50 30
## 93 1460 -1.595622e+01 13.01731213 9.136438e-04 1.148755 50 30
## 94 1460 -2.623611e+01 -10.26380918 4.114362e-04 1.143827 50 30
## 95 1460 1.895318e+01 3.19340075 6.777869e-04 1.139748 50 30
## 96 1460 6.654960e+00 26.11493597 7.113825e-04 1.135437 50 30
## 97 1460 -2.072006e+00 -20.42717900 7.832183e-04 1.131049 50 30
## 98 1460 -7.201559e+00 1.72107892 8.273412e-04 1.127886 50 30
## 99 1460 -7.281512e+00 19.28261324 5.517415e-04 1.125117 50 30
## 100 1460 -5.089245e+00 18.67278260 6.161473e-04 1.123256 50 30
## 101 1460 -2.206904e+00 -14.61161370 8.013740e-04 73.771148 50 30
## 102 1460 2.417159e+01 7.29329871 9.488142e-04 71.150987 50 30
## 103 1460 -2.167335e+01 31.11099711 2.304384e-04 71.034367 50 30
## 104 1460 -8.496256e+00 -25.64624591 6.008806e-04 71.035404 50 30
## 105 1460 -2.825285e+01 -3.21897823 1.290395e-03 71.037731 50 30
## 106 1460 2.726106e+01 -1.31048036 1.000007e-03 1.555216 50 30
## 107 1460 -7.863999e+00 20.67658224 6.287204e-04 1.312321 50 30
## 108 1460 -3.422086e+00 9.90921782 1.087887e-03 1.228241 50 30
## 109 1460 -2.716128e+01 13.13410608 2.685448e-04 1.196858 50 30
## 110 1460 -9.582727e+00 -6.82197574 8.370237e-04 1.176920 50 30
## 111 1460 -2.091008e+01 -0.58198317 1.098286e-03 1.164909 50 30
## 112 1460 2.131084e+01 5.70368050 5.420783e-04 1.155632 50 30
## 113 1460 1.608023e+01 -5.91052847 8.251326e-04 1.148755 50 30
## 114 1460 -5.012581e+00 -10.30130502 8.238789e-04 1.143827 50 30
## 115 1460 1.056112e+01 6.06373713 1.625292e-03 1.139748 50 30
## 116 1460 3.874242e+01 -0.42494905 3.841055e-04 1.135437 50 30
## 117 1460 3.738359e+00 19.86458682 6.418124e-04 1.131049 50 30
## 118 1460 -1.502649e+01 -12.00802221 7.869551e-04 1.127886 50 30
## 119 1460 1.830076e+01 -6.42559329 5.213700e-04 1.125117 50 30
## 120 1460 3.001868e+01 5.35248815 5.505252e-04 1.123256 50 30
## 121 1460 7.334809e+00 -9.44760832 2.572020e-04 73.771148 50 30
## 122 1460 -2.419105e+01 12.15461534 1.507383e-03 71.150987 50 30
## 123 1460 4.120086e+00 1.29424362 7.420127e-04 71.034367 50 30
## 124 1460 1.435726e+01 -20.62767390 1.845382e-03 71.035404 50 30
## 125 1460 -1.291203e+01 -5.19306719 1.013023e-03 71.037731 50 30
## 126 1460 -3.730329e+01 6.95943862 3.176853e-04 1.555216 50 30
## 127 1460 3.910732e+00 -5.78763390 1.441835e-03 1.312321 50 30
## 128 1460 -1.724765e+01 6.95094712 4.395826e-04 1.228241 50 30
## 129 1460 1.253096e+01 11.33471675 9.596910e-04 1.196858 50 30
## 130 1460 5.696393e+00 -10.81802535 3.825430e-04 1.176920 50 30
## 131 1460 1.417729e+01 10.37146970 6.913022e-04 1.164909 50 30
## 132 1460 1.967303e+01 -0.39855385 1.110492e-03 1.155632 50 30
## 133 1460 -8.342952e+00 7.89504759 1.121345e-03 1.148755 50 30
## 134 1460 -1.486188e+00 -18.24404505 7.998188e-04 1.143827 50 30
## 135 1460 -7.413830e+00 -9.15386728 1.674109e-03 1.139748 50 30
## 136 1460 -1.047453e+01 -5.64493515 1.159753e-03 1.135437 50 30
## 137 1460 -8.081743e+00 -3.61005849 1.182396e-03 1.131049 50 30
## 138 1460 -2.456443e+01 -13.37693959 2.252292e-04 1.127886 50 30
## 139 1460 2.135602e+01 -1.92788478 2.354585e-04 1.125117 50 30
## 140 1460 1.832442e+01 3.21088350 7.594926e-04 1.123256 50 30
## 141 1460 -1.116294e+01 2.83094711 8.652286e-04 73.771148 50 30
## 142 1460 -3.419359e+00 -17.64065061 2.881910e-04 71.150987 50 30
## 143 1460 -2.006844e+01 -0.36047702 6.720297e-04 71.034367 50 30
## 144 1460 -1.776241e+00 -18.61217454 1.288332e-03 71.035404 50 30
## 145 1460 -2.421249e+01 -14.06098377 5.177088e-04 71.037731 50 30
## 146 1460 3.894871e+01 -3.89623811 5.117821e-04 1.555216 50 30
## 147 1460 -1.476117e+01 8.19571503 5.807937e-04 1.312321 50 30
## 148 1460 2.482850e+01 7.02249565 1.524578e-03 1.228241 50 30
## 149 1460 -1.371421e+01 -9.16384488 8.562325e-04 1.196858 50 30
## 150 1460 -2.453902e+01 2.89759883 9.695830e-04 1.176920 50 30
## 151 1460 -9.652709e+00 4.12984066 1.941347e-04 1.164909 50 30
## 152 1460 1.791418e+00 -22.14558894 3.530796e-04 1.155632 50 30
## 153 1460 1.407980e+01 11.08180811 9.803545e-04 1.148755 50 30
## 154 1460 1.253750e+00 8.35831800 7.190795e-04 1.143827 50 30
## 155 1460 -2.301209e+01 12.74142416 2.433453e-04 1.139748 50 30
## 156 1460 -2.387960e+01 13.76582189 6.880175e-04 1.135437 50 30
## 157 1460 -2.002843e+01 28.06697168 2.501324e-04 1.131049 50 30
## 158 1460 2.683683e+01 0.17794690 4.286774e-04 1.127886 50 30
## 159 1460 2.155502e+01 2.16527546 2.605565e-04 1.125117 50 30
## 160 1460 8.540352e+00 -11.17741556 2.636143e-04 1.123256 50 30
## 161 1460 -1.233782e+01 -3.62170771 1.968736e-03 73.771148 50 30
## 162 1460 2.003961e+01 -5.98370886 2.111396e-04 71.150987 50 30
## 163 1460 -1.521346e+00 -23.37325815 6.587628e-04 71.034367 50 30
## 164 1460 -1.657966e+01 7.15239109 9.592530e-04 71.035404 50 30
## 165 1460 -2.864850e+01 13.63275457 4.503540e-04 71.037731 50 30
## 166 1460 -2.450512e+01 -10.01725614 1.395207e-03 1.555216 50 30
## 167 1460 5.046641e+00 4.98541434 4.769108e-04 1.312321 50 30
## 168 1460 2.160706e+01 -7.44705891 6.720856e-04 1.228241 50 30
## 169 1460 2.730815e+01 6.05147544 1.299810e-03 1.196858 50 30
## 170 1460 -3.488854e+00 -30.69427888 1.133689e-03 1.176920 50 30
## 171 1460 -3.746138e+01 6.41047834 4.294120e-04 1.164909 50 30
## 172 1460 -6.780054e+00 -5.52746480 6.532527e-04 1.155632 50 30
## 173 1460 1.249225e+01 3.03806671 1.219290e-03 1.148755 50 30
## 174 1460 1.338367e+00 3.37206759 1.775087e-03 1.143827 50 30
## 175 1460 -1.873476e+00 -10.12780175 5.285481e-04 1.139748 50 30
## 176 1460 -7.762656e+00 -10.55833510 1.127410e-03 1.135437 50 30
## 177 1460 1.115455e+01 14.98303092 9.340449e-04 1.131049 50 30
## 178 1460 -1.809355e+01 -0.58381055 1.105026e-03 1.127886 50 30
## 179 1460 3.874120e+00 -22.15806267 1.984772e-04 1.125117 50 30
## 180 1460 -2.040661e+01 11.79329995 1.437896e-03 1.123256 50 30
## 181 1460 3.763842e+01 -0.22600518 4.316873e-04 73.771148 50 30
## 182 1460 -2.645816e+01 7.07253522 1.343445e-03 71.150987 50 30
## 183 1460 -1.761788e+01 27.27155820 1.217026e-03 71.034367 50 30
## 184 1460 2.636693e+01 3.88424061 2.392966e-04 71.035404 50 30
## 185 1460 -2.129276e+01 8.06282418 5.930913e-04 71.037731 50 30
## 186 1460 -3.874935e+01 4.53579146 3.979569e-04 1.555216 50 30
## 187 1460 3.161236e-01 -0.98829493 1.867086e-03 1.312321 50 30
## 188 1460 -3.984815e+01 5.81149256 1.286645e-03 1.228241 50 30
## 189 1460 -9.896775e+00 24.14308233 1.161216e-03 1.196858 50 30
## 190 1460 1.307859e+01 -14.84867983 5.896989e-04 1.176920 50 30
## 191 1460 -6.591539e+00 25.64242072 1.471104e-03 1.164909 50 30
## 192 1460 1.341416e+01 8.34337781 1.024645e-03 1.155632 50 30
## 193 1460 -5.468078e+00 -19.30586063 8.806553e-04 1.148755 50 30
## 194 1460 3.895017e+01 -3.87377135 5.313662e-04 1.143827 50 30
## 195 1460 -1.051333e+01 5.50511152 1.027154e-03 1.139748 50 30
## 196 1460 4.075436e+01 3.02257519 6.662581e-04 1.135437 50 30
## 197 1460 2.967977e+00 -25.71216564 1.183563e-03 1.131049 50 30
## 198 1460 1.110633e+01 -3.71882649 3.790902e-04 1.127886 50 30
## 199 1460 -3.704875e+01 5.24339447 3.255766e-04 1.125117 50 30
## 200 1460 2.743008e+00 -24.79858432 9.546337e-04 1.123256 50 30
## 201 1460 -9.640526e+00 -24.97474731 8.821825e-04 73.771148 50 30
## 202 1460 4.248365e+00 18.41016734 4.925151e-04 71.150987 50 30
## 203 1460 -3.101506e+01 7.93297395 1.163894e-03 71.034367 50 30
## 204 1460 1.780886e+01 -18.95497608 2.328933e-04 71.035404 50 30
## 205 1460 -1.949140e+01 4.46974740 1.286041e-03 71.037731 50 30
## 206 1460 7.362171e+00 -10.63976968 3.871395e-04 1.555216 50 30
## 207 1460 -1.373118e+01 -4.95241686 6.854000e-04 1.312321 50 30
## 208 1460 -2.201276e-01 7.95152493 6.647683e-04 1.228241 50 30
## 209 1460 1.578498e+01 -5.01790732 1.408267e-03 1.196858 50 30
## 210 1460 -7.023498e+00 0.70510842 9.208801e-04 1.176920 50 30
## 211 1460 -1.779104e+01 14.57801538 1.713277e-03 1.164909 50 30
## 212 1460 -9.188847e+00 -25.06690982 1.150896e-03 1.155632 50 30
## 213 1460 1.846270e+01 2.64617451 2.761416e-04 1.148755 50 30
## 214 1460 2.237939e+00 17.82268464 7.811057e-04 1.143827 50 30
## 215 1460 6.521190e+00 26.08385185 1.111685e-03 1.139748 50 30
## 216 1460 3.525486e+00 16.26546783 9.143506e-04 1.135437 50 30
## 217 1460 -2.223517e+00 -18.41879649 8.424945e-04 1.131049 50 30
## 218 1460 -2.428900e+01 13.07340304 1.246090e-03 1.127886 50 30
## 219 1460 1.111586e+01 16.22585352 9.079080e-04 1.125117 50 30
## 220 1460 1.412602e+01 -24.86122246 2.808823e-04 1.123256 50 30
## 221 1460 -6.063724e+00 -24.94063000 3.288021e-04 73.771148 50 30
## 222 1460 2.752910e+01 4.99579331 3.875417e-04 71.150987 50 30
## 223 1460 1.828097e+01 7.20240975 4.307268e-04 71.034367 50 30
## 224 1460 -9.501102e-01 8.58703769 8.112615e-04 71.035404 50 30
## 225 1460 3.496019e+00 -20.96529877 3.828500e-04 71.037731 50 30
## 226 1460 4.196276e+01 1.05729372 2.046074e-04 1.555216 50 30
## 227 1460 2.214660e+01 -2.00043891 1.177225e-03 1.312321 50 30
## 228 1460 4.307925e+01 1.75334271 2.974175e-04 1.228241 50 30
## 229 1460 -1.103925e+01 2.88897156 1.060936e-03 1.196858 50 30
## 230 1460 1.416413e+01 -23.39942158 5.074691e-04 1.176920 50 30
## 231 1460 -3.476474e+00 2.80865150 1.186662e-03 1.164909 50 30
## 232 1460 1.776762e+01 -3.39585742 2.535677e-04 1.155632 50 30
## 233 1460 4.264275e+01 0.82268140 9.023346e-05 1.148755 50 30
## 234 1460 5.968135e-02 6.27103750 5.685036e-04 1.143827 50 30
## 235 1460 1.841465e+01 0.18477361 7.402057e-04 1.139748 50 30
## 236 1460 4.321908e+01 1.59967163 1.083273e-04 1.135437 50 30
## 237 1460 -6.058450e+00 -26.92288008 1.294523e-03 1.131049 50 30
## 238 1460 8.216382e+00 -10.76234596 3.688609e-04 1.127886 50 30
## 239 1460 -1.841806e+00 -28.15887486 2.470247e-04 1.125117 50 30
## 240 1460 -1.989808e+01 3.85218578 6.982344e-04 1.123256 50 30
## 241 1460 -3.216189e+00 -19.10622698 6.389683e-04 73.771148 50 30
## 242 1460 -1.336239e+01 9.65060629 7.113466e-04 71.150987 50 30
## 243 1460 -2.405684e+01 12.35857862 6.312351e-04 71.034367 50 30
## 244 1460 2.756287e+01 10.09057830 1.166346e-03 71.035404 50 30
## 245 1460 1.953288e+01 1.85363919 3.834696e-04 71.037731 50 30
## 246 1460 5.247188e+00 16.65974244 9.484306e-04 1.555216 50 30
## 247 1460 -2.884705e+01 -9.66111559 6.177633e-04 1.312321 50 30
## 248 1460 -1.345978e+01 -0.85197958 1.291728e-03 1.228241 50 30
## 249 1460 2.627084e+01 2.17484886 1.263170e-03 1.196858 50 30
## 250 1460 4.270069e+00 22.73175640 5.710435e-04 1.176920 50 30
## 251 1460 -4.911740e+00 18.12520514 5.284618e-04 1.164909 50 30
## 252 1460 9.140468e+00 -17.23282402 6.228260e-04 1.155632 50 30
## 253 1460 2.715623e+01 4.74012911 5.467972e-04 1.148755 50 30
## 254 1460 4.182146e+00 19.25998391 5.897637e-04 1.143827 50 30
## 255 1460 -6.740981e+00 3.38807140 7.577568e-04 1.139748 50 30
## 256 1460 2.557146e+01 -0.36446343 5.428444e-04 1.135437 50 30
## 257 1460 2.362477e+01 3.29990592 9.226400e-04 1.131049 50 30
## 258 1460 -2.048770e+00 -17.82706534 8.149137e-04 1.127886 50 30
## 259 1460 8.122014e+00 -10.93125464 6.619612e-04 1.125117 50 30
## 260 1460 -2.005763e+01 28.21633420 1.468647e-04 1.123256 50 30
## 261 1460 -1.313876e+00 3.56611385 6.292153e-04 73.771148 50 30
## 262 1460 2.745715e+01 -3.82669350 4.917907e-04 71.150987 50 30
## 263 1460 5.472324e-01 -4.56412587 1.021054e-03 71.034367 50 30
## 264 1460 -3.790023e+01 7.02648986 3.503606e-04 71.035404 50 30
## 265 1460 -1.627125e+01 8.62861933 3.791751e-04 71.037731 50 30
## 266 1460 -2.848470e+00 -11.10911671 1.404586e-03 1.555216 50 30
## 267 1460 1.919681e+01 6.83166081 7.299037e-04 1.312321 50 30
## 268 1460 -3.810994e+01 5.20488852 6.355066e-04 1.228241 50 30
## 269 1460 -3.496739e+00 10.16467661 4.275139e-04 1.196858 50 30
## 270 1460 -5.984834e+00 -1.87968160 8.177119e-04 1.176920 50 30
## 271 1460 2.973392e+01 1.42200364 4.359797e-04 1.164909 50 30
## 272 1460 2.583710e+00 8.81930059 9.669885e-04 1.155632 50 30
## 273 1460 2.306402e+01 -1.50208930 1.144263e-03 1.148755 50 30
## 274 1460 -1.487347e+00 -9.75029629 1.399459e-03 1.143827 50 30
## 275 1460 -9.300969e+00 5.03652475 1.201290e-03 1.139748 50 30
## 276 1460 -2.837171e+01 -0.24845547 3.874686e-04 1.135437 50 30
## 277 1460 -8.685287e+00 -26.73329413 4.787269e-04 1.131049 50 30
## 278 1460 -1.296788e+01 5.52161123 1.390304e-04 1.127886 50 30
## 279 1460 2.403414e+00 -26.21796856 8.652725e-04 1.125117 50 30
## 280 1460 1.432256e+01 10.17404509 1.607117e-03 1.123256 50 30
## 281 1460 8.188254e+00 -10.86957672 4.154401e-04 73.771148 50 30
## 282 1460 -4.587985e+00 -21.56720100 3.286752e-04 71.150987 50 30
## 283 1460 1.253157e+01 -21.54850267 5.569947e-04 71.034367 50 30
## 284 1460 -2.098597e+00 -27.55795260 1.039053e-04 71.035404 50 30
## 285 1460 1.471200e+01 -19.92488856 7.525857e-04 71.037731 50 30
## 286 1460 3.642173e+01 -2.77899508 4.641454e-04 1.555216 50 30
## 287 1460 -2.646024e+01 -2.76258629 2.714243e-03 1.312321 50 30
## 288 1460 -1.275998e+01 2.72986506 7.945098e-04 1.228241 50 30
## 289 1460 -1.029607e+01 1.91400075 4.416515e-04 1.196858 50 30
## 290 1460 -2.876275e+01 -0.60713315 5.990596e-04 1.176920 50 30
## 291 1460 3.060012e+01 2.87264376 4.422003e-04 1.164909 50 30
## 292 1460 -2.292717e+01 0.94791105 4.710499e-04 1.155632 50 30
## 293 1460 -2.571193e+01 -3.00334600 1.019857e-03 1.148755 50 30
## 294 1460 1.511237e+01 7.47568393 7.027138e-04 1.143827 50 30
## 295 1460 -7.055334e+00 -5.06460718 1.264736e-03 1.139748 50 30
## 296 1460 -1.535909e+00 -0.93090856 6.323626e-04 1.135437 50 30
## 297 1460 -2.104833e+01 1.47238834 9.214308e-04 1.131049 50 30
## 298 1460 2.004719e+01 12.77774067 1.557506e-03 1.127886 50 30
## 299 1460 9.760887e+00 15.48593811 8.238875e-04 1.125117 50 30
## 300 1460 2.125734e+00 15.08254859 1.023462e-03 1.123256 50 30
## 301 1460 -2.922355e+00 -2.41907872 4.605612e-04 73.771148 50 30
## 302 1460 2.257684e+01 4.20282735 1.171985e-03 71.150987 50 30
## 303 1460 -3.600213e+00 -29.80323252 6.420475e-04 71.034367 50 30
## 304 1460 -5.876582e+00 5.84056104 6.778935e-04 71.035404 50 30
## 305 1460 -2.978177e+00 26.62741671 1.699262e-03 71.037731 50 30
## 306 1460 -6.222852e-01 -19.95543102 1.711796e-04 1.555216 50 30
## 307 1460 1.680356e+01 -2.39932323 2.125490e-04 1.312321 50 30
## 308 1460 -1.971617e+01 6.37056919 3.297583e-04 1.228241 50 30
## 309 1460 -1.259783e+01 5.87395635 4.953887e-04 1.196858 50 30
## 310 1460 3.149605e+00 -18.18836562 2.495890e-04 1.176920 50 30
## 311 1460 2.054950e+01 7.90485976 1.104604e-03 1.164909 50 30
## 312 1460 -9.967867e+00 8.42863650 1.399706e-03 1.155632 50 30
## 313 1460 -2.653111e+01 -1.39387828 7.734785e-04 1.148755 50 30
## 314 1460 3.448202e+00 9.15444680 6.993630e-04 1.143827 50 30
## 315 1460 -2.929951e+01 5.18190253 1.084633e-03 1.139748 50 30
## 316 1460 1.941284e+01 4.68785527 1.208263e-03 1.135437 50 30
## 317 1460 1.579191e+01 8.76627857 1.291003e-03 1.131049 50 30
## 318 1460 2.949175e+01 1.30092238 4.382751e-04 1.127886 50 30
## 319 1460 1.732116e+01 -2.48859157 3.855104e-04 1.125117 50 30
## 320 1460 -1.136534e+00 -13.37133366 1.153150e-03 1.123256 50 30
## 321 1460 2.848775e+01 -3.26366892 2.611410e-04 73.771148 50 30
## 322 1460 2.043410e+01 -4.09564169 7.264160e-04 71.150987 50 30
## 323 1460 1.122104e+01 5.94491320 8.015451e-04 71.034367 50 30
## 324 1460 -1.325526e+01 9.65102317 6.207932e-04 71.035404 50 30
## 325 1460 2.450007e+01 -2.29547878 4.087909e-04 71.037731 50 30
## 326 1460 -2.179294e+01 13.86570524 4.575753e-04 1.555216 50 30
## 327 1460 1.329138e+01 -17.51472844 7.256770e-04 1.312321 50 30
## 328 1460 -8.811685e+00 -2.31261644 8.841935e-04 1.228241 50 30
## 329 1460 -2.885013e+01 9.20067248 3.858514e-04 1.196858 50 30
## 330 1460 -2.462407e+01 13.05402976 8.174061e-04 1.176920 50 30
## 331 1460 -2.471152e+01 -14.63016663 3.419479e-04 1.164909 50 30
## 332 1460 -8.754787e+00 7.76149419 2.717259e-03 1.155632 50 30
## 333 1460 -7.517659e-01 -21.57209953 4.169789e-04 1.148755 50 30
## 334 1460 1.197872e+01 -21.84640970 9.497920e-04 1.143827 50 30
## 335 1460 1.933951e+01 6.60110252 5.429321e-04 1.139748 50 30
## 336 1460 3.929590e+00 9.68093345 8.691114e-04 1.135437 50 30
## 337 1460 1.892432e+00 -19.65833915 7.962809e-04 1.131049 50 30
## 338 1460 -1.901586e+00 -19.73733526 6.455989e-04 1.127886 50 30
## 339 1460 1.738025e+00 -14.12390255 2.223526e-03 1.125117 50 30
## 340 1460 4.260088e+00 1.50764734 6.192101e-04 1.123256 50 30
## 341 1460 2.485961e+01 4.82879279 2.938889e-04 73.771148 50 30
## 342 1460 -1.938650e+01 13.43813376 1.155860e-03 71.150987 50 30
## 343 1460 -2.169899e+01 29.97600902 7.080161e-05 71.034367 50 30
## 344 1460 9.994735e+00 -23.17207503 6.413588e-04 71.035404 50 30
## 345 1460 4.170483e+01 4.46409917 5.828406e-04 71.037731 50 30
## 346 1460 -2.477500e+01 4.50717389 1.329284e-03 1.555216 50 30
## 347 1460 -6.500312e+00 20.97382354 4.071512e-04 1.312321 50 30
## 348 1460 -7.267837e+00 -4.78389435 8.662980e-04 1.228241 50 30
## 349 1460 3.833498e+01 -2.24192866 6.983390e-04 1.196858 50 30
## 350 1460 2.239261e+01 -5.78746524 2.307012e-04 1.176920 50 30
## 351 1460 1.007769e+01 -23.86128594 6.012112e-04 1.164909 50 30
## 352 1460 1.271039e+01 -14.07509994 1.141331e-03 1.155632 50 30
## 353 1460 2.063524e+00 19.80203016 6.871371e-04 1.148755 50 30
## 354 1460 -1.895327e+01 9.56595697 6.625996e-04 1.143827 50 30
## 355 1460 -2.423617e+01 7.46329895 9.202206e-04 1.139748 50 30
## 356 1460 -4.968230e+00 -14.70919719 1.049767e-03 1.135437 50 30
## 357 1460 -2.029239e+00 -15.98870824 9.039312e-04 1.131049 50 30
## 358 1460 7.806202e+00 -5.52987587 1.946275e-03 1.127886 50 30
## 359 1460 4.149076e+00 19.89213289 4.128937e-04 1.125117 50 30
## 360 1460 1.573502e+01 -5.11565317 1.499780e-03 1.123256 50 30
## 361 1460 4.518216e+00 -1.45639326 1.074916e-03 73.771148 50 30
## 362 1460 -1.957209e+01 2.09264805 2.235062e-03 71.150987 50 30
## 363 1460 -1.902641e+01 30.64735908 5.210367e-04 71.034367 50 30
## 364 1460 4.243552e+01 2.14999191 1.330102e-05 71.035404 50 30
## 365 1460 1.896722e+01 7.64606775 5.186977e-04 71.037731 50 30
## 366 1460 -2.790682e+01 14.16114989 7.267119e-04 1.555216 50 30
## 367 1460 6.136283e+00 1.43265130 1.017658e-03 1.312321 50 30
## 368 1460 6.113001e+00 16.90974169 5.168090e-04 1.228241 50 30
## 369 1460 -7.437514e+00 -1.82440203 6.182052e-04 1.196858 50 30
## 370 1460 3.670358e+00 6.06147996 7.433506e-04 1.176920 50 30
## 371 1460 2.687620e+01 7.55641549 5.196637e-04 1.164909 50 30
## 372 1460 -1.910057e+01 29.67269548 4.530280e-04 1.155632 50 30
## 373 1460 1.201783e+00 5.71129851 8.609385e-04 1.148755 50 30
## 374 1460 -2.622044e+00 6.32561800 8.096084e-04 1.143827 50 30
## 375 1460 2.760770e+01 5.78942818 9.768819e-04 1.139748 50 30
## 376 1460 -1.961303e+01 16.55521867 3.857489e-04 1.135437 50 30
## 377 1460 -1.213199e+00 -1.60970014 7.402418e-04 1.131049 50 30
## 378 1460 2.916579e+01 -0.70712196 5.080819e-04 1.127886 50 30
## 379 1460 4.974499e+00 -22.29986169 1.456674e-04 1.125117 50 30
## 380 1460 2.539767e+01 7.61283643 1.169477e-03 1.123256 50 30
## 381 1460 -2.580266e+01 8.54798003 6.050805e-04 73.771148 50 30
## 382 1460 -5.983846e+00 -24.46466296 2.919690e-04 71.150987 50 30
## 383 1460 2.570070e+01 3.83352612 6.433520e-04 71.034367 50 30
## 384 1460 -2.190135e+01 15.31821202 6.060571e-04 71.035404 50 30
## 385 1460 1.688990e+01 5.46079312 7.672329e-04 71.037731 50 30
## 386 1460 1.463924e+01 -22.80663156 2.514379e-04 1.555216 50 30
## 387 1460 -2.401270e+01 1.28103009 7.159739e-04 1.312321 50 30
## 388 1460 -4.927485e+00 0.67953417 6.250284e-04 1.228241 50 30
## 389 1460 -5.039282e+00 -27.32601478 7.973343e-04 1.196858 50 30
## 390 1460 2.156044e+01 -7.17328460 1.265690e-03 1.176920 50 30
## 391 1460 -2.886223e+01 7.18906399 9.038790e-04 1.164909 50 30
## 392 1460 1.893357e+01 5.55134684 5.967223e-04 1.155632 50 30
## 393 1460 -2.144163e+01 27.96605517 3.305699e-04 1.148755 50 30
## 394 1460 -1.213056e+01 2.68930231 4.357740e-04 1.143827 50 30
## 395 1460 -2.001596e+01 5.89800839 2.049431e-03 1.139748 50 30
## 396 1460 -7.010887e+00 3.49378328 1.564476e-03 1.135437 50 30
## 397 1460 -1.045004e+01 4.61110701 3.344379e-04 1.131049 50 30
## 398 1460 1.320776e+01 11.25555663 1.043409e-03 1.127886 50 30
## 399 1460 -2.193669e+01 15.75067345 7.713660e-04 1.125117 50 30
## 400 1460 1.640917e+01 -0.31769033 1.640506e-03 1.123256 50 30
## 401 1460 1.316963e+01 -14.65901161 6.173112e-04 73.771148 50 30
## 402 1460 -6.537601e+00 -22.61235551 3.327634e-04 71.150987 50 30
## 403 1460 -1.857340e+01 9.57072458 1.118804e-03 71.034367 50 30
## 404 1460 2.646756e+01 -2.04265894 2.803920e-04 71.035404 50 30
## 405 1460 2.731176e+01 8.67790114 7.401665e-04 71.037731 50 30
## 406 1460 -5.267248e+00 -5.15927064 7.462555e-04 1.555216 50 30
## 407 1460 -3.728562e+01 5.93974269 6.365995e-04 1.312321 50 30
## 408 1460 -2.821251e+01 9.44384633 1.032843e-03 1.228241 50 30
## 409 1460 2.833858e+01 -2.71060374 3.636766e-04 1.196858 50 30
## 410 1460 2.144751e+01 -5.88635020 5.907466e-04 1.176920 50 30
## 411 1460 -1.437770e+01 2.46853869 9.412653e-04 1.164909 50 30
## 412 1460 -1.721943e+00 -4.52837242 4.964704e-04 1.155632 50 30
## 413 1460 5.816546e+00 -21.28578842 5.631263e-04 1.148755 50 30
## 414 1460 -2.145332e+01 11.89353873 6.236558e-04 1.143827 50 30
## 415 1460 9.199219e+00 17.62249745 7.679060e-04 1.139748 50 30
## 416 1460 -6.447015e+00 -22.94165115 6.977926e-04 1.135437 50 30
## 417 1460 1.145853e+01 11.17183105 1.181069e-03 1.131049 50 30
## 418 1460 -1.323094e+01 18.77413898 8.981573e-04 1.127886 50 30
## 419 1460 -2.010187e+01 1.97527496 1.106200e-03 1.125117 50 30
## 420 1460 -1.105466e+01 12.71814327 1.304623e-03 1.123256 50 30
## 421 1460 -2.258114e+01 -14.63909089 1.079826e-03 73.771148 50 30
## 422 1460 4.651101e+00 16.70457352 6.967053e-04 71.150987 50 30
## 423 1460 -1.351018e+01 4.76603328 4.999285e-04 71.034367 50 30
## 424 1460 2.135592e+01 -3.96362861 7.021847e-04 71.035404 50 30
## 425 1460 -7.350752e+00 -1.88986487 1.039222e-03 71.037731 50 30
## 426 1460 -2.943644e+01 12.84635391 5.982384e-04 1.555216 50 30
## 427 1460 9.074455e+00 -17.12600880 1.175171e-03 1.312321 50 30
## 428 1460 -1.176031e+01 5.65474777 1.235792e-03 1.228241 50 30
## 429 1460 -3.476039e+00 -20.45425304 7.800801e-04 1.196858 50 30
## 430 1460 -8.115656e+00 -10.60421352 9.945789e-04 1.176920 50 30
## 431 1460 4.304057e+01 1.68944874 2.168098e-04 1.164909 50 30
## 432 1460 -1.961196e+01 6.66861592 7.691562e-04 1.155632 50 30
## 433 1460 4.367875e+01 1.49189299 2.074010e-04 1.148755 50 30
## 434 1460 2.674088e+01 8.69619174 8.542614e-04 1.143827 50 30
## 435 1460 4.543205e+01 4.44252217 7.299529e-04 1.139748 50 30
## 436 1460 1.601204e+01 4.18056500 8.669716e-04 1.135437 50 30
## 437 1460 -2.009834e+01 8.13192881 8.134473e-04 1.131049 50 30
## 438 1460 -2.019691e+01 11.43094047 1.461930e-03 1.127886 50 30
## 439 1460 -1.695824e+01 13.87807869 8.126458e-04 1.125117 50 30
## 440 1460 -7.802407e+00 21.13762531 1.090235e-03 1.123256 50 30
## 441 1460 2.907380e+00 -24.42348860 3.006040e-04 73.771148 50 30
## 442 1460 -2.490307e+01 -12.28983581 3.416162e-04 71.150987 50 30
## 443 1460 -2.419467e+01 4.80743564 1.469842e-03 71.034367 50 30
## 444 1460 1.348610e+01 -24.79459299 2.706636e-04 71.035404 50 30
## 445 1460 1.904945e+01 3.93674267 5.260827e-04 71.037731 50 30
## 446 1460 -1.349414e+01 -0.94783014 1.243189e-03 1.555216 50 30
## 447 1460 -4.311174e+00 -12.05643377 9.683563e-04 1.312321 50 30
## 448 1460 2.761980e+01 6.63751128 4.586871e-04 1.228241 50 30
## 449 1460 -2.450321e+01 4.72224575 1.019009e-03 1.196858 50 30
## 450 1460 -1.928717e+01 4.76749305 7.913772e-04 1.176920 50 30
## 451 1460 -1.855068e+01 8.71993872 4.649789e-04 1.164909 50 30
## 452 1460 -3.742812e+00 -7.33275920 9.259003e-04 1.155632 50 30
## 453 1460 1.767260e+01 6.15214055 6.118245e-04 1.148755 50 30
## 454 1460 2.791871e+01 3.09220352 9.149265e-04 1.143827 50 30
## 455 1460 -2.308473e+01 -14.16012547 1.134111e-03 1.139748 50 30
## 456 1460 -9.326810e+00 -2.16574366 1.246767e-03 1.135437 50 30
## 457 1460 -2.462054e+01 12.36187518 3.212847e-04 1.131049 50 30
## 458 1460 -3.831132e+00 -7.03761240 1.122110e-03 1.127886 50 30
## 459 1460 -2.191547e+01 6.80792066 8.697882e-04 1.125117 50 30
## 460 1460 -2.470106e+01 8.74636532 7.596417e-04 1.123256 50 30
## 461 1460 1.671388e+01 -0.26237104 5.415069e-04 73.771148 50 30
## 462 1460 -1.542525e+01 -2.88066964 1.544733e-03 71.150987 50 30
## 463 1460 -2.148271e+00 5.52097175 3.372242e-04 71.034367 50 30
## 464 1460 -2.146890e+01 3.36890863 1.348575e-03 71.035404 50 30
## 465 1460 -1.027281e+01 0.60605271 3.408177e-04 71.037731 50 30
## 466 1460 1.363370e+01 -24.47392807 1.842695e-04 1.555216 50 30
## 467 1460 4.293391e+00 -0.38583380 8.175293e-04 1.312321 50 30
## 468 1460 1.156660e+01 10.24978747 1.906096e-03 1.228241 50 30
## 469 1460 -2.302219e+00 -25.86487171 8.603418e-04 1.196858 50 30
## 470 1460 2.194531e+01 0.23102935 1.723808e-03 1.176920 50 30
## 471 1460 1.506480e+01 -13.77830207 8.796821e-04 1.164909 50 30
## 472 1460 1.847926e+01 14.25283553 1.590644e-03 1.155632 50 30
## 473 1460 2.013369e+01 -20.45669870 9.087069e-04 1.148755 50 30
## 474 1460 1.459364e+00 -21.22087951 5.222866e-04 1.143827 50 30
## 475 1460 1.291419e+01 -20.05066128 6.375597e-04 1.139748 50 30
## 476 1460 4.015660e+00 0.07360296 1.003230e-03 1.135437 50 30
## 477 1460 -1.244418e+00 -17.29459811 1.091664e-03 1.131049 50 30
## 478 1460 2.598299e+01 -2.95300345 4.980846e-04 1.127886 50 30
## 479 1460 3.447437e-01 -19.83276838 9.520887e-04 1.125117 50 30
## 480 1460 -1.119670e+01 9.97998999 5.048328e-04 1.123256 50 30
## 481 1460 1.896126e+00 -20.16963485 3.415721e-04 73.771148 50 30
## 482 1460 2.417502e+00 -19.78096148 3.197607e-04 71.150987 50 30
## 483 1460 -2.136529e+01 5.23618141 6.207092e-04 71.034367 50 30
## 484 1460 2.019896e+01 -21.66092062 7.344977e-04 71.035404 50 30
## 485 1460 -8.803049e+00 9.44038126 7.494664e-04 71.037731 50 30
## 486 1460 -1.096153e+01 12.61522572 1.264356e-03 1.555216 50 30
## 487 1460 -7.133004e+00 0.35267569 1.326341e-03 1.312321 50 30
## 488 1460 3.633432e+00 -0.88627729 8.232670e-04 1.228241 50 30
## 489 1460 -2.646229e+01 -10.98978341 2.706980e-04 1.196858 50 30
## 490 1460 4.552290e+01 4.40778514 6.478605e-04 1.176920 50 30
## 491 1460 3.882000e+01 5.06716488 1.183632e-03 1.164909 50 30
## 492 1460 -1.838693e+01 0.33064865 8.679506e-04 1.155632 50 30
## 493 1460 3.095306e+01 6.12697912 2.743322e-04 1.148755 50 30
## 494 1460 -2.568468e+00 8.53821251 1.054643e-03 1.143827 50 30
## 495 1460 -1.857515e+01 11.32396789 4.679563e-04 1.139748 50 30
## 496 1460 -1.844214e+01 15.05050835 5.617185e-04 1.135437 50 30
## 497 1460 -7.630339e+00 -15.08657749 7.683931e-04 1.131049 50 30
## 498 1460 -2.224083e+01 1.05641901 1.120288e-03 1.127886 50 30
## 499 1460 -8.992679e+00 1.50820129 7.061060e-04 1.125117 50 30
## 500 1460 3.024859e+00 21.45630895 5.889422e-04 1.123256 50 30
## 501 1460 4.308882e+01 1.32982574 3.306015e-04 73.771148 50 30
## 502 1460 2.170022e+01 2.55889574 4.979317e-04 71.150987 50 30
## 503 1460 -6.746106e+00 19.59342107 3.386458e-04 71.034367 50 30
## 504 1460 6.512048e+00 -1.96434525 6.147546e-04 71.035404 50 30
## 505 1460 4.080217e+01 4.11846397 3.464924e-04 71.037731 50 30
## 506 1460 -2.691407e+01 -12.37583082 7.203407e-04 1.555216 50 30
## 507 1460 2.191958e+01 -1.65022891 1.252034e-03 1.312321 50 30
## 508 1460 -5.265324e+00 -22.63227148 3.740599e-04 1.228241 50 30
## 509 1460 -2.871961e+01 13.43795919 6.608176e-04 1.196858 50 30
## 510 1460 -6.603257e+00 -0.10713844 6.016523e-04 1.176920 50 30
## 511 1460 -4.643249e+00 20.66060293 4.483416e-04 1.164909 50 30
## 512 1460 1.223877e+01 -24.81189813 4.518948e-04 1.155632 50 30
## 513 1460 -1.587996e+00 8.21035915 4.612736e-04 1.148755 50 30
## 514 1460 -1.302546e+01 13.15891134 7.107550e-04 1.143827 50 30
## 515 1460 -2.120793e+01 13.77368864 1.446634e-03 1.139748 50 30
## 516 1460 4.659053e+00 -21.16678365 7.338002e-04 1.135437 50 30
## 517 1460 1.460625e+01 12.03536518 6.566890e-04 1.131049 50 30
## 518 1460 2.471131e+01 -1.35480316 5.979843e-04 1.127886 50 30
## 519 1460 1.842891e+01 3.67797913 7.037558e-04 1.125117 50 30
## 520 1460 -2.809991e+01 0.21542238 5.585239e-04 1.123256 50 30
## 521 1460 -2.282676e+01 30.89195603 1.719798e-04 73.771148 50 30
## 522 1460 -7.417574e+00 -7.17555775 1.479063e-03 71.150987 50 30
## 523 1460 -2.530839e+01 6.57862714 5.041411e-04 71.034367 50 30
## 524 1460 2.353630e+01 -7.63966844 4.182036e-04 71.035404 50 30
## 525 1460 2.041113e+01 -3.36366025 8.998011e-04 71.037731 50 30
## 526 1460 -6.623857e+00 -24.23908598 6.172425e-04 1.555216 50 30
## 527 1460 -1.378393e+01 12.98090629 7.880469e-04 1.312321 50 30
## 528 1460 2.176231e+01 -7.25194591 6.738106e-04 1.228241 50 30
## 529 1460 -1.617071e+01 13.57074940 5.172334e-04 1.196858 50 30
## 530 1460 -8.229159e+00 -14.70616202 6.490563e-04 1.176920 50 30
## 531 1460 -8.238348e-01 -14.08066303 1.435055e-03 1.164909 50 30
## 532 1460 -2.827979e+01 11.21793176 3.801689e-04 1.155632 50 30
## 533 1460 -1.909364e+01 27.84688629 3.401093e-04 1.148755 50 30
## 534 1460 -2.043685e+01 26.68142565 4.647230e-04 1.143827 50 30
## 535 1460 2.866939e+01 6.17986209 1.102916e-04 1.139748 50 30
## 536 1460 -3.066923e+01 12.03898922 7.718533e-04 1.135437 50 30
## 537 1460 2.630810e+01 4.86849802 7.332753e-04 1.131049 50 30
## 538 1460 -1.074053e+01 4.88044014 6.214949e-04 1.127886 50 30
## 539 1460 -8.958793e+00 -1.67238152 1.046164e-03 1.125117 50 30
## 540 1460 1.735045e+00 -14.23503021 9.589189e-04 1.123256 50 30
## 541 1460 3.122758e+00 -21.02994578 6.693679e-04 73.771148 50 30
## 542 1460 2.679529e+01 -0.16482673 1.677949e-03 71.150987 50 30
## 543 1460 -4.669241e+00 -13.71326188 1.623202e-03 71.034367 50 30
## 544 1460 2.016274e+01 -19.54833997 7.508928e-04 71.035404 50 30
## 545 1460 1.970335e+01 4.99333025 1.260922e-04 71.037731 50 30
## 546 1460 1.446981e+01 5.36671295 6.269915e-04 1.555216 50 30
## 547 1460 7.892530e+00 -10.07025169 1.021435e-03 1.312321 50 30
## 548 1460 -1.005147e+00 -0.22055258 1.038275e-03 1.228241 50 30
## 549 1460 -4.404943e-02 10.59839836 4.144349e-04 1.196858 50 30
## 550 1460 2.757872e+01 4.78248408 6.476184e-04 1.176920 50 30
## 551 1460 4.748784e+00 -4.92864804 8.758953e-04 1.164909 50 30
## 552 1460 -1.254526e+01 4.67825329 4.786072e-04 1.155632 50 30
## 553 1460 -2.868802e+00 -26.99517952 8.341831e-04 1.148755 50 30
## 554 1460 -1.916128e+01 28.32743547 2.349107e-04 1.143827 50 30
## 555 1460 1.992181e+01 -2.72733607 6.531584e-04 1.139748 50 30
## 556 1460 -2.183218e+01 12.86406817 1.613389e-03 1.135437 50 30
## 557 1460 3.720723e+00 -0.49552735 8.252895e-04 1.131049 50 30
## 558 1460 -3.108366e+01 7.90298197 1.019565e-03 1.127886 50 30
## 559 1460 8.680555e+00 17.51585255 1.084507e-03 1.125117 50 30
## 560 1460 1.346220e+01 -24.36410973 2.396546e-04 1.123256 50 30
## 561 1460 5.194513e+00 1.54515629 4.660125e-04 73.771148 50 30
## 562 1460 8.573181e-01 8.09050290 1.222951e-03 71.150987 50 30
## 563 1460 -6.709611e+00 4.03352849 1.539496e-03 71.034367 50 30
## 564 1460 -3.032913e+01 -0.53397261 7.895552e-04 71.035404 50 30
## 565 1460 1.720095e+01 3.43525842 7.473622e-04 71.037731 50 30
## 566 1460 -2.492797e+01 14.01334842 5.012356e-04 1.555216 50 30
## 567 1460 2.587256e+01 -2.09109052 7.109570e-04 1.312321 50 30
## 568 1460 -7.002781e+00 -27.28026020 7.862648e-04 1.228241 50 30
## 569 1460 1.368239e+01 -9.81957151 1.165684e-03 1.196858 50 30
## 570 1460 5.672740e-01 -4.17794287 5.581279e-04 1.176920 50 30
## 571 1460 -2.464837e+01 -13.85328971 5.404778e-04 1.164909 50 30
## 572 1460 -7.896938e+00 0.47781935 3.158434e-04 1.155632 50 30
## 573 1460 2.580802e+01 4.45643350 3.620577e-05 1.148755 50 30
## 574 1460 2.908977e+01 8.09799946 2.402080e-04 1.143827 50 30
## 575 1460 6.517697e+00 18.11810709 1.084960e-03 1.139748 50 30
## 576 1460 -2.393342e+01 9.28937551 8.541304e-04 1.135437 50 30
## 577 1460 -2.804349e+01 4.04103869 9.329850e-04 1.131049 50 30
## 578 1460 -1.055540e+00 2.71149763 8.434651e-04 1.127886 50 30
## 579 1460 3.704467e+01 -3.40085842 4.881953e-04 1.125117 50 30
## 580 1460 -2.512675e+01 3.68337257 6.634011e-04 1.123256 50 30
## 581 1460 4.429733e+00 18.36830611 8.021975e-04 73.771148 50 30
## 582 1460 -7.293159e-01 -26.91691441 3.115105e-04 71.150987 50 30
## 583 1460 -4.165734e-01 -4.05339430 6.675898e-04 71.034367 50 30
## 584 1460 -2.979228e+00 26.62892174 1.533987e-03 71.035404 50 30
## 585 1460 -2.917385e+01 -0.34466409 8.936555e-04 71.037731 50 30
## 586 1460 1.884367e+00 -21.59620677 3.697297e-04 1.555216 50 30
## 587 1460 -1.141782e+00 5.56248949 7.047223e-04 1.312321 50 30
## 588 1460 -1.652065e+00 -0.02234930 1.207404e-03 1.228241 50 30
## 589 1460 6.689857e+00 -2.09605885 7.113890e-04 1.196858 50 30
## 590 1460 -3.610469e+01 6.99380401 6.994104e-04 1.176920 50 30
## 591 1460 2.256856e+01 2.46938116 1.367596e-03 1.164909 50 30
## 592 1460 2.104595e+01 -7.05872084 5.531657e-04 1.155632 50 30
## 593 1460 -6.154044e+00 7.07694577 5.826703e-04 1.148755 50 30
## 594 1460 1.822506e+01 -18.74104285 5.022994e-04 1.143827 50 30
## 595 1460 -1.394320e+01 4.13584440 8.282915e-04 1.139748 50 30
## 596 1460 3.035896e+00 -25.69079084 1.055981e-03 1.135437 50 30
## 597 1460 -1.983928e+01 7.47616562 5.733514e-04 1.131049 50 30
## 598 1460 1.639966e+01 -24.05582832 9.860895e-04 1.127886 50 30
## 599 1460 -1.309698e+00 -9.81436657 8.847079e-04 1.125117 50 30
## 600 1460 4.098706e+01 4.47935257 4.509971e-04 1.123256 50 30
## 601 1460 2.040181e+01 -3.81175686 5.947409e-04 73.771148 50 30
## 602 1460 -2.758649e+01 -1.44144723 4.215169e-04 71.150987 50 30
## 603 1460 1.814465e+01 4.98545306 2.707119e-04 71.034367 50 30
## 604 1460 3.675836e+01 -2.75256410 3.595628e-04 71.035404 50 30
## 605 1460 -1.149006e+00 -18.84239095 1.597506e-03 71.037731 50 30
## 606 1460 1.679185e+01 14.34439157 1.015922e-03 1.555216 50 30
## 607 1460 -1.174873e+01 -10.54041229 8.136728e-04 1.312321 50 30
## 608 1460 -2.065851e+01 -2.37524868 1.180344e-03 1.228241 50 30
## 609 1460 -6.614184e+00 25.62244425 1.894883e-03 1.196858 50 30
## 610 1460 -6.788084e+00 1.99150137 6.481296e-04 1.176920 50 30
## 611 1460 2.003338e+01 -6.00746199 6.939891e-04 1.164909 50 30
## 612 1460 4.503398e+00 22.41769958 7.584179e-04 1.155632 50 30
## 613 1460 2.005023e+01 -2.31063934 3.195006e-04 1.148755 50 30
## 614 1460 -1.460244e+01 -9.92546007 5.238478e-04 1.143827 50 30
## 615 1460 4.471158e+01 4.90489374 7.102305e-04 1.139748 50 30
## 616 1460 -4.353115e+00 0.16299291 4.966626e-04 1.135437 50 30
## 617 1460 1.902916e+01 5.11513591 7.089324e-04 1.131049 50 30
## 618 1460 -1.525481e+01 5.39267907 5.257170e-04 1.127886 50 30
## 619 1460 2.597719e+00 -25.89468683 6.833954e-04 1.125117 50 30
## 620 1460 1.986371e+01 -5.48250206 6.697584e-04 1.123256 50 30
## 621 1460 -1.883758e+01 15.67022384 8.330778e-04 73.771148 50 30
## 622 1460 1.083854e+01 7.36685524 8.387830e-04 71.150987 50 30
## 623 1460 -9.029162e+00 1.10813437 1.490848e-03 71.034367 50 30
## 624 1460 3.762623e+01 -0.29350282 5.342249e-04 71.035404 50 30
## 625 1460 1.657781e+01 15.22062583 9.708006e-04 71.037731 50 30
## 626 1460 4.152890e+00 2.02475514 6.638789e-04 1.555216 50 30
## 627 1460 -6.082987e+00 20.17447772 5.731256e-04 1.312321 50 30
## 628 1460 -1.401862e+00 2.92004379 7.047441e-04 1.228241 50 30
## 629 1460 9.551813e+00 15.42677395 4.723549e-04 1.196858 50 30
## 630 1460 4.326480e-01 2.88113949 6.205918e-04 1.176920 50 30
## 631 1460 -2.691437e+01 12.88271072 4.201072e-04 1.164909 50 30
## 632 1460 1.269987e+01 -23.06476207 4.242296e-04 1.155632 50 30
## 633 1460 -9.803134e+00 -6.06098553 1.407079e-03 1.148755 50 30
## 634 1460 3.008219e+00 19.17862195 7.034329e-04 1.143827 50 30
## 635 1460 -9.554808e+00 23.76253940 7.707715e-04 1.139748 50 30
## 636 1460 -3.694822e+01 4.24246813 3.117546e-04 1.135437 50 30
## 637 1460 -1.996376e+01 16.10412903 7.517336e-04 1.131049 50 30
## 638 1460 -2.736310e+01 -12.05974151 7.031615e-04 1.127886 50 30
## 639 1460 -1.944996e+01 13.34477513 6.182995e-04 1.125117 50 30
## 640 1460 1.076225e+01 -20.77780411 4.129261e-04 1.123256 50 30
## 641 1460 9.682999e+00 -23.09457241 2.332046e-04 73.771148 50 30
## 642 1460 1.950230e+01 2.51821194 6.128312e-04 71.150987 50 30
## 643 1460 1.854751e+01 -7.22841013 1.102481e-03 71.034367 50 30
## 644 1460 9.550971e+00 8.08914760 8.612479e-04 71.035404 50 30
## 645 1460 5.388461e+00 -21.19202343 6.282775e-04 71.037731 50 30
## 646 1460 -4.146962e+00 8.18549394 9.042371e-04 1.555216 50 30
## 647 1460 -1.985340e+01 28.40705040 3.622607e-04 1.312321 50 30
## 648 1460 5.703873e+00 1.26429469 7.134621e-04 1.228241 50 30
## 649 1460 1.383751e+01 13.21810576 8.317222e-04 1.196858 50 30
## 650 1460 4.479546e+01 4.93267149 6.251568e-04 1.176920 50 30
## 651 1460 2.797109e+01 2.80459570 5.005022e-04 1.164909 50 30
## 652 1460 -2.307845e+01 -0.32869522 1.143575e-03 1.155632 50 30
## 653 1460 2.784385e+01 3.49937231 8.379598e-04 1.148755 50 30
## 654 1460 -2.745081e+01 11.77271292 1.539421e-03 1.143827 50 30
## 655 1460 1.868230e+00 -18.29225096 2.544229e-04 1.139748 50 30
## 656 1460 4.210119e+01 1.11849635 1.220828e-04 1.135437 50 30
## 657 1460 -7.058886e+00 10.04247846 1.138310e-03 1.131049 50 30
## 658 1460 -2.927176e+01 12.12331162 7.716387e-04 1.127886 50 30
## 659 1460 -2.764637e+01 3.75757946 8.890601e-04 1.125117 50 30
## 660 1460 -7.443119e+00 7.91989886 3.793702e-04 1.123256 50 30
## 661 1460 1.376422e+01 12.99409105 6.322327e-04 73.771148 50 30
## 662 1460 1.833784e+01 -4.56804713 3.991281e-04 71.150987 50 30
## 663 1460 -1.163421e+01 -6.44094405 7.209528e-04 71.034367 50 30
## 664 1460 -1.630048e+00 4.48877208 4.984948e-04 71.035404 50 30
## 665 1460 5.004462e+00 -19.70663023 4.633547e-04 71.037731 50 30
## 666 1460 2.830756e+01 -1.06725706 9.493797e-04 1.555216 50 30
## 667 1460 1.126268e+01 7.38077555 9.794121e-04 1.312321 50 30
## 668 1460 -1.443193e+00 -16.41738995 1.009461e-03 1.228241 50 30
## 669 1460 -5.292962e+00 4.37049011 9.359319e-04 1.196858 50 30
## 670 1460 -2.164469e+01 13.06714237 1.034380e-03 1.176920 50 30
## 671 1460 2.055957e+01 4.02057161 6.510343e-04 1.164909 50 30
## 672 1460 -2.181802e+01 1.00277877 9.036070e-04 1.155632 50 30
## 673 1460 -5.390704e+00 -3.15295003 1.581709e-03 1.148755 50 30
## 674 1460 6.339164e+00 -1.68610064 1.294872e-03 1.143827 50 30
## 675 1460 -6.496328e+00 3.39650778 2.874553e-03 1.139748 50 30
## 676 1460 4.083475e+01 2.95283515 6.039307e-04 1.135437 50 30
## 677 1460 -2.800203e+01 -10.48698490 3.474407e-04 1.131049 50 30
## 678 1460 -1.936298e+01 11.04552278 7.507546e-04 1.127886 50 30
## 679 1460 -1.224678e+00 -27.44134888 6.708822e-04 1.125117 50 30
## 680 1460 -7.815404e+00 1.42540968 1.082327e-03 1.123256 50 30
## 681 1460 3.086168e+00 -6.39686524 1.505139e-03 73.771148 50 30
## 682 1460 -2.477632e+01 9.88905068 1.552325e-03 71.150987 50 30
## 683 1460 1.221244e+01 -18.39077750 1.062580e-03 71.034367 50 30
## 684 1460 1.438048e+00 -19.53731738 1.067356e-03 71.035404 50 30
## 685 1460 2.507689e+01 8.26023863 6.135199e-04 71.037731 50 30
## 686 1460 1.248700e+01 3.05848135 9.661869e-04 1.555216 50 30
## 687 1460 3.136005e+01 4.39389998 3.425657e-04 1.312321 50 30
## 688 1460 3.612073e+01 -1.43689480 5.990875e-04 1.228241 50 30
## 689 1460 -3.424322e+00 -20.94255138 5.457347e-04 1.196858 50 30
## 690 1460 1.227739e+01 -23.69558473 4.006391e-04 1.176920 50 30
## 691 1460 1.789605e+01 -18.98383078 4.465372e-04 1.164909 50 30
## 692 1460 2.442497e+01 -7.59468167 4.441197e-04 1.155632 50 30
## 693 1460 1.889436e+01 -3.63476008 4.367080e-04 1.148755 50 30
## 694 1460 -2.161034e+01 13.13855543 4.149035e-04 1.143827 50 30
## 695 1460 -2.333679e+01 5.39643656 7.660458e-04 1.139748 50 30
## 696 1460 -2.565663e+00 -10.87409251 1.338448e-03 1.135437 50 30
## 697 1460 -1.618647e+01 15.08105419 1.213146e-03 1.131049 50 30
## 698 1460 2.570237e+00 19.81816772 5.507834e-04 1.127886 50 30
## 699 1460 6.845822e-01 10.37403592 7.043316e-04 1.125117 50 30
## 700 1460 1.412107e+01 -20.85942892 7.239074e-04 1.123256 50 30
## 701 1460 1.679249e+00 -20.10353543 6.600851e-04 73.771148 50 30
## 702 1460 -1.019165e+01 -2.22300216 6.716856e-04 71.150987 50 30
## 703 1460 2.682982e+01 -3.65781458 7.133076e-04 71.034367 50 30
## 704 1460 -2.911949e+01 -9.19978179 5.195393e-04 71.035404 50 30
## 705 1460 7.536280e+00 -11.22096329 3.784772e-04 71.037731 50 30
## 706 1460 -2.303427e+01 29.49932211 1.553983e-04 1.555216 50 30
## 707 1460 -3.720740e+00 -7.37497496 9.638722e-04 1.312321 50 30
## 708 1460 1.073712e+01 -21.87166150 6.119797e-04 1.228241 50 30
## 709 1460 2.911520e+01 6.21328371 2.280439e-04 1.196858 50 30
## 710 1460 -1.123911e+01 0.10398111 7.728730e-04 1.176920 50 30
## 711 1460 -1.619126e+01 7.77349480 4.569368e-04 1.164909 50 30
## 712 1460 -2.301958e+01 10.63556917 4.117245e-04 1.155632 50 30
## 713 1460 1.237367e+01 -19.53388967 7.168108e-04 1.148755 50 30
## 714 1460 -2.224065e+00 -3.14488297 4.784842e-04 1.143827 50 30
## 715 1460 1.367575e+01 7.61208951 1.043678e-03 1.139748 50 30
## 716 1460 -1.072716e+01 -5.62492484 1.129083e-03 1.135437 50 30
## 717 1460 -2.943573e+01 10.70714665 5.043769e-04 1.131049 50 30
## 718 1460 4.002863e+00 16.16871573 7.566931e-04 1.127886 50 30
## 719 1460 1.729761e+01 -2.60185939 4.382159e-04 1.125117 50 30
## 720 1460 -9.790131e+00 3.72048303 1.297105e-03 1.123256 50 30
## 721 1460 1.110097e+01 -18.91373846 1.036662e-03 73.771148 50 30
## 722 1460 1.810284e+01 -18.60022066 4.040835e-04 71.150987 50 30
## 723 1460 -1.169076e+01 6.18201167 1.006554e-03 71.034367 50 30
## 724 1460 -2.914300e+01 -0.83435030 6.915578e-04 71.035404 50 30
## 725 1460 2.943450e+00 -20.88921708 6.338018e-04 71.037731 50 30
## 726 1460 -6.404090e+00 18.72673603 4.972312e-04 1.555216 50 30
## 727 1460 6.645976e+00 -11.25389812 3.261266e-04 1.312321 50 30
## 728 1460 -3.634046e+00 -18.68278863 5.658092e-04 1.228241 50 30
## 729 1460 -2.514202e+01 -13.32378810 2.644032e-04 1.196858 50 30
## 730 1460 -3.729079e+01 6.32771473 3.703490e-04 1.176920 50 30
## 731 1460 1.248711e+01 -20.48491930 4.199789e-04 1.164909 50 30
## 732 1460 8.652283e+00 -20.02131146 1.317242e-03 1.155632 50 30
## 733 1460 2.195046e+01 -1.46740564 1.264267e-03 1.148755 50 30
## 734 1460 -5.326517e+00 19.30508825 1.809109e-03 1.143827 50 30
## 735 1460 -1.427792e+01 3.32516289 1.206862e-03 1.139748 50 30
## 736 1460 -2.178052e+01 4.55138314 5.489717e-04 1.135437 50 30
## 737 1460 -2.177057e+01 30.02826284 1.479734e-04 1.131049 50 30
## 738 1460 2.890263e+01 4.14505555 3.861936e-04 1.127886 50 30
## 739 1460 -2.099719e+01 -14.25802046 1.125981e-03 1.125117 50 30
## 740 1460 2.556715e+01 3.91697117 1.054354e-03 1.123256 50 30
## 741 1460 -2.798393e+01 11.25673997 4.142167e-04 73.771148 50 30
## 742 1460 2.169522e+00 16.54556442 4.438907e-04 71.150987 50 30
## 743 1460 -4.814150e+00 -28.37912926 3.671899e-04 71.034367 50 30
## 744 1460 6.187233e+00 15.57039746 7.631868e-04 71.035404 50 30
## 745 1460 7.559228e+00 -12.02292008 3.577492e-04 71.037731 50 30
## 746 1460 1.178771e+01 16.24549816 5.674587e-04 1.555216 50 30
## 747 1460 2.246596e+01 4.28952609 1.126202e-03 1.312321 50 30
## 748 1460 -2.968880e+01 10.45589608 2.622847e-04 1.228241 50 30
## 749 1460 -5.072651e-01 -17.23283443 5.042530e-04 1.196858 50 30
## 750 1460 -1.963845e+01 29.79043578 1.594933e-04 1.176920 50 30
## 751 1460 -1.936383e+01 6.61422816 6.113545e-04 1.164909 50 30
## 752 1460 2.930763e+01 4.87696978 6.673490e-04 1.155632 50 30
## 753 1460 -3.852747e+00 -16.95891005 9.496635e-04 1.148755 50 30
## 754 1460 2.704339e+01 -1.14268328 3.524269e-04 1.143827 50 30
## 755 1460 -3.933417e-02 10.12089174 1.199103e-03 1.139748 50 30
## 756 1460 3.879902e+01 -0.51003229 4.884304e-04 1.135437 50 30
## 757 1460 2.475184e+01 3.66005593 8.469082e-04 1.131049 50 30
## 758 1460 1.037870e+01 11.01589798 7.829668e-04 1.127886 50 30
## 759 1460 3.926948e+01 -0.60449109 6.601305e-04 1.125117 50 30
## 760 1460 2.224363e+01 -2.33128151 1.054734e-03 1.123256 50 30
## 761 1460 -6.684798e+00 19.36281889 1.139636e-03 73.771148 50 30
## 762 1460 -1.676625e+01 3.70564975 1.167355e-03 71.150987 50 30
## 763 1460 2.439121e+01 3.63068339 5.235475e-04 71.034367 50 30
## 764 1460 1.577685e+01 -5.20349584 1.612920e-03 71.035404 50 30
## 765 1460 1.507139e+01 -13.79277418 7.125012e-04 71.037731 50 30
## 766 1460 -2.509491e+00 -24.98061502 2.059733e-04 1.555216 50 30
## 767 1460 6.884204e+00 25.05184719 8.398767e-04 1.312321 50 30
## 768 1460 6.102698e+00 24.47278114 2.653130e-03 1.228241 50 30
## 769 1460 -7.484325e+00 -22.87800944 9.951604e-04 1.196858 50 30
## 770 1460 1.681532e+01 -5.42980493 2.360376e-04 1.176920 50 30
## 771 1460 -1.331178e+00 -0.18089438 1.097406e-03 1.164909 50 30
## 772 1460 -1.275985e+01 1.46994717 1.242895e-03 1.155632 50 30
## 773 1460 -1.398837e-01 4.62520677 8.643886e-04 1.148755 50 30
## 774 1460 -1.238427e+01 3.85167183 1.142203e-03 1.143827 50 30
## 775 1460 -1.689352e+00 -28.27458782 2.400482e-04 1.139748 50 30
## 776 1460 2.011053e+01 -21.72872424 7.335255e-04 1.135437 50 30
## 777 1460 -4.185983e+00 -26.01796732 5.830547e-04 1.131049 50 30
## 778 1460 -5.941990e+00 3.04858623 1.239864e-03 1.127886 50 30
## 779 1460 -2.103539e+01 31.40418001 1.426553e-04 1.125117 50 30
## 780 1460 -2.584114e-01 -4.11333114 1.402951e-03 1.123256 50 30
## 781 1460 -5.117227e+00 -29.04365058 1.377946e-03 73.771148 50 30
## 782 1460 2.287722e+01 2.45546364 9.045856e-04 71.150987 50 30
## 783 1460 -8.053641e+00 -25.49248111 8.946531e-04 71.034367 50 30
## 784 1460 8.764121e-01 -4.86282066 1.072917e-03 71.035404 50 30
## 785 1460 -2.641605e+01 12.32514241 2.837450e-04 71.037731 50 30
## 786 1460 3.905587e+00 4.46224804 8.899246e-04 1.555216 50 30
## 787 1460 -1.873486e+01 -4.55845615 2.024694e-03 1.312321 50 30
## 788 1460 2.051408e+01 2.53578256 9.031469e-05 1.228241 50 30
## 789 1460 -1.575695e+01 8.06201271 1.304618e-03 1.196858 50 30
## 790 1460 1.362909e+01 8.78828823 6.220816e-04 1.176920 50 30
## 791 1460 1.409328e+01 -23.08478368 5.972777e-04 1.164909 50 30
## 792 1460 -3.086786e+00 -1.23957666 1.042633e-03 1.155632 50 30
## 793 1460 1.780693e+01 4.74816212 1.060077e-03 1.148755 50 30
## 794 1460 -4.441382e+00 -25.51706943 4.063564e-04 1.143827 50 30
## 795 1460 7.543824e+00 25.87526410 1.127606e-03 1.139748 50 30
## 796 1460 1.785943e+01 13.49473342 1.121127e-03 1.135437 50 30
## 797 1460 -1.070138e+01 -2.59360976 9.667791e-04 1.131049 50 30
## 798 1460 -1.237423e+01 4.04655235 1.941546e-03 1.127886 50 30
## 799 1460 2.611046e+01 -4.92802406 5.346232e-04 1.125117 50 30
## 800 1460 -2.632408e+01 6.81924534 4.903104e-04 1.123256 50 30
## 801 1460 6.405846e+00 24.62813179 6.377030e-04 73.771148 50 30
## 802 1460 -1.447666e+01 8.38592161 1.099303e-03 71.150987 50 30
## 803 1460 1.963638e+01 4.46122387 4.196261e-04 71.034367 50 30
## 804 1460 2.605040e+01 -5.37520070 7.967552e-04 71.035404 50 30
## 805 1460 -1.230028e+01 3.34197801 2.055436e-03 71.037731 50 30
## 806 1460 -3.186808e+00 -24.86406256 5.659359e-04 1.555216 50 30
## 807 1460 -2.017632e+00 7.33048962 4.919036e-04 1.312321 50 30
## 808 1460 1.724130e+01 1.93318048 3.805844e-04 1.228241 50 30
## 809 1460 -1.734877e-01 2.49383947 9.828810e-04 1.196858 50 30
## 810 1460 -2.786801e+01 -11.57664139 1.129358e-04 1.176920 50 30
## 811 1460 1.109776e+01 -3.18795762 4.840593e-04 1.164909 50 30
## 812 1460 1.797678e+01 -18.95566053 5.103896e-04 1.155632 50 30
## 813 1460 -8.096568e+00 18.32090961 1.238616e-03 1.148755 50 30
## 814 1460 -6.008360e+00 20.38045459 5.219803e-04 1.143827 50 30
## 815 1460 -2.931262e+01 5.19634737 6.474079e-04 1.139748 50 30
## 816 1460 -6.870308e+00 -27.36059946 5.367721e-04 1.135437 50 30
## 817 1460 -1.372463e+01 12.61403325 1.778605e-03 1.131049 50 30
## 818 1460 1.146903e+00 -18.84434272 5.244501e-04 1.127886 50 30
## 819 1460 -4.147130e+00 0.57531692 9.612342e-04 1.125117 50 30
## 820 1460 1.235455e+01 -21.47314085 2.402009e-04 1.123256 50 30
## 821 1460 2.808087e+01 3.65805961 1.121237e-03 73.771148 50 30
## 822 1460 -2.151373e+01 11.97559806 3.023670e-04 71.150987 50 30
## 823 1460 2.830178e+01 6.14182740 5.438239e-04 71.034367 50 30
## 824 1460 -2.369053e+01 4.50663235 1.205880e-03 71.035404 50 30
## 825 1460 -5.117647e+00 -24.11812589 3.973401e-04 71.037731 50 30
## 826 1460 3.910414e+00 -21.21990149 2.520965e-04 1.555216 50 30
## 827 1460 -1.617699e+01 15.07975685 1.053945e-03 1.312321 50 30
## 828 1460 -7.716327e+00 -24.61190831 1.127631e-03 1.228241 50 30
## 829 1460 7.664280e+00 14.63099310 7.289996e-04 1.196858 50 30
## 830 1460 3.460204e+01 -3.97106910 5.593832e-04 1.176920 50 30
## 831 1460 5.928051e+00 1.42888417 1.072174e-03 1.164909 50 30
## 832 1460 3.459170e+01 -3.97107326 6.793280e-04 1.155632 50 30
## 833 1460 1.882464e+01 -0.49220703 3.584957e-04 1.148755 50 30
## 834 1460 3.879620e+00 2.79670058 5.961071e-04 1.143827 50 30
## 835 1460 -7.396141e+00 0.84497981 1.709262e-03 1.139748 50 30
## 836 1460 -8.321456e+00 4.37620874 7.426639e-04 1.135437 50 30
## 837 1460 -9.777520e+00 13.75793237 8.828906e-04 1.131049 50 30
## 838 1460 4.343245e+01 1.82054679 1.954341e-04 1.127886 50 30
## 839 1460 -1.496040e+01 -12.05774143 1.607872e-03 1.125117 50 30
## 840 1460 -1.958996e+01 2.40639111 1.880676e-03 1.123256 50 30
## 841 1460 -2.818267e+01 9.10943816 5.145517e-04 73.771148 50 30
## 842 1460 -2.874630e+01 10.82583611 1.143370e-03 71.150987 50 30
## 843 1460 6.472080e-01 2.98572861 9.148531e-04 71.034367 50 30
## 844 1460 -2.455601e+01 -12.20342016 2.721760e-04 71.035404 50 30
## 845 1460 -2.720029e+01 10.12167635 1.430057e-04 71.037731 50 30
## 846 1460 -7.897835e-01 -7.22811114 1.141861e-03 1.555216 50 30
## 847 1460 1.733338e+01 -2.16842825 4.810059e-04 1.312321 50 30
## 848 1460 -6.956219e+00 5.38203684 4.940974e-04 1.228241 50 30
## 849 1460 -3.052905e+01 -0.46806334 7.118081e-04 1.196858 50 30
## 850 1460 1.603989e+01 10.90769594 1.521286e-03 1.176920 50 30
## 851 1460 1.865359e+01 -19.25549844 3.318715e-04 1.164909 50 30
## 852 1460 1.355331e+01 -24.40585094 3.378667e-04 1.155632 50 30
## 853 1460 -2.774107e+01 -2.57780187 7.653433e-04 1.148755 50 30
## 854 1460 -4.599633e+00 -0.97290983 8.194796e-04 1.143827 50 30
## 855 1460 4.918089e+00 4.42666956 8.270815e-04 1.139748 50 30
## 856 1460 -8.670341e+00 9.71740608 4.426899e-04 1.135437 50 30
## 857 1460 -1.838698e+00 5.00713322 6.132729e-04 1.131049 50 30
## 858 1460 2.734701e+01 9.27614069 8.051543e-04 1.127886 50 30
## 859 1460 -1.061908e+01 -5.75299418 1.289396e-03 1.125117 50 30
## 860 1460 1.635145e+01 13.68853378 7.827747e-04 1.123256 50 30
## 861 1460 -2.181758e+01 6.45902431 8.850175e-04 73.771148 50 30
## 862 1460 -2.407966e+00 0.27798965 7.756711e-04 71.150987 50 30
## 863 1460 -1.237136e+01 -3.58474399 1.191341e-03 71.034367 50 30
## 864 1460 -7.908847e+00 3.41937365 1.108086e-03 71.035404 50 30
## 865 1460 -5.288801e+00 -23.41238988 6.897561e-04 71.037731 50 30
## 866 1460 -7.848009e+00 1.69095824 8.222223e-04 1.555216 50 30
## 867 1460 -2.521124e+00 -27.55759962 3.792179e-04 1.312321 50 30
## 868 1460 -5.302855e+00 18.93204904 7.287320e-04 1.228241 50 30
## 869 1460 -1.823561e+01 29.83942695 3.466033e-04 1.196858 50 30
## 870 1460 1.879473e+01 -1.40241438 1.185860e-03 1.176920 50 30
## 871 1460 -1.495464e+01 5.12110164 1.947584e-03 1.164909 50 30
## 872 1460 2.072226e+01 0.80593961 7.369730e-04 1.155632 50 30
## 873 1460 -1.851630e+01 11.49243712 4.521833e-04 1.148755 50 30
## 874 1460 -3.742910e+01 6.13454960 4.658005e-04 1.143827 50 30
## 875 1460 -2.304248e+01 5.04488117 1.526219e-03 1.139748 50 30
## 876 1460 2.448369e+01 2.05752209 7.602905e-04 1.135437 50 30
## 877 1460 -8.382555e+00 5.34261569 3.729694e-04 1.131049 50 30
## 878 1460 2.012176e+01 -5.66732859 3.846487e-04 1.127886 50 30
## 879 1460 -5.770101e+00 18.72527054 1.127221e-03 1.125117 50 30
## 880 1460 -7.413071e+00 10.02193220 9.502276e-04 1.123256 50 30
## 881 1460 -1.262589e+01 -12.01881110 1.093420e-03 73.771148 50 30
## 882 1460 2.225349e+01 -0.48587598 7.017228e-04 71.150987 50 30
## 883 1460 2.901456e+01 8.23230254 5.468146e-04 71.034367 50 30
## 884 1460 -3.723967e+01 5.19944078 2.715811e-04 71.035404 50 30
## 885 1460 -9.780668e+00 0.99038400 1.511591e-03 71.037731 50 30
## 886 1460 1.161320e+01 -21.12774451 2.040082e-04 1.555216 50 30
## 887 1460 -2.427067e+01 -13.40257762 1.775299e-04 1.312321 50 30
## 888 1460 -2.905965e+01 -1.32287300 5.154863e-04 1.228241 50 30
## 889 1460 -5.947290e+00 -12.97735564 1.418002e-03 1.196858 50 30
## 890 1460 7.074888e+00 -10.11819565 4.267903e-04 1.176920 50 30
## 891 1460 -7.665835e+00 21.17480941 7.582184e-04 1.164909 50 30
## 892 1460 1.018901e+01 8.02446504 1.185549e-03 1.155632 50 30
## 893 1460 2.762826e+00 16.85885197 5.948341e-04 1.148755 50 30
## 894 1460 -5.106265e+00 -4.79572723 1.562450e-03 1.143827 50 30
## 895 1460 -2.167032e+01 31.10299047 2.518628e-04 1.139748 50 30
## 896 1460 1.328718e+01 11.80285313 7.238856e-04 1.135437 50 30
## 897 1460 -1.498444e+01 9.85801870 1.423634e-03 1.131049 50 30
## 898 1460 -2.161810e+01 31.71941595 2.133146e-04 1.127886 50 30
## 899 1460 4.324324e+00 -22.16813291 2.984918e-04 1.125117 50 30
## 900 1460 -1.008016e+01 3.77654627 1.259998e-03 1.123256 50 30
## 901 1460 -1.066760e+01 5.85222374 1.338883e-03 73.771148 50 30
## 902 1460 -7.251384e+00 7.77469717 8.171737e-04 71.150987 50 30
## 903 1460 2.927122e+01 5.13136770 8.754676e-04 71.034367 50 30
## 904 1460 -2.938389e+00 -28.64184087 3.251980e-04 71.035404 50 30
## 905 1460 -9.661420e+00 1.00883189 1.493846e-03 71.037731 50 30
## 906 1460 -2.588583e+00 3.20957689 1.344890e-03 1.555216 50 30
## 907 1460 -3.527648e-01 -22.55932353 1.201499e-03 1.312321 50 30
## 908 1460 -2.642811e+01 -2.79570475 1.265630e-03 1.228241 50 30
## 909 1460 -5.715670e-01 7.64189375 3.913766e-04 1.196858 50 30
## 910 1460 2.488500e+01 5.78853402 4.949353e-04 1.176920 50 30
## 911 1460 -2.629791e+01 -13.01236266 4.473070e-04 1.164909 50 30
## 912 1460 -8.832117e+00 3.58957797 7.231230e-04 1.155632 50 30
## 913 1460 -7.382108e+00 19.94059649 6.967006e-04 1.148755 50 30
## 914 1460 -2.639376e+01 -11.99151991 6.168830e-04 1.143827 50 30
## 915 1460 3.741110e+01 -2.55474759 2.896978e-04 1.139748 50 30
## 916 1460 4.216568e+01 0.81457089 1.649476e-04 1.135437 50 30
## 917 1460 -1.832633e+01 16.59674457 7.137848e-04 1.131049 50 30
## 918 1460 -1.189144e+01 4.23733884 4.232675e-04 1.127886 50 30
## 919 1460 1.459040e+01 2.28958290 8.878879e-04 1.125117 50 30
## 920 1460 3.726775e+00 5.92879045 1.393006e-03 1.123256 50 30
## 921 1460 9.638114e+00 17.32767660 1.495686e-03 73.771148 50 30
## 922 1460 -1.641162e+01 21.19277620 1.532595e-03 71.150987 50 30
## 923 1460 -7.034183e+00 -22.04224508 9.114816e-04 71.034367 50 30
## 924 1460 1.404905e+01 -18.92013700 1.788638e-03 71.035404 50 30
## 925 1460 -1.538059e+00 -10.00375421 8.535428e-04 71.037731 50 30
## 926 1460 3.359925e+00 18.35333014 5.426393e-04 1.555216 50 30
## 927 1460 2.618259e+01 -2.08479908 1.104932e-03 1.312321 50 30
## 928 1460 1.373536e+01 11.05747207 1.098890e-03 1.228241 50 30
## 929 1460 -7.343864e+00 -26.10971586 6.050349e-04 1.196858 50 30
## 930 1460 2.405582e+01 9.56053316 8.451054e-04 1.176920 50 30
## 931 1460 -7.558511e+00 -24.60629073 1.051999e-03 1.164909 50 30
## 932 1460 2.678020e+00 19.68099588 9.797034e-04 1.155632 50 30
## 933 1460 -1.410178e+00 -25.66540734 2.417150e-04 1.148755 50 30
## 934 1460 -5.727191e+00 -26.97408589 1.138565e-03 1.143827 50 30
## 935 1460 -7.255126e+00 -17.84143556 6.009890e-04 1.139748 50 30
## 936 1460 -2.056951e+01 13.79547416 2.025919e-04 1.135437 50 30
## 937 1460 -4.813568e+00 -19.23097887 1.477363e-03 1.131049 50 30
## 938 1460 2.145533e+01 2.24465034 5.470939e-04 1.127886 50 30
## 939 1460 3.123538e+01 2.61884139 7.768049e-04 1.125117 50 30
## 940 1460 -2.706266e+01 8.55841306 2.185743e-04 1.123256 50 30
## 941 1460 -2.374342e+01 -13.11667454 5.582116e-04 73.771148 50 30
## 942 1460 8.124232e+00 -11.02768175 4.871321e-04 71.150987 50 30
## 943 1460 -2.136237e+01 -14.23266214 8.466606e-04 71.034367 50 30
## 944 1460 -2.450247e+01 -12.61376889 4.212107e-04 71.035404 50 30
## 945 1460 5.718875e+00 13.92957504 6.286667e-04 71.037731 50 30
## 946 1460 -3.793411e+01 6.94319465 3.391381e-04 1.555216 50 30
## 947 1460 -1.730079e-01 2.51112376 8.394412e-04 1.312321 50 30
## 948 1460 4.990729e-01 -19.45185003 3.134796e-04 1.228241 50 30
## 949 1460 2.573341e+01 0.23175510 1.056345e-03 1.196858 50 30
## 950 1460 -6.683567e+00 8.84251118 9.470681e-04 1.176920 50 30
## 951 1460 -1.836154e-01 10.05961913 6.305012e-04 1.164909 50 30
## 952 1460 -6.353323e+00 5.07722391 1.482111e-03 1.155632 50 30
## 953 1460 1.993069e+00 16.55959172 7.695409e-04 1.148755 50 30
## 954 1460 5.445397e+00 22.52539411 5.444666e-04 1.143827 50 30
## 955 1460 6.391592e+00 18.55317332 2.655221e-04 1.139748 50 30
## 956 1460 -2.628905e+01 -12.36518772 4.838217e-04 1.135437 50 30
## 957 1460 4.126466e+01 2.99622020 3.887690e-04 1.131049 50 30
## 958 1460 -1.120897e+01 4.90180385 1.252633e-03 1.127886 50 30
## 959 1460 -5.269110e+00 -19.20754897 1.102381e-03 1.125117 50 30
## 960 1460 3.791865e+01 -1.48672125 1.798283e-04 1.123256 50 30
## 961 1460 -9.589550e+00 8.77370572 5.121740e-04 73.771148 50 30
## 962 1460 1.579365e+01 8.85317676 8.090588e-04 71.150987 50 30
## 963 1460 4.049732e+01 2.93123821 4.819172e-04 71.034367 50 30
## 964 1460 -8.708506e+00 -26.98347209 3.462337e-04 71.035404 50 30
## 965 1460 1.907061e+01 0.44338010 3.483558e-04 71.037731 50 30
## 966 1460 2.998110e+01 5.40395623 4.792935e-04 1.555216 50 30
## 967 1460 -2.172626e+01 2.87436222 4.485017e-04 1.312321 50 30
## 968 1460 -7.341139e+00 0.97400422 1.060335e-03 1.228241 50 30
## 969 1460 -1.826862e+01 6.67485588 1.059746e-03 1.196858 50 30
## 970 1460 -2.230239e+00 -2.86042153 5.952667e-04 1.176920 50 30
## 971 1460 -2.352155e+01 1.98654884 6.260106e-04 1.164909 50 30
## 972 1460 3.818989e+01 -2.44527587 6.441393e-04 1.155632 50 30
## 973 1460 3.104352e+00 -6.40610498 1.299169e-03 1.148755 50 30
## 974 1460 -3.755354e+00 -24.04735352 2.896583e-04 1.143827 50 30
## 975 1460 -2.195958e+01 7.15546895 6.071963e-04 1.139748 50 30
## 976 1460 3.612938e+01 -1.09290900 6.792112e-04 1.135437 50 30
## 977 1460 -1.690144e+01 7.42284011 4.395690e-04 1.131049 50 30
## 978 1460 1.443646e+01 -17.52825775 6.999923e-04 1.127886 50 30
## 979 1460 -1.178708e+01 5.29204716 1.087859e-03 1.125117 50 30
## 980 1460 -7.724412e+00 6.80768194 1.888220e-03 1.123256 50 30
## 981 1460 8.020856e+00 4.96183228 1.535517e-03 73.771148 50 30
## 982 1460 1.968250e+01 -5.12770431 5.464849e-04 71.150987 50 30
## 983 1460 1.471621e+01 -24.47806271 6.803336e-04 71.034367 50 30
## 984 1460 2.783601e+01 1.72962700 4.325823e-04 71.035404 50 30
## 985 1460 -2.158671e+01 31.26907605 2.864610e-04 71.037731 50 30
## 986 1460 -2.607944e+00 -3.44212844 1.391212e-03 1.555216 50 30
## 987 1460 -2.134642e+01 8.13712425 4.106864e-04 1.312321 50 30
## 988 1460 4.557601e+00 -21.80832785 6.219017e-04 1.228241 50 30
## 989 1460 1.417626e+01 11.04893260 1.713319e-03 1.196858 50 30
## 990 1460 3.061973e+01 4.26477921 6.776980e-04 1.176920 50 30
## 991 1460 2.117599e+01 -3.91065150 6.564205e-04 1.164909 50 30
## 992 1460 -2.176293e+01 6.10124669 4.295297e-04 1.155632 50 30
## 993 1460 1.062470e+01 8.16595345 7.895153e-04 1.148755 50 30
## 994 1460 3.045763e+01 4.49522915 5.624527e-04 1.143827 50 30
## 995 1460 3.264151e+00 -20.54928398 7.032715e-04 1.139748 50 30
## 996 1460 -2.601531e+01 -1.18130728 8.891386e-04 1.135437 50 30
## 997 1460 -8.133781e+00 6.13425107 8.209659e-04 1.131049 50 30
## 998 1460 -1.040749e+01 -5.73512771 9.879143e-04 1.127886 50 30
## 999 1460 -2.262029e+01 13.59590148 4.590973e-04 1.125117 50 30
## 1000 1460 -3.564150e+00 -18.75894573 6.930639e-04 1.123256 50 30
## 1001 1460 -1.980448e+01 28.63818226 1.690025e-04 73.771148 50 30
## 1002 1460 -2.068857e+01 14.22379325 6.025474e-04 71.150987 50 30
## 1003 1460 -3.589992e+00 -26.93875057 1.065344e-03 71.034367 50 30
## 1004 1460 -2.487918e+01 -13.22496524 4.383308e-04 71.035404 50 30
## 1005 1460 1.437607e+01 -23.34258497 2.707118e-04 71.037731 50 30
## 1006 1460 -5.167054e+00 1.41679120 6.452862e-04 1.555216 50 30
## 1007 1460 5.871516e+00 14.82983774 7.049077e-04 1.312321 50 30
## 1008 1460 4.186937e+01 4.49670153 4.818595e-04 1.228241 50 30
## 1009 1460 1.047803e+00 -27.42429027 7.510193e-04 1.196858 50 30
## 1010 1460 -3.697289e+01 5.59647443 3.697329e-04 1.176920 50 30
## 1011 1460 -2.673887e+01 8.77739651 4.728464e-04 1.164909 50 30
## 1012 1460 -2.189431e+01 31.05650196 1.440689e-04 1.155632 50 30
## 1013 1460 -2.817575e+01 0.72344540 5.862147e-04 1.148755 50 30
## 1014 1460 -4.323166e+00 11.77740404 1.202479e-03 1.143827 50 30
## 1015 1460 -8.205287e+00 -3.37864833 5.465144e-04 1.139748 50 30
## 1016 1460 2.005548e+01 3.29042530 6.903821e-04 1.135437 50 30
## 1017 1460 -8.193068e-01 -17.65906847 1.365826e-03 1.131049 50 30
## 1018 1460 1.228137e+01 -18.73250335 6.134088e-04 1.127886 50 30
## 1019 1460 2.328508e+01 8.42413411 9.284490e-04 1.125117 50 30
## 1020 1460 1.377834e+01 -23.99715623 4.154421e-04 1.123256 50 30
## 1021 1460 -1.258762e+01 -12.12771134 8.560971e-04 73.771148 50 30
## 1022 1460 -3.462766e+00 -20.50986217 7.139224e-04 71.150987 50 30
## 1023 1460 -2.383539e+01 11.77749299 1.302100e-03 71.034367 50 30
## 1024 1460 1.407295e+01 -23.48333219 7.359243e-04 71.035404 50 30
## 1025 1460 -5.147080e+00 -11.27880136 6.344892e-04 71.037731 50 30
## 1026 1460 -9.972752e-01 8.04493407 1.091412e-03 1.555216 50 30
## 1027 1460 5.657853e+00 1.36390165 5.813470e-04 1.312321 50 30
## 1028 1460 7.001663e-01 -20.84256916 6.321172e-04 1.228241 50 30
## 1029 1460 -1.844255e+01 0.48910147 2.076280e-03 1.196858 50 30
## 1030 1460 4.364912e+01 0.46750954 1.657429e-04 1.176920 50 30
## 1031 1460 -2.853037e+01 -9.38409230 7.204691e-04 1.164909 50 30
## 1032 1460 -3.817476e+01 4.74453533 4.190340e-04 1.155632 50 30
## 1033 1460 1.652645e+01 3.21243803 4.222562e-04 1.148755 50 30
## 1034 1460 -2.818841e+00 -18.02887861 1.521139e-04 1.143827 50 30
## 1035 1460 -1.704991e+01 7.23627672 7.662017e-04 1.139748 50 30
## 1036 1460 -1.971160e+01 28.91558882 1.023423e-04 1.135437 50 30
## 1037 1460 3.022442e+00 -19.63453419 3.085591e-04 1.131049 50 30
## 1038 1460 1.994407e+01 13.09933373 1.441116e-03 1.127886 50 30
## 1039 1460 4.127823e+01 1.63140635 2.201967e-04 1.125117 50 30
## 1040 1460 4.537101e+01 4.35158322 5.252710e-04 1.123256 50 30
## 1041 1460 -1.031867e+00 -8.93196966 1.162782e-03 73.771148 50 30
## 1042 1460 1.007323e+01 15.60718383 8.063991e-04 71.150987 50 30
## 1043 1460 1.254308e+01 -21.64209343 2.546243e-04 71.034367 50 30
## 1044 1460 1.864228e+01 -2.41512881 1.539050e-03 71.035404 50 30
## 1045 1460 -6.999058e+00 -15.11873767 1.378971e-03 71.037731 50 30
## 1046 1460 -1.907912e+01 29.19548138 2.234189e-04 1.555216 50 30
## 1047 1460 2.418016e+01 -6.63498701 1.031961e-03 1.312321 50 30
## 1048 1460 2.140431e+00 17.78827739 9.270836e-04 1.228241 50 30
## 1049 1460 -1.867491e+01 28.87391053 1.816445e-04 1.196858 50 30
## 1050 1460 -1.909584e+01 27.84326050 3.209966e-04 1.176920 50 30
## 1051 1460 -6.142740e+00 -22.91401802 6.922881e-04 1.164909 50 30
## 1052 1460 -6.155017e+00 -22.77491376 3.536190e-04 1.155632 50 30
## 1053 1460 1.026026e+01 15.48380483 1.216494e-03 1.148755 50 30
## 1054 1460 -9.060549e+00 -0.29086434 4.367892e-04 1.143827 50 30
## 1055 1460 2.051690e+01 -2.79043242 3.109383e-04 1.139748 50 30
## 1056 1460 5.847102e+00 14.89364697 9.630960e-04 1.135437 50 30
## 1057 1460 1.208611e+01 -22.07207184 7.110301e-04 1.131049 50 30
## 1058 1460 2.214374e+01 4.54869411 4.139658e-04 1.127886 50 30
## 1059 1460 2.112798e+01 -6.16285948 4.727771e-04 1.125117 50 30
## 1060 1460 8.174872e+00 7.54460569 1.068494e-03 1.123256 50 30
## 1061 1460 1.478651e+01 -19.88307347 3.548927e-04 73.771148 50 30
## 1062 1460 -8.154381e+00 18.23042425 3.734978e-04 71.150987 50 30
## 1063 1460 -2.731527e+01 -11.18626815 7.146663e-04 71.034367 50 30
## 1064 1460 -1.419262e+01 9.80009944 5.980559e-04 71.035404 50 30
## 1065 1460 1.372570e+00 3.45849508 6.827556e-04 71.037731 50 30
## 1066 1460 1.768549e+01 1.96237138 6.175204e-04 1.555216 50 30
## 1067 1460 2.751481e+01 9.26864289 6.591100e-04 1.312321 50 30
## 1068 1460 8.572639e+00 8.98571465 9.291747e-04 1.228241 50 30
## 1069 1460 1.944673e+01 9.11775877 1.178114e-03 1.196858 50 30
## 1070 1460 2.597496e+00 16.43130068 1.371747e-03 1.176920 50 30
## 1071 1460 4.243406e+00 0.65664540 8.397438e-04 1.164909 50 30
## 1072 1460 -2.089183e+01 2.31920578 1.619287e-03 1.155632 50 30
## 1073 1460 -2.678710e+01 3.58507481 5.303087e-04 1.148755 50 30
## 1074 1460 1.042911e+01 11.06109095 1.259943e-03 1.143827 50 30
## 1075 1460 -6.361345e+00 -25.11208264 4.757638e-04 1.139748 50 30
## 1076 1460 -2.158568e+01 3.54721098 2.881532e-03 1.135437 50 30
## 1077 1460 4.329044e+00 22.44539961 8.164504e-04 1.131049 50 30
## 1078 1460 -1.441909e-01 7.98345234 2.253319e-04 1.127886 50 30
## 1079 1460 1.819425e+01 -19.44504838 2.876382e-04 1.125117 50 30
## 1080 1460 -1.383772e+01 -10.02153423 1.413055e-03 1.123256 50 30
## 1081 1460 5.831098e+00 -11.00920940 5.112421e-04 73.771148 50 30
## 1082 1460 -1.144198e+01 12.96223503 9.371284e-04 71.150987 50 30
## 1083 1460 -4.435156e+00 -27.77659229 1.146039e-03 71.034367 50 30
## 1084 1460 -4.813117e+00 19.94900560 5.939228e-04 71.035404 50 30
## 1085 1460 1.994919e+01 7.54940443 5.303659e-04 71.037731 50 30
## 1086 1460 -2.210414e-01 -0.58001709 2.042410e-03 1.555216 50 30
## 1087 1460 3.900609e+01 4.99569252 1.181484e-03 1.312321 50 30
## 1088 1460 2.904169e+01 1.47959201 5.704814e-04 1.228241 50 30
## 1089 1460 3.894373e+01 -3.88794126 5.276992e-04 1.196858 50 30
## 1090 1460 1.431649e+01 -17.52117446 6.281480e-04 1.176920 50 30
## 1091 1460 -2.174912e+01 30.13354231 1.417364e-04 1.164909 50 30
## 1092 1460 3.824233e+01 -1.29794466 4.435356e-04 1.155632 50 30
## 1093 1460 -2.591579e+01 8.35332532 7.270456e-04 1.148755 50 30
## 1094 1460 -7.560737e+00 11.64821996 5.407934e-04 1.143827 50 30
## 1095 1460 3.255168e+00 6.13436882 4.724381e-04 1.139748 50 30
## 1096 1460 -7.731910e+00 -24.01352774 7.567033e-04 1.135437 50 30
## 1097 1460 -2.839410e+01 12.13425109 6.324476e-04 1.131049 50 30
## 1098 1460 1.556701e+01 -20.82423143 9.944073e-04 1.127886 50 30
## 1099 1460 -1.864419e+01 3.46990186 1.003315e-03 1.125117 50 30
## 1100 1460 -9.750588e+00 -6.55959103 1.575634e-03 1.123256 50 30
## 1101 1460 -1.657438e+01 16.63467097 9.757795e-04 73.771148 50 30
## 1102 1460 -2.286390e+00 8.11857246 1.262305e-03 71.150987 50 30
## 1103 1460 -1.028093e+01 9.51520354 1.370087e-03 71.034367 50 30
## 1104 1460 7.224637e-01 17.99542854 7.833013e-04 71.035404 50 30
## 1105 1460 4.207185e+01 0.89357968 2.464858e-04 71.037731 50 30
## 1106 1460 1.927078e+01 -5.69171672 5.116360e-04 1.555216 50 30
## 1107 1460 -6.319127e+00 -17.44892980 7.646354e-04 1.312321 50 30
## 1108 1460 3.059302e+01 3.00658068 2.990408e-04 1.228241 50 30
## 1109 1460 2.860724e+01 7.93169654 7.724965e-04 1.196858 50 30
## 1110 1460 2.342625e+00 -20.92381104 6.745184e-04 1.176920 50 30
## 1111 1460 1.942486e+01 6.74230739 6.666168e-04 1.164909 50 30
## 1112 1460 1.375941e+01 11.57648627 1.214632e-03 1.155632 50 30
## 1113 1460 -1.017098e+01 6.91305971 6.271881e-04 1.148755 50 30
## 1114 1460 -9.030985e+00 8.57849474 1.628434e-03 1.143827 50 30
## 1115 1460 -1.186297e+01 7.06521630 7.451035e-04 1.139748 50 30
## 1116 1460 7.020349e-01 -22.09189625 2.419479e-04 1.135437 50 30
## 1117 1460 2.087913e+01 5.26408781 3.467293e-04 1.131049 50 30
## 1118 1460 -7.699209e+00 8.92649953 8.856490e-04 1.127886 50 30
## 1119 1460 7.131393e+00 17.64318281 1.234086e-03 1.125117 50 30
## 1120 1460 -1.365253e+01 12.87736692 1.675510e-03 1.123256 50 30
## 1121 1460 -2.177901e+01 12.46767044 1.145040e-03 73.771148 50 30
## 1122 1460 -4.323909e+00 -25.93162286 7.241208e-04 71.150987 50 30
## 1123 1460 -1.488771e+01 2.33531476 4.678111e-04 71.034367 50 30
## 1124 1460 1.902285e+00 14.94254567 6.426207e-04 71.035404 50 30
## 1125 1460 2.323238e+01 8.48104911 1.391401e-03 71.037731 50 30
## 1126 1460 -1.525815e+01 4.41172360 9.412034e-04 1.555216 50 30
## 1127 1460 1.420263e+01 -23.79490437 1.792364e-04 1.312321 50 30
## 1128 1460 -6.784427e+00 -17.79898311 1.000777e-03 1.228241 50 30
## 1129 1460 2.790675e+01 6.10443510 6.654976e-04 1.196858 50 30
## 1130 1460 5.578832e-04 -4.11400103 1.264280e-03 1.176920 50 30
## 1131 1460 -2.311567e+01 -1.04893578 7.008254e-04 1.164909 50 30
## 1132 1460 -1.446506e+01 -9.81021520 1.316617e-03 1.155632 50 30
## 1133 1460 -2.472974e+01 2.15184306 5.626217e-04 1.148755 50 30
## 1134 1460 2.110838e+01 2.01568581 6.882406e-04 1.143827 50 30
## 1135 1460 2.752842e+01 7.72394426 6.590629e-04 1.139748 50 30
## 1136 1460 -1.625696e+01 10.31502777 1.470908e-03 1.135437 50 30
## 1137 1460 -2.431237e+01 9.01241964 2.325498e-03 1.131049 50 30
## 1138 1460 -2.671382e+01 14.03859705 7.014493e-04 1.127886 50 30
## 1139 1460 -2.908112e+00 -14.50276719 9.470780e-04 1.125117 50 30
## 1140 1460 -2.362709e+01 -3.71723207 1.711662e-03 1.123256 50 30
## 1141 1460 -1.006735e+01 6.59472056 3.169763e-04 73.771148 50 30
## 1142 1460 1.577277e+01 8.95402236 5.938933e-04 71.150987 50 30
## 1143 1460 2.326193e+01 -6.30793676 4.229547e-04 71.034367 50 30
## 1144 1460 -1.309979e+01 2.57857678 1.286458e-03 71.035404 50 30
## 1145 1460 -1.838513e+01 2.67581196 8.221708e-04 71.037731 50 30
## 1146 1460 -2.455448e+01 4.69107882 1.460148e-03 1.555216 50 30
## 1147 1460 -1.732819e+00 -15.43779647 1.165786e-03 1.312321 50 30
## 1148 1460 -2.136864e+01 3.06793655 1.482529e-03 1.228241 50 30
## 1149 1460 -2.541797e+01 11.08488888 8.971552e-04 1.196858 50 30
## 1150 1460 -2.861912e+01 3.94421667 1.545307e-03 1.176920 50 30
## 1151 1460 -2.111498e+01 12.94200347 6.416376e-04 1.164909 50 30
## 1152 1460 6.882393e+00 2.04552578 1.012599e-03 1.155632 50 30
## 1153 1460 -2.335847e+00 12.05244588 1.497803e-03 1.148755 50 30
## 1154 1460 -1.646850e+01 12.65731182 9.387315e-04 1.143827 50 30
## 1155 1460 1.668047e+01 14.58396039 8.523476e-04 1.139748 50 30
## 1156 1460 5.777439e+00 -1.61421878 8.586945e-04 1.135437 50 30
## 1157 1460 5.705424e+00 -10.96830026 4.983862e-04 1.131049 50 30
## 1158 1460 1.248023e+01 -21.54590171 6.122136e-04 1.127886 50 30
## 1159 1460 -2.927891e+00 -25.17525752 4.102469e-04 1.125117 50 30
## 1160 1460 1.377661e+01 11.45552110 8.218717e-04 1.123256 50 30
## 1161 1460 4.075486e+01 2.99703147 5.425477e-04 73.771148 50 30
## 1162 1460 6.696109e+00 -11.10798818 4.174358e-04 71.150987 50 30
## 1163 1460 -1.106164e+01 3.63380807 6.734053e-04 71.034367 50 30
## 1164 1460 -9.854036e+00 24.09378540 1.185915e-03 71.035404 50 30
## 1165 1460 1.886538e+00 8.17287176 7.848757e-04 71.037731 50 30
## 1166 1460 -3.207786e+00 -24.89152940 4.362029e-04 1.555216 50 30
## 1167 1460 -6.555557e+00 -27.88720360 6.219395e-04 1.312321 50 30
## 1168 1460 1.857838e+01 6.07486250 4.617541e-04 1.228241 50 30
## 1169 1460 -2.731390e+01 -3.16804614 1.461541e-03 1.196858 50 30
## 1170 1460 2.394386e+01 -7.47059207 5.124862e-04 1.176920 50 30
## 1171 1460 1.111988e+01 -3.22518254 6.495679e-04 1.164909 50 30
## 1172 1460 -5.232046e+00 20.51781611 7.428318e-04 1.155632 50 30
## 1173 1460 3.643738e+01 -2.71119230 5.408639e-04 1.148755 50 30
## 1174 1460 -3.847530e+01 5.30755199 2.723561e-04 1.143827 50 30
## 1175 1460 -1.324855e+01 18.74955209 2.468791e-03 1.139748 50 30
## 1176 1460 2.215166e+01 -3.98269169 5.667313e-04 1.135437 50 30
## 1177 1460 -6.623236e+00 5.12806702 5.869408e-04 1.131049 50 30
## 1178 1460 -2.853650e+01 13.76604497 6.920433e-04 1.127886 50 30
## 1179 1460 -2.645943e+01 10.46297446 6.947023e-04 1.125117 50 30
## 1180 1460 -2.011332e+01 28.90342472 2.898501e-05 1.123256 50 30
## 1181 1460 1.481600e+01 5.36193596 7.395257e-04 73.771148 50 30
## 1182 1460 6.736955e+00 -12.21303489 2.332707e-04 71.150987 50 30
## 1183 1460 1.154234e+01 -3.55128410 5.944638e-04 71.034367 50 30
## 1184 1460 -1.147857e+01 8.58264895 8.274665e-04 71.035404 50 30
## 1185 1460 6.746459e+00 1.43837173 2.765337e-04 71.037731 50 30
## 1186 1460 -2.837433e+01 7.51539665 1.158424e-03 1.555216 50 30
## 1187 1460 -2.659295e+01 -11.58906054 3.174480e-04 1.312321 50 30
## 1188 1460 -5.874203e+00 -16.65658335 1.412758e-03 1.228241 50 30
## 1189 1460 2.603268e+01 2.66571558 1.444675e-03 1.196858 50 30
## 1190 1460 2.593993e+01 7.03373175 5.563269e-04 1.176920 50 30
## 1191 1460 -1.889696e+00 -5.23128809 5.828768e-04 1.164909 50 30
## 1192 1460 3.951889e+01 -1.88633824 2.472624e-04 1.155632 50 30
## 1193 1460 -2.760298e+01 12.30026092 1.041782e-03 1.148755 50 30
## 1194 1460 2.005789e+01 -21.82105495 6.881331e-04 1.143827 50 30
## 1195 1460 1.040208e+01 11.09688786 8.550760e-04 1.139748 50 30
## 1196 1460 2.657702e+01 5.76044375 9.569298e-04 1.135437 50 30
## 1197 1460 2.867321e+01 6.20854607 2.368792e-04 1.131049 50 30
## 1198 1460 -2.587669e+01 10.24392548 8.321973e-04 1.127886 50 30
## 1199 1460 -7.889795e+00 -25.17995675 6.210642e-04 1.125117 50 30
## 1200 1460 -8.807661e+00 -2.72110931 1.391958e-03 1.123256 50 30
## 1201 1460 -1.442622e+01 3.91066794 1.123287e-03 73.771148 50 30
## 1202 1460 2.538944e+01 4.07563732 4.246981e-04 71.150987 50 30
## 1203 1460 -2.711044e+01 11.83053509 8.216213e-04 71.034367 50 30
## 1204 1460 -4.395245e+00 -27.95915051 3.286065e-04 71.035404 50 30
## 1205 1460 -5.540404e+00 -3.10662396 1.637921e-03 71.037731 50 30
## 1206 1460 -3.437525e+00 -11.57352414 7.628132e-04 1.555216 50 30
## 1207 1460 -1.224924e+01 1.23510876 1.093222e-03 1.312321 50 30
## 1208 1460 -2.228525e+00 -19.07317049 6.595967e-04 1.228241 50 30
## 1209 1460 -1.866669e+00 9.30115801 8.656144e-04 1.196858 50 30
## 1210 1460 9.769608e-01 -20.79071314 1.616656e-04 1.176920 50 30
## 1211 1460 7.496468e+00 25.83443119 1.217891e-03 1.164909 50 30
## 1212 1460 1.623134e+01 1.75041933 8.171104e-04 1.155632 50 30
## 1213 1460 -1.231975e+01 8.16510489 1.190880e-03 1.148755 50 30
## 1214 1460 1.188064e+00 16.44244860 4.235370e-04 1.143827 50 30
## 1215 1460 -3.003149e+00 -3.77376462 1.367820e-03 1.139748 50 30
## 1216 1460 -2.173778e+00 8.07927966 6.805363e-04 1.135437 50 30
## 1217 1460 -2.161580e+01 31.41839393 2.122230e-04 1.131049 50 30
## 1218 1460 -3.391459e+00 -20.17890218 3.500453e-04 1.127886 50 30
## 1219 1460 -2.045769e+01 28.01313571 1.910477e-04 1.125117 50 30
## 1220 1460 4.250691e+01 0.64155535 9.184533e-05 1.123256 50 30
## 1221 1460 -2.813641e+00 6.42023444 5.312029e-04 73.771148 50 30
## 1222 1460 -2.888345e+00 8.67955170 1.085611e-03 71.150987 50 30
## 1223 1460 1.253417e+01 10.17693910 1.535863e-03 71.034367 50 30
## 1224 1460 -9.590047e+00 -3.55697167 5.013378e-04 71.035404 50 30
## 1225 1460 1.891630e+01 5.08433348 5.587539e-04 71.037731 50 30
## 1226 1460 3.226715e+00 17.19553699 1.097474e-03 1.555216 50 30
## 1227 1460 2.545328e+01 -0.44929614 4.711555e-04 1.312321 50 30
## 1228 1460 -7.559439e+00 11.49657433 6.978101e-04 1.228241 50 30
## 1229 1460 1.275424e+01 -15.23083077 6.815360e-04 1.196858 50 30
## 1230 1460 -2.027348e+01 -0.64457492 1.494166e-03 1.176920 50 30
## 1231 1460 7.304213e+00 24.33729174 3.076218e-04 1.164909 50 30
## 1232 1460 -2.298007e+00 -2.93148379 1.209761e-03 1.155632 50 30
## 1233 1460 -2.171329e+01 30.35183687 1.667421e-04 1.148755 50 30
## 1234 1460 -6.631719e+00 0.99936389 5.054517e-04 1.143827 50 30
## 1235 1460 -2.377807e+01 2.17853681 5.650417e-04 1.139748 50 30
## 1236 1460 -2.452523e+01 2.51870359 5.885619e-04 1.135437 50 30
## 1237 1460 3.777672e+01 -2.70981236 3.715396e-04 1.131049 50 30
## 1238 1460 2.798300e+01 6.11889026 9.251118e-05 1.127886 50 30
## 1239 1460 -1.465409e+01 -12.01168423 6.902102e-04 1.125117 50 30
## 1240 1460 -2.195586e+00 -21.73201766 8.814921e-04 1.123256 50 30
## 1241 1460 2.004363e+01 0.37400684 1.079062e-03 73.771148 50 30
## 1242 1460 -4.748583e+00 -24.33522660 2.407952e-04 71.150987 50 30
## 1243 1460 -6.830488e-01 -10.12432917 5.708259e-04 71.034367 50 30
## 1244 1460 4.842665e+00 -20.46118357 8.297578e-04 71.035404 50 30
## 1245 1460 -2.540166e+01 5.14054193 4.846155e-04 71.037731 50 30
## 1246 1460 1.822073e+01 12.62852049 7.134899e-04 1.555216 50 30
## 1247 1460 3.059456e+01 4.26546151 4.838790e-04 1.312321 50 30
## 1248 1460 -3.884728e+00 0.52393439 6.720847e-04 1.228241 50 30
## 1249 1460 -2.652016e+01 7.27578547 7.951229e-04 1.196858 50 30
## 1250 1460 -2.734123e+00 8.74333801 7.943333e-04 1.176920 50 30
## 1251 1460 -7.047101e+00 -7.86275722 1.128152e-03 1.164909 50 30
## 1252 1460 1.268796e+01 -24.54415123 2.434529e-04 1.155632 50 30
## 1253 1460 -6.075204e+00 19.19902284 1.166881e-03 1.148755 50 30
## 1254 1460 1.095615e+01 6.11424815 1.171564e-03 1.143827 50 30
## 1255 1460 2.560167e+01 6.48476602 1.122767e-03 1.139748 50 30
## 1256 1460 -2.748764e+01 -1.86136962 1.131068e-03 1.135437 50 30
## 1257 1460 1.549194e+00 -18.77620954 6.145089e-04 1.131049 50 30
## 1258 1460 -1.714101e+01 7.83338498 2.365001e-04 1.127886 50 30
## 1259 1460 8.807345e+00 -20.01122653 1.837459e-03 1.125117 50 30
## 1260 1460 1.686083e+00 6.78015255 5.891155e-04 1.123256 50 30
## 1261 1460 2.650805e+01 8.79269085 3.557316e-04 73.771148 50 30
## 1262 1460 -1.224665e+01 4.58749803 1.519423e-03 71.150987 50 30
## 1263 1460 -2.301016e+01 -0.58319763 6.173417e-04 71.034367 50 30
## 1264 1460 -2.647977e+01 9.51812568 1.524213e-03 71.035404 50 30
## 1265 1460 1.335539e+01 -20.16209216 5.209157e-04 71.037731 50 30
## 1266 1460 3.804521e+01 -1.11009780 4.450407e-04 1.555216 50 30
## 1267 1460 -2.977194e+01 -9.99048355 4.511929e-04 1.312321 50 30
## 1268 1460 -8.546546e+00 -27.29141790 6.403968e-04 1.228241 50 30
## 1269 1460 1.315322e+01 16.03351545 1.596197e-03 1.196858 50 30
## 1270 1460 -2.079354e+01 1.53972731 2.011339e-03 1.176920 50 30
## 1271 1460 1.350818e+01 -10.08043664 9.514990e-04 1.164909 50 30
## 1272 1460 -1.140663e+01 -4.92229329 7.413112e-04 1.155632 50 30
## 1273 1460 -3.026996e+00 6.12620086 4.651014e-04 1.148755 50 30
## 1274 1460 4.900909e+00 -1.70005341 5.629987e-04 1.143827 50 30
## 1275 1460 -2.792041e+01 10.91173388 2.846806e-04 1.139748 50 30
## 1276 1460 -2.628841e+01 -12.58959628 6.336748e-04 1.135437 50 30
## 1277 1460 8.084532e+00 17.38720636 9.253381e-04 1.131049 50 30
## 1278 1460 -4.437983e+00 -1.00495019 7.486887e-04 1.127886 50 30
## 1279 1460 1.974963e+01 1.18861282 9.401900e-04 1.125117 50 30
## 1280 1460 -2.313806e+01 10.68184663 3.956677e-04 1.123256 50 30
## 1281 1460 -2.553256e+00 -18.28157578 8.377548e-04 73.771148 50 30
## 1282 1460 5.396652e+00 -0.33463111 6.964195e-04 71.150987 50 30
## 1283 1460 3.714374e+00 4.54991388 6.175788e-04 71.034367 50 30
## 1284 1460 -1.621096e+01 21.68983027 1.486470e-03 71.035404 50 30
## 1285 1460 -2.972198e+01 0.19433069 4.773389e-04 71.037731 50 30
## 1286 1460 -2.356292e+01 4.86935222 1.119647e-03 1.555216 50 30
## 1287 1460 1.529338e+00 3.31870083 8.585373e-04 1.312321 50 30
## 1288 1460 5.446334e+00 16.97106812 3.804077e-04 1.228241 50 30
## 1289 1460 1.250634e+01 -19.86023111 7.389092e-04 1.196858 50 30
## 1290 1460 2.749205e+01 -3.63065731 7.034816e-04 1.176920 50 30
## 1291 1460 -4.303314e+00 -0.20610935 5.811313e-04 1.164909 50 30
## 1292 1460 4.207010e+01 1.92191243 1.433816e-04 1.155632 50 30
## 1293 1460 -2.744753e+01 -11.35344998 4.411814e-04 1.148755 50 30
## 1294 1460 1.800078e+01 14.03130550 1.107602e-03 1.143827 50 30
## 1295 1460 -9.902561e+00 7.33933224 1.118413e-03 1.139748 50 30
## 1296 1460 -7.702431e+00 -0.47944687 3.341449e-04 1.135437 50 30
## 1297 1460 -6.533595e+00 -0.69021909 7.261761e-04 1.131049 50 30
## 1298 1460 2.054247e+01 -20.24396203 6.394960e-04 1.127886 50 30
## 1299 1460 1.176144e+01 -3.74954835 4.905038e-04 1.125117 50 30
## 1300 1460 -2.076496e-01 6.33577148 1.114348e-03 1.123256 50 30
## 1301 1460 2.123520e+01 0.38334018 7.094497e-04 73.771148 50 30
## 1302 1460 -2.731292e+01 -2.44252735 5.585333e-04 71.150987 50 30
## 1303 1460 2.052682e+01 -2.84287412 1.983558e-04 71.034367 50 30
## 1304 1460 -4.679950e+00 -26.44682402 5.531966e-04 71.035404 50 30
## 1305 1460 3.891173e+01 -3.89162125 5.901078e-04 71.037731 50 30
## 1306 1460 2.993982e+00 -19.08183295 1.795725e-04 1.555216 50 30
## 1307 1460 1.210126e+01 -24.62262605 6.037417e-04 1.312321 50 30
## 1308 1460 -1.261369e+01 -10.63398444 1.533238e-03 1.228241 50 30
## 1309 1460 -9.074730e-01 10.23020899 6.808699e-04 1.196858 50 30
## 1310 1460 -1.912910e+00 -15.86942742 1.029424e-03 1.176920 50 30
## 1311 1460 -7.686308e+00 -10.85756114 6.716461e-04 1.164909 50 30
## 1312 1460 -2.851621e+00 -18.77196002 2.266495e-04 1.155632 50 30
## 1313 1460 2.270620e+01 -2.53526167 6.592077e-04 1.148755 50 30
## 1314 1460 2.482795e+01 -2.04747028 5.244640e-04 1.143827 50 30
## 1315 1460 -1.191013e+01 8.10524631 1.300564e-03 1.139748 50 30
## 1316 1460 1.042493e+01 7.58144323 1.153833e-03 1.135437 50 30
## 1317 1460 -6.509026e+00 -28.67571521 9.103305e-04 1.131049 50 30
## 1318 1460 1.230147e+01 -25.57257527 7.496107e-04 1.127886 50 30
## 1319 1460 -3.301944e+00 -28.51996835 5.512957e-04 1.125117 50 30
## 1320 1460 -9.316102e+00 2.63327796 6.367968e-04 1.123256 50 30
## 1321 1460 4.951557e+00 4.72043121 5.022200e-04 73.771148 50 30
## 1322 1460 -2.007404e+01 27.99770980 1.867389e-04 71.150987 50 30
## 1323 1460 1.794273e+01 2.25681985 1.035978e-03 71.034367 50 30
## 1324 1460 -1.364476e+01 7.29529943 4.635868e-04 71.035404 50 30
## 1325 1460 -1.937071e+00 -25.39459310 1.798315e-04 71.037731 50 30
## 1326 1460 -2.028989e+01 15.28298993 6.660403e-04 1.555216 50 30
## 1327 1460 -1.602465e+01 14.85328847 2.948999e-04 1.312321 50 30
## 1328 1460 2.140701e+00 15.30602364 7.064330e-04 1.228241 50 30
## 1329 1460 -3.079910e+01 -2.87859875 1.576978e-03 1.196858 50 30
## 1330 1460 2.746870e+01 8.38715131 4.123686e-04 1.176920 50 30
## 1331 1460 -3.193789e+00 -27.99531387 4.237986e-04 1.164909 50 30
## 1332 1460 -1.379448e+00 -1.53323193 1.477692e-03 1.155632 50 30
## 1333 1460 -1.104080e+01 7.85451212 1.067980e-03 1.148755 50 30
## 1334 1460 -2.639026e+01 12.03696150 7.480435e-04 1.143827 50 30
## 1335 1460 4.313784e+01 2.67665727 3.102439e-04 1.139748 50 30
## 1336 1460 5.018972e+00 16.20276766 1.138778e-03 1.135437 50 30
## 1337 1460 -2.502603e+01 -13.33991386 3.055606e-04 1.131049 50 30
## 1338 1460 -1.675406e+01 10.10527106 4.260767e-04 1.127886 50 30
## 1339 1460 1.767987e+01 4.48867884 3.778574e-04 1.125117 50 30
## 1340 1460 -1.197186e+01 6.55698869 1.325789e-04 1.123256 50 30
## 1341 1460 -1.446913e+01 4.22400006 1.849201e-03 73.771148 50 30
## 1342 1460 -1.249353e+01 -11.01174687 1.456894e-03 71.150987 50 30
## 1343 1460 2.729598e+01 -1.16597113 1.898964e-03 71.034367 50 30
## 1344 1460 -2.356637e+01 5.37631394 7.713671e-04 71.035404 50 30
## 1345 1460 3.047090e+01 5.97558296 4.666967e-04 71.037731 50 30
## 1346 1460 -2.190837e+01 13.97418251 8.189207e-04 1.555216 50 30
## 1347 1460 6.762327e+00 -10.50273444 1.322443e-04 1.312321 50 30
## 1348 1460 4.318283e-01 -22.51522626 2.532287e-04 1.228241 50 30
## 1349 1460 -3.656722e+00 -16.62937037 1.278241e-03 1.196858 50 30
## 1350 1460 -3.702042e+01 5.17766375 2.694002e-04 1.176920 50 30
## 1351 1460 -2.584654e+01 -14.72906381 5.283051e-04 1.164909 50 30
## 1352 1460 1.701152e+01 13.87875352 1.497029e-03 1.155632 50 30
## 1353 1460 -1.961894e+01 9.07431859 9.310188e-04 1.148755 50 30
## 1354 1460 1.880640e+01 -5.27069659 4.004588e-04 1.143827 50 30
## 1355 1460 1.942626e+01 2.44647447 8.521893e-04 1.139748 50 30
## 1356 1460 1.515471e+01 11.29349565 5.487230e-04 1.135437 50 30
## 1357 1460 -9.867016e+00 0.77479541 9.631889e-04 1.131049 50 30
## 1358 1460 -6.964562e+00 8.84894628 9.500521e-04 1.127886 50 30
## 1359 1460 3.764908e+01 -0.34270177 4.035667e-04 1.125117 50 30
## 1360 1460 1.989695e+00 -19.84011817 5.314296e-04 1.123256 50 30
## 1361 1460 -2.919856e+01 9.65331295 3.336737e-04 73.771148 50 30
## 1362 1460 3.187539e-01 -17.76952879 6.637997e-04 71.150987 50 30
## 1363 1460 -2.174909e+01 -1.02780931 8.458363e-04 71.034367 50 30
## 1364 1460 3.013531e+01 6.10894286 4.053416e-04 71.035404 50 30
## 1365 1460 3.459583e+01 -3.96961758 6.101300e-04 71.037731 50 30
## 1366 1460 2.070526e+01 2.67537288 3.730291e-04 1.555216 50 30
## 1367 1460 2.000883e+01 0.32907817 8.719287e-04 1.312321 50 30
## 1368 1460 4.067834e+01 5.00298494 1.340106e-03 1.228241 50 30
## 1369 1460 1.824514e+01 -18.74733841 5.184798e-04 1.196858 50 30
## 1370 1460 -4.590964e+00 -13.73293333 8.141778e-04 1.176920 50 30
## 1371 1460 -2.399639e+01 9.66807337 4.438865e-04 1.164909 50 30
## 1372 1460 4.998440e+00 -1.82405653 1.209042e-03 1.155632 50 30
## 1373 1460 1.751266e+01 4.57877052 3.443515e-04 1.148755 50 30
## 1374 1460 2.916348e+00 -21.91188529 2.690864e-04 1.143827 50 30
## 1375 1460 2.906671e+01 1.57611099 7.561695e-04 1.139748 50 30
## 1376 1460 -2.366398e+00 -27.64143362 4.422657e-04 1.135437 50 30
## 1377 1460 -1.542553e+01 10.21345837 7.706226e-04 1.131049 50 30
## 1378 1460 -1.866683e+01 -1.05064069 1.516564e-03 1.127886 50 30
## 1379 1460 4.310220e+01 1.35819238 1.725718e-04 1.125117 50 30
## 1380 1460 2.622680e+01 6.10666584 3.817043e-04 1.123256 50 30
## 1381 1460 -1.895693e+01 15.72106196 7.224166e-04 73.771148 50 30
## 1382 1460 -7.306908e+00 -7.54582628 8.661589e-04 71.150987 50 30
## 1383 1460 -2.696610e+01 9.97051628 1.283917e-04 71.034367 50 30
## 1384 1460 -2.598000e+01 15.73877384 1.166908e-03 71.035404 50 30
## 1385 1460 -1.878012e+01 3.19652685 1.779332e-03 71.037731 50 30
## 1386 1460 -1.861003e+01 5.42054716 8.674972e-04 1.555216 50 30
## 1387 1460 1.135432e+01 -3.12270130 2.958409e-04 1.312321 50 30
## 1388 1460 -1.789877e+01 -1.58739302 9.518334e-04 1.228241 50 30
## 1389 1460 3.223137e+00 -18.76080570 1.670713e-04 1.196858 50 30
## 1390 1460 -2.826381e+01 3.99850850 1.621857e-03 1.176920 50 30
## 1391 1460 -1.942626e+00 -19.58142467 6.960169e-04 1.164909 50 30
## 1392 1460 -2.508929e+01 -12.95259306 3.634438e-04 1.155632 50 30
## 1393 1460 -3.217513e+00 -3.99328407 8.343260e-04 1.148755 50 30
## 1394 1460 -2.910464e+01 -9.66275390 7.397813e-04 1.143827 50 30
## 1395 1460 1.082041e+01 -20.99354492 6.115731e-04 1.139748 50 30
## 1396 1460 2.584270e+01 -1.61483855 6.766643e-04 1.135437 50 30
## 1397 1460 3.090891e+00 8.95257883 7.130339e-04 1.131049 50 30
## 1398 1460 -2.819301e+01 11.88027754 4.380803e-04 1.127886 50 30
## 1399 1460 -1.750433e+01 0.92893274 1.026517e-03 1.125117 50 30
## 1400 1460 -2.295668e+01 4.02285008 1.137997e-03 1.123256 50 30
## 1401 1460 -2.550102e+01 10.97773251 1.289437e-03 73.771148 50 30
## 1402 1460 1.906586e+01 5.92726893 6.251599e-04 71.150987 50 30
## 1403 1460 -6.030812e+00 -24.70304990 5.400615e-04 71.034367 50 30
## 1404 1460 -1.038455e+00 -19.29325654 9.850615e-05 71.035404 50 30
## 1405 1460 -2.386656e+01 11.36117545 8.398040e-05 71.037731 50 30
## 1406 1460 9.230135e+00 -17.38942026 5.442093e-04 1.555216 50 30
## 1407 1460 -9.327454e-01 -0.14965968 1.155527e-03 1.312321 50 30
## 1408 1460 -8.854525e+00 6.70130812 8.467396e-04 1.228241 50 30
## 1409 1460 -2.899469e+01 -0.85822727 4.657984e-04 1.196858 50 30
## 1410 1460 2.268907e+01 9.64053484 9.739213e-04 1.176920 50 30
## 1411 1460 2.006537e+01 2.54681089 9.351594e-04 1.164909 50 30
## 1412 1460 -2.078524e+01 3.16538571 6.392506e-04 1.155632 50 30
## 1413 1460 -2.179679e+01 30.22033195 1.942632e-04 1.148755 50 30
## 1414 1460 1.277761e+00 -18.70173162 3.241941e-04 1.143827 50 30
## 1415 1460 -2.830772e+01 -0.16233698 1.168225e-03 1.139748 50 30
## 1416 1460 1.580743e+01 -23.78245187 6.510689e-04 1.135437 50 30
## 1417 1460 -2.889879e+01 -10.13346604 7.792210e-04 1.131049 50 30
## 1418 1460 2.096871e+01 -4.48546571 3.990922e-04 1.127886 50 30
## 1419 1460 -2.770916e+00 8.40843064 1.196091e-03 1.125117 50 30
## 1420 1460 -6.531665e+00 -9.51499605 1.223070e-03 1.123256 50 30
## 1421 1460 1.716970e+01 13.71371564 5.184436e-04 73.771148 50 30
## 1422 1460 4.742453e+00 -4.95434696 9.666950e-04 71.150987 50 30
## 1423 1460 1.847358e+01 -19.11311497 3.802887e-04 71.034367 50 30
## 1424 1460 1.124661e+01 -3.27266249 5.747808e-04 71.035404 50 30
## 1425 1460 4.712412e-01 8.16717441 9.501021e-04 71.037731 50 30
## 1426 1460 -1.183659e+01 -1.05178630 4.994076e-04 1.555216 50 30
## 1427 1460 1.975865e+01 -2.33915744 1.054720e-03 1.312321 50 30
## 1428 1460 -2.033919e+01 1.81794261 1.478647e-03 1.228241 50 30
## 1429 1460 -1.087534e+01 11.77413812 6.370088e-04 1.196858 50 30
## 1430 1460 -8.826696e+00 -8.80315052 9.085545e-04 1.176920 50 30
## 1431 1460 2.810761e+01 6.71918546 1.235895e-05 1.164909 50 30
## 1432 1460 3.868118e+00 -5.37952424 6.288693e-04 1.155632 50 30
## 1433 1460 -1.661957e+01 5.17810626 1.096805e-03 1.148755 50 30
## 1434 1460 2.535641e+01 9.06612780 4.559541e-04 1.143827 50 30
## 1435 1460 -4.935467e+00 -4.11613447 1.539246e-03 1.139748 50 30
## 1436 1460 -6.494504e+00 10.44968801 6.199137e-04 1.135437 50 30
## 1437 1460 -1.050849e+01 5.68464705 1.963096e-03 1.131049 50 30
## 1438 1460 7.103009e+00 -11.60549147 2.151471e-04 1.127886 50 30
## 1439 1460 -9.786456e+00 13.71638794 6.997396e-04 1.125117 50 30
## 1440 1460 1.337203e+01 12.78608475 9.893252e-04 1.123256 50 30
## 1441 1460 -3.824934e+01 5.20511904 6.129777e-04 73.771148 50 30
## 1442 1460 1.791757e+01 -18.96874872 4.387507e-04 71.150987 50 30
## 1443 1460 2.088602e+01 -6.26097887 4.572060e-04 71.034367 50 30
## 1444 1460 -1.621145e+01 10.50017360 4.934299e-04 71.035404 50 30
## 1445 1460 -4.787609e+00 -27.51355008 4.254095e-04 71.037731 50 30
## 1446 1460 -1.659919e+00 5.01261706 6.946730e-04 1.555216 50 30
## 1447 1460 -8.850115e+00 0.23989059 3.445671e-04 1.312321 50 30
## 1448 1460 2.029528e+01 -1.74577380 4.550161e-04 1.228241 50 30
## 1449 1460 -2.112497e+01 7.39873074 8.625991e-04 1.196858 50 30
## 1450 1460 4.543679e+01 4.46023390 6.728958e-04 1.176920 50 30
## 1451 1460 -1.623457e+01 21.62679191 1.708126e-03 1.164909 50 30
## 1452 1460 -2.317150e+00 -25.15562445 3.244397e-04 1.155632 50 30
## 1453 1460 2.044313e+01 -20.20933600 9.929341e-04 1.148755 50 30
## 1454 1460 -1.486533e+01 -10.55844168 6.205043e-04 1.143827 50 30
## 1455 1460 -5.134882e+00 -19.33441084 9.290986e-04 1.139748 50 30
## 1456 1460 2.816420e+01 8.06133960 1.117811e-03 1.135437 50 30
## 1457 1460 -1.921733e+00 -12.02716207 8.692068e-04 1.131049 50 30
## 1458 1460 5.645777e+00 26.29267797 1.536823e-03 1.127886 50 30
## 1459 1460 -5.443215e-01 6.01642272 4.247624e-04 1.125117 50 30
## 1460 1460 5.800857e-01 7.68324594 8.081546e-04 1.123256 50 30
## theta max_iter stop_lying_iter mom_switch_iter momentum final_momentum eta
## 1 0.5 1000 250 250 0.5 0.8 200
## 2 0.5 1000 250 250 0.5 0.8 200
## 3 0.5 1000 250 250 0.5 0.8 200
## 4 0.5 1000 250 250 0.5 0.8 200
## 5 0.5 1000 250 250 0.5 0.8 200
## 6 0.5 1000 250 250 0.5 0.8 200
## 7 0.5 1000 250 250 0.5 0.8 200
## 8 0.5 1000 250 250 0.5 0.8 200
## 9 0.5 1000 250 250 0.5 0.8 200
## 10 0.5 1000 250 250 0.5 0.8 200
## 11 0.5 1000 250 250 0.5 0.8 200
## 12 0.5 1000 250 250 0.5 0.8 200
## 13 0.5 1000 250 250 0.5 0.8 200
## 14 0.5 1000 250 250 0.5 0.8 200
## 15 0.5 1000 250 250 0.5 0.8 200
## 16 0.5 1000 250 250 0.5 0.8 200
## 17 0.5 1000 250 250 0.5 0.8 200
## 18 0.5 1000 250 250 0.5 0.8 200
## 19 0.5 1000 250 250 0.5 0.8 200
## 20 0.5 1000 250 250 0.5 0.8 200
## 21 0.5 1000 250 250 0.5 0.8 200
## 22 0.5 1000 250 250 0.5 0.8 200
## 23 0.5 1000 250 250 0.5 0.8 200
## 24 0.5 1000 250 250 0.5 0.8 200
## 25 0.5 1000 250 250 0.5 0.8 200
## 26 0.5 1000 250 250 0.5 0.8 200
## 27 0.5 1000 250 250 0.5 0.8 200
## 28 0.5 1000 250 250 0.5 0.8 200
## 29 0.5 1000 250 250 0.5 0.8 200
## 30 0.5 1000 250 250 0.5 0.8 200
## 31 0.5 1000 250 250 0.5 0.8 200
## 32 0.5 1000 250 250 0.5 0.8 200
## 33 0.5 1000 250 250 0.5 0.8 200
## 34 0.5 1000 250 250 0.5 0.8 200
## 35 0.5 1000 250 250 0.5 0.8 200
## 36 0.5 1000 250 250 0.5 0.8 200
## 37 0.5 1000 250 250 0.5 0.8 200
## 38 0.5 1000 250 250 0.5 0.8 200
## 39 0.5 1000 250 250 0.5 0.8 200
## 40 0.5 1000 250 250 0.5 0.8 200
## 41 0.5 1000 250 250 0.5 0.8 200
## 42 0.5 1000 250 250 0.5 0.8 200
## 43 0.5 1000 250 250 0.5 0.8 200
## 44 0.5 1000 250 250 0.5 0.8 200
## 45 0.5 1000 250 250 0.5 0.8 200
## 46 0.5 1000 250 250 0.5 0.8 200
## 47 0.5 1000 250 250 0.5 0.8 200
## 48 0.5 1000 250 250 0.5 0.8 200
## 49 0.5 1000 250 250 0.5 0.8 200
## 50 0.5 1000 250 250 0.5 0.8 200
## 51 0.5 1000 250 250 0.5 0.8 200
## 52 0.5 1000 250 250 0.5 0.8 200
## 53 0.5 1000 250 250 0.5 0.8 200
## 54 0.5 1000 250 250 0.5 0.8 200
## 55 0.5 1000 250 250 0.5 0.8 200
## 56 0.5 1000 250 250 0.5 0.8 200
## 57 0.5 1000 250 250 0.5 0.8 200
## 58 0.5 1000 250 250 0.5 0.8 200
## 59 0.5 1000 250 250 0.5 0.8 200
## 60 0.5 1000 250 250 0.5 0.8 200
## 61 0.5 1000 250 250 0.5 0.8 200
## 62 0.5 1000 250 250 0.5 0.8 200
## 63 0.5 1000 250 250 0.5 0.8 200
## 64 0.5 1000 250 250 0.5 0.8 200
## 65 0.5 1000 250 250 0.5 0.8 200
## 66 0.5 1000 250 250 0.5 0.8 200
## 67 0.5 1000 250 250 0.5 0.8 200
## 68 0.5 1000 250 250 0.5 0.8 200
## 69 0.5 1000 250 250 0.5 0.8 200
## 70 0.5 1000 250 250 0.5 0.8 200
## 71 0.5 1000 250 250 0.5 0.8 200
## 72 0.5 1000 250 250 0.5 0.8 200
## 73 0.5 1000 250 250 0.5 0.8 200
## 74 0.5 1000 250 250 0.5 0.8 200
## 75 0.5 1000 250 250 0.5 0.8 200
## 76 0.5 1000 250 250 0.5 0.8 200
## 77 0.5 1000 250 250 0.5 0.8 200
## 78 0.5 1000 250 250 0.5 0.8 200
## 79 0.5 1000 250 250 0.5 0.8 200
## 80 0.5 1000 250 250 0.5 0.8 200
## 81 0.5 1000 250 250 0.5 0.8 200
## 82 0.5 1000 250 250 0.5 0.8 200
## 83 0.5 1000 250 250 0.5 0.8 200
## 84 0.5 1000 250 250 0.5 0.8 200
## 85 0.5 1000 250 250 0.5 0.8 200
## 86 0.5 1000 250 250 0.5 0.8 200
## 87 0.5 1000 250 250 0.5 0.8 200
## 88 0.5 1000 250 250 0.5 0.8 200
## 89 0.5 1000 250 250 0.5 0.8 200
## 90 0.5 1000 250 250 0.5 0.8 200
## 91 0.5 1000 250 250 0.5 0.8 200
## 92 0.5 1000 250 250 0.5 0.8 200
## 93 0.5 1000 250 250 0.5 0.8 200
## 94 0.5 1000 250 250 0.5 0.8 200
## 95 0.5 1000 250 250 0.5 0.8 200
## 96 0.5 1000 250 250 0.5 0.8 200
## 97 0.5 1000 250 250 0.5 0.8 200
## 98 0.5 1000 250 250 0.5 0.8 200
## 99 0.5 1000 250 250 0.5 0.8 200
## 100 0.5 1000 250 250 0.5 0.8 200
## 101 0.5 1000 250 250 0.5 0.8 200
## 102 0.5 1000 250 250 0.5 0.8 200
## 103 0.5 1000 250 250 0.5 0.8 200
## 104 0.5 1000 250 250 0.5 0.8 200
## 105 0.5 1000 250 250 0.5 0.8 200
## 106 0.5 1000 250 250 0.5 0.8 200
## 107 0.5 1000 250 250 0.5 0.8 200
## 108 0.5 1000 250 250 0.5 0.8 200
## 109 0.5 1000 250 250 0.5 0.8 200
## 110 0.5 1000 250 250 0.5 0.8 200
## 111 0.5 1000 250 250 0.5 0.8 200
## 112 0.5 1000 250 250 0.5 0.8 200
## 113 0.5 1000 250 250 0.5 0.8 200
## 114 0.5 1000 250 250 0.5 0.8 200
## 115 0.5 1000 250 250 0.5 0.8 200
## 116 0.5 1000 250 250 0.5 0.8 200
## 117 0.5 1000 250 250 0.5 0.8 200
## 118 0.5 1000 250 250 0.5 0.8 200
## 119 0.5 1000 250 250 0.5 0.8 200
## 120 0.5 1000 250 250 0.5 0.8 200
## 121 0.5 1000 250 250 0.5 0.8 200
## 122 0.5 1000 250 250 0.5 0.8 200
## 123 0.5 1000 250 250 0.5 0.8 200
## 124 0.5 1000 250 250 0.5 0.8 200
## 125 0.5 1000 250 250 0.5 0.8 200
## 126 0.5 1000 250 250 0.5 0.8 200
## 127 0.5 1000 250 250 0.5 0.8 200
## 128 0.5 1000 250 250 0.5 0.8 200
## 129 0.5 1000 250 250 0.5 0.8 200
## 130 0.5 1000 250 250 0.5 0.8 200
## 131 0.5 1000 250 250 0.5 0.8 200
## 132 0.5 1000 250 250 0.5 0.8 200
## 133 0.5 1000 250 250 0.5 0.8 200
## 134 0.5 1000 250 250 0.5 0.8 200
## 135 0.5 1000 250 250 0.5 0.8 200
## 136 0.5 1000 250 250 0.5 0.8 200
## 137 0.5 1000 250 250 0.5 0.8 200
## 138 0.5 1000 250 250 0.5 0.8 200
## 139 0.5 1000 250 250 0.5 0.8 200
## 140 0.5 1000 250 250 0.5 0.8 200
## 141 0.5 1000 250 250 0.5 0.8 200
## 142 0.5 1000 250 250 0.5 0.8 200
## 143 0.5 1000 250 250 0.5 0.8 200
## 144 0.5 1000 250 250 0.5 0.8 200
## 145 0.5 1000 250 250 0.5 0.8 200
## 146 0.5 1000 250 250 0.5 0.8 200
## 147 0.5 1000 250 250 0.5 0.8 200
## 148 0.5 1000 250 250 0.5 0.8 200
## 149 0.5 1000 250 250 0.5 0.8 200
## 150 0.5 1000 250 250 0.5 0.8 200
## 151 0.5 1000 250 250 0.5 0.8 200
## 152 0.5 1000 250 250 0.5 0.8 200
## 153 0.5 1000 250 250 0.5 0.8 200
## 154 0.5 1000 250 250 0.5 0.8 200
## 155 0.5 1000 250 250 0.5 0.8 200
## 156 0.5 1000 250 250 0.5 0.8 200
## 157 0.5 1000 250 250 0.5 0.8 200
## 158 0.5 1000 250 250 0.5 0.8 200
## 159 0.5 1000 250 250 0.5 0.8 200
## 160 0.5 1000 250 250 0.5 0.8 200
## 161 0.5 1000 250 250 0.5 0.8 200
## 162 0.5 1000 250 250 0.5 0.8 200
## 163 0.5 1000 250 250 0.5 0.8 200
## 164 0.5 1000 250 250 0.5 0.8 200
## 165 0.5 1000 250 250 0.5 0.8 200
## 166 0.5 1000 250 250 0.5 0.8 200
## 167 0.5 1000 250 250 0.5 0.8 200
## 168 0.5 1000 250 250 0.5 0.8 200
## 169 0.5 1000 250 250 0.5 0.8 200
## 170 0.5 1000 250 250 0.5 0.8 200
## 171 0.5 1000 250 250 0.5 0.8 200
## 172 0.5 1000 250 250 0.5 0.8 200
## 173 0.5 1000 250 250 0.5 0.8 200
## 174 0.5 1000 250 250 0.5 0.8 200
## 175 0.5 1000 250 250 0.5 0.8 200
## 176 0.5 1000 250 250 0.5 0.8 200
## 177 0.5 1000 250 250 0.5 0.8 200
## 178 0.5 1000 250 250 0.5 0.8 200
## 179 0.5 1000 250 250 0.5 0.8 200
## 180 0.5 1000 250 250 0.5 0.8 200
## 181 0.5 1000 250 250 0.5 0.8 200
## 182 0.5 1000 250 250 0.5 0.8 200
## 183 0.5 1000 250 250 0.5 0.8 200
## 184 0.5 1000 250 250 0.5 0.8 200
## 185 0.5 1000 250 250 0.5 0.8 200
## 186 0.5 1000 250 250 0.5 0.8 200
## 187 0.5 1000 250 250 0.5 0.8 200
## 188 0.5 1000 250 250 0.5 0.8 200
## 189 0.5 1000 250 250 0.5 0.8 200
## 190 0.5 1000 250 250 0.5 0.8 200
## 191 0.5 1000 250 250 0.5 0.8 200
## 192 0.5 1000 250 250 0.5 0.8 200
## 193 0.5 1000 250 250 0.5 0.8 200
## 194 0.5 1000 250 250 0.5 0.8 200
## 195 0.5 1000 250 250 0.5 0.8 200
## 196 0.5 1000 250 250 0.5 0.8 200
## 197 0.5 1000 250 250 0.5 0.8 200
## 198 0.5 1000 250 250 0.5 0.8 200
## 199 0.5 1000 250 250 0.5 0.8 200
## 200 0.5 1000 250 250 0.5 0.8 200
## 201 0.5 1000 250 250 0.5 0.8 200
## 202 0.5 1000 250 250 0.5 0.8 200
## 203 0.5 1000 250 250 0.5 0.8 200
## 204 0.5 1000 250 250 0.5 0.8 200
## 205 0.5 1000 250 250 0.5 0.8 200
## 206 0.5 1000 250 250 0.5 0.8 200
## 207 0.5 1000 250 250 0.5 0.8 200
## 208 0.5 1000 250 250 0.5 0.8 200
## 209 0.5 1000 250 250 0.5 0.8 200
## 210 0.5 1000 250 250 0.5 0.8 200
## 211 0.5 1000 250 250 0.5 0.8 200
## 212 0.5 1000 250 250 0.5 0.8 200
## 213 0.5 1000 250 250 0.5 0.8 200
## 214 0.5 1000 250 250 0.5 0.8 200
## 215 0.5 1000 250 250 0.5 0.8 200
## 216 0.5 1000 250 250 0.5 0.8 200
## 217 0.5 1000 250 250 0.5 0.8 200
## 218 0.5 1000 250 250 0.5 0.8 200
## 219 0.5 1000 250 250 0.5 0.8 200
## 220 0.5 1000 250 250 0.5 0.8 200
## 221 0.5 1000 250 250 0.5 0.8 200
## 222 0.5 1000 250 250 0.5 0.8 200
## 223 0.5 1000 250 250 0.5 0.8 200
## 224 0.5 1000 250 250 0.5 0.8 200
## 225 0.5 1000 250 250 0.5 0.8 200
## 226 0.5 1000 250 250 0.5 0.8 200
## 227 0.5 1000 250 250 0.5 0.8 200
## 228 0.5 1000 250 250 0.5 0.8 200
## 229 0.5 1000 250 250 0.5 0.8 200
## 230 0.5 1000 250 250 0.5 0.8 200
## 231 0.5 1000 250 250 0.5 0.8 200
## 232 0.5 1000 250 250 0.5 0.8 200
## 233 0.5 1000 250 250 0.5 0.8 200
## 234 0.5 1000 250 250 0.5 0.8 200
## 235 0.5 1000 250 250 0.5 0.8 200
## 236 0.5 1000 250 250 0.5 0.8 200
## 237 0.5 1000 250 250 0.5 0.8 200
## 238 0.5 1000 250 250 0.5 0.8 200
## 239 0.5 1000 250 250 0.5 0.8 200
## 240 0.5 1000 250 250 0.5 0.8 200
## 241 0.5 1000 250 250 0.5 0.8 200
## 242 0.5 1000 250 250 0.5 0.8 200
## 243 0.5 1000 250 250 0.5 0.8 200
## 244 0.5 1000 250 250 0.5 0.8 200
## 245 0.5 1000 250 250 0.5 0.8 200
## 246 0.5 1000 250 250 0.5 0.8 200
## 247 0.5 1000 250 250 0.5 0.8 200
## 248 0.5 1000 250 250 0.5 0.8 200
## 249 0.5 1000 250 250 0.5 0.8 200
## 250 0.5 1000 250 250 0.5 0.8 200
## 251 0.5 1000 250 250 0.5 0.8 200
## 252 0.5 1000 250 250 0.5 0.8 200
## 253 0.5 1000 250 250 0.5 0.8 200
## 254 0.5 1000 250 250 0.5 0.8 200
## 255 0.5 1000 250 250 0.5 0.8 200
## 256 0.5 1000 250 250 0.5 0.8 200
## 257 0.5 1000 250 250 0.5 0.8 200
## 258 0.5 1000 250 250 0.5 0.8 200
## 259 0.5 1000 250 250 0.5 0.8 200
## 260 0.5 1000 250 250 0.5 0.8 200
## 261 0.5 1000 250 250 0.5 0.8 200
## 262 0.5 1000 250 250 0.5 0.8 200
## 263 0.5 1000 250 250 0.5 0.8 200
## 264 0.5 1000 250 250 0.5 0.8 200
## 265 0.5 1000 250 250 0.5 0.8 200
## 266 0.5 1000 250 250 0.5 0.8 200
## 267 0.5 1000 250 250 0.5 0.8 200
## 268 0.5 1000 250 250 0.5 0.8 200
## 269 0.5 1000 250 250 0.5 0.8 200
## 270 0.5 1000 250 250 0.5 0.8 200
## 271 0.5 1000 250 250 0.5 0.8 200
## 272 0.5 1000 250 250 0.5 0.8 200
## 273 0.5 1000 250 250 0.5 0.8 200
## 274 0.5 1000 250 250 0.5 0.8 200
## 275 0.5 1000 250 250 0.5 0.8 200
## 276 0.5 1000 250 250 0.5 0.8 200
## 277 0.5 1000 250 250 0.5 0.8 200
## 278 0.5 1000 250 250 0.5 0.8 200
## 279 0.5 1000 250 250 0.5 0.8 200
## 280 0.5 1000 250 250 0.5 0.8 200
## 281 0.5 1000 250 250 0.5 0.8 200
## 282 0.5 1000 250 250 0.5 0.8 200
## 283 0.5 1000 250 250 0.5 0.8 200
## 284 0.5 1000 250 250 0.5 0.8 200
## 285 0.5 1000 250 250 0.5 0.8 200
## 286 0.5 1000 250 250 0.5 0.8 200
## 287 0.5 1000 250 250 0.5 0.8 200
## 288 0.5 1000 250 250 0.5 0.8 200
## 289 0.5 1000 250 250 0.5 0.8 200
## 290 0.5 1000 250 250 0.5 0.8 200
## 291 0.5 1000 250 250 0.5 0.8 200
## 292 0.5 1000 250 250 0.5 0.8 200
## 293 0.5 1000 250 250 0.5 0.8 200
## 294 0.5 1000 250 250 0.5 0.8 200
## 295 0.5 1000 250 250 0.5 0.8 200
## 296 0.5 1000 250 250 0.5 0.8 200
## 297 0.5 1000 250 250 0.5 0.8 200
## 298 0.5 1000 250 250 0.5 0.8 200
## 299 0.5 1000 250 250 0.5 0.8 200
## 300 0.5 1000 250 250 0.5 0.8 200
## 301 0.5 1000 250 250 0.5 0.8 200
## 302 0.5 1000 250 250 0.5 0.8 200
## 303 0.5 1000 250 250 0.5 0.8 200
## 304 0.5 1000 250 250 0.5 0.8 200
## 305 0.5 1000 250 250 0.5 0.8 200
## 306 0.5 1000 250 250 0.5 0.8 200
## 307 0.5 1000 250 250 0.5 0.8 200
## 308 0.5 1000 250 250 0.5 0.8 200
## 309 0.5 1000 250 250 0.5 0.8 200
## 310 0.5 1000 250 250 0.5 0.8 200
## 311 0.5 1000 250 250 0.5 0.8 200
## 312 0.5 1000 250 250 0.5 0.8 200
## 313 0.5 1000 250 250 0.5 0.8 200
## 314 0.5 1000 250 250 0.5 0.8 200
## 315 0.5 1000 250 250 0.5 0.8 200
## 316 0.5 1000 250 250 0.5 0.8 200
## 317 0.5 1000 250 250 0.5 0.8 200
## 318 0.5 1000 250 250 0.5 0.8 200
## 319 0.5 1000 250 250 0.5 0.8 200
## 320 0.5 1000 250 250 0.5 0.8 200
## 321 0.5 1000 250 250 0.5 0.8 200
## 322 0.5 1000 250 250 0.5 0.8 200
## 323 0.5 1000 250 250 0.5 0.8 200
## 324 0.5 1000 250 250 0.5 0.8 200
## 325 0.5 1000 250 250 0.5 0.8 200
## 326 0.5 1000 250 250 0.5 0.8 200
## 327 0.5 1000 250 250 0.5 0.8 200
## 328 0.5 1000 250 250 0.5 0.8 200
## 329 0.5 1000 250 250 0.5 0.8 200
## 330 0.5 1000 250 250 0.5 0.8 200
## 331 0.5 1000 250 250 0.5 0.8 200
## 332 0.5 1000 250 250 0.5 0.8 200
## 333 0.5 1000 250 250 0.5 0.8 200
## 334 0.5 1000 250 250 0.5 0.8 200
## 335 0.5 1000 250 250 0.5 0.8 200
## 336 0.5 1000 250 250 0.5 0.8 200
## 337 0.5 1000 250 250 0.5 0.8 200
## 338 0.5 1000 250 250 0.5 0.8 200
## 339 0.5 1000 250 250 0.5 0.8 200
## 340 0.5 1000 250 250 0.5 0.8 200
## 341 0.5 1000 250 250 0.5 0.8 200
## 342 0.5 1000 250 250 0.5 0.8 200
## 343 0.5 1000 250 250 0.5 0.8 200
## 344 0.5 1000 250 250 0.5 0.8 200
## 345 0.5 1000 250 250 0.5 0.8 200
## 346 0.5 1000 250 250 0.5 0.8 200
## 347 0.5 1000 250 250 0.5 0.8 200
## 348 0.5 1000 250 250 0.5 0.8 200
## 349 0.5 1000 250 250 0.5 0.8 200
## 350 0.5 1000 250 250 0.5 0.8 200
## 351 0.5 1000 250 250 0.5 0.8 200
## 352 0.5 1000 250 250 0.5 0.8 200
## 353 0.5 1000 250 250 0.5 0.8 200
## 354 0.5 1000 250 250 0.5 0.8 200
## 355 0.5 1000 250 250 0.5 0.8 200
## 356 0.5 1000 250 250 0.5 0.8 200
## 357 0.5 1000 250 250 0.5 0.8 200
## 358 0.5 1000 250 250 0.5 0.8 200
## 359 0.5 1000 250 250 0.5 0.8 200
## 360 0.5 1000 250 250 0.5 0.8 200
## 361 0.5 1000 250 250 0.5 0.8 200
## 362 0.5 1000 250 250 0.5 0.8 200
## 363 0.5 1000 250 250 0.5 0.8 200
## 364 0.5 1000 250 250 0.5 0.8 200
## 365 0.5 1000 250 250 0.5 0.8 200
## 366 0.5 1000 250 250 0.5 0.8 200
## 367 0.5 1000 250 250 0.5 0.8 200
## 368 0.5 1000 250 250 0.5 0.8 200
## 369 0.5 1000 250 250 0.5 0.8 200
## 370 0.5 1000 250 250 0.5 0.8 200
## 371 0.5 1000 250 250 0.5 0.8 200
## 372 0.5 1000 250 250 0.5 0.8 200
## 373 0.5 1000 250 250 0.5 0.8 200
## 374 0.5 1000 250 250 0.5 0.8 200
## 375 0.5 1000 250 250 0.5 0.8 200
## 376 0.5 1000 250 250 0.5 0.8 200
## 377 0.5 1000 250 250 0.5 0.8 200
## 378 0.5 1000 250 250 0.5 0.8 200
## 379 0.5 1000 250 250 0.5 0.8 200
## 380 0.5 1000 250 250 0.5 0.8 200
## 381 0.5 1000 250 250 0.5 0.8 200
## 382 0.5 1000 250 250 0.5 0.8 200
## 383 0.5 1000 250 250 0.5 0.8 200
## 384 0.5 1000 250 250 0.5 0.8 200
## 385 0.5 1000 250 250 0.5 0.8 200
## 386 0.5 1000 250 250 0.5 0.8 200
## 387 0.5 1000 250 250 0.5 0.8 200
## 388 0.5 1000 250 250 0.5 0.8 200
## 389 0.5 1000 250 250 0.5 0.8 200
## 390 0.5 1000 250 250 0.5 0.8 200
## 391 0.5 1000 250 250 0.5 0.8 200
## 392 0.5 1000 250 250 0.5 0.8 200
## 393 0.5 1000 250 250 0.5 0.8 200
## 394 0.5 1000 250 250 0.5 0.8 200
## 395 0.5 1000 250 250 0.5 0.8 200
## 396 0.5 1000 250 250 0.5 0.8 200
## 397 0.5 1000 250 250 0.5 0.8 200
## 398 0.5 1000 250 250 0.5 0.8 200
## 399 0.5 1000 250 250 0.5 0.8 200
## 400 0.5 1000 250 250 0.5 0.8 200
## 401 0.5 1000 250 250 0.5 0.8 200
## 402 0.5 1000 250 250 0.5 0.8 200
## 403 0.5 1000 250 250 0.5 0.8 200
## 404 0.5 1000 250 250 0.5 0.8 200
## 405 0.5 1000 250 250 0.5 0.8 200
## 406 0.5 1000 250 250 0.5 0.8 200
## 407 0.5 1000 250 250 0.5 0.8 200
## 408 0.5 1000 250 250 0.5 0.8 200
## 409 0.5 1000 250 250 0.5 0.8 200
## 410 0.5 1000 250 250 0.5 0.8 200
## 411 0.5 1000 250 250 0.5 0.8 200
## 412 0.5 1000 250 250 0.5 0.8 200
## 413 0.5 1000 250 250 0.5 0.8 200
## 414 0.5 1000 250 250 0.5 0.8 200
## 415 0.5 1000 250 250 0.5 0.8 200
## 416 0.5 1000 250 250 0.5 0.8 200
## 417 0.5 1000 250 250 0.5 0.8 200
## 418 0.5 1000 250 250 0.5 0.8 200
## 419 0.5 1000 250 250 0.5 0.8 200
## 420 0.5 1000 250 250 0.5 0.8 200
## 421 0.5 1000 250 250 0.5 0.8 200
## 422 0.5 1000 250 250 0.5 0.8 200
## 423 0.5 1000 250 250 0.5 0.8 200
## 424 0.5 1000 250 250 0.5 0.8 200
## 425 0.5 1000 250 250 0.5 0.8 200
## 426 0.5 1000 250 250 0.5 0.8 200
## 427 0.5 1000 250 250 0.5 0.8 200
## 428 0.5 1000 250 250 0.5 0.8 200
## 429 0.5 1000 250 250 0.5 0.8 200
## 430 0.5 1000 250 250 0.5 0.8 200
## 431 0.5 1000 250 250 0.5 0.8 200
## 432 0.5 1000 250 250 0.5 0.8 200
## 433 0.5 1000 250 250 0.5 0.8 200
## 434 0.5 1000 250 250 0.5 0.8 200
## 435 0.5 1000 250 250 0.5 0.8 200
## 436 0.5 1000 250 250 0.5 0.8 200
## 437 0.5 1000 250 250 0.5 0.8 200
## 438 0.5 1000 250 250 0.5 0.8 200
## 439 0.5 1000 250 250 0.5 0.8 200
## 440 0.5 1000 250 250 0.5 0.8 200
## 441 0.5 1000 250 250 0.5 0.8 200
## 442 0.5 1000 250 250 0.5 0.8 200
## 443 0.5 1000 250 250 0.5 0.8 200
## 444 0.5 1000 250 250 0.5 0.8 200
## 445 0.5 1000 250 250 0.5 0.8 200
## 446 0.5 1000 250 250 0.5 0.8 200
## 447 0.5 1000 250 250 0.5 0.8 200
## 448 0.5 1000 250 250 0.5 0.8 200
## 449 0.5 1000 250 250 0.5 0.8 200
## 450 0.5 1000 250 250 0.5 0.8 200
## 451 0.5 1000 250 250 0.5 0.8 200
## 452 0.5 1000 250 250 0.5 0.8 200
## 453 0.5 1000 250 250 0.5 0.8 200
## 454 0.5 1000 250 250 0.5 0.8 200
## 455 0.5 1000 250 250 0.5 0.8 200
## 456 0.5 1000 250 250 0.5 0.8 200
## 457 0.5 1000 250 250 0.5 0.8 200
## 458 0.5 1000 250 250 0.5 0.8 200
## 459 0.5 1000 250 250 0.5 0.8 200
## 460 0.5 1000 250 250 0.5 0.8 200
## 461 0.5 1000 250 250 0.5 0.8 200
## 462 0.5 1000 250 250 0.5 0.8 200
## 463 0.5 1000 250 250 0.5 0.8 200
## 464 0.5 1000 250 250 0.5 0.8 200
## 465 0.5 1000 250 250 0.5 0.8 200
## 466 0.5 1000 250 250 0.5 0.8 200
## 467 0.5 1000 250 250 0.5 0.8 200
## 468 0.5 1000 250 250 0.5 0.8 200
## 469 0.5 1000 250 250 0.5 0.8 200
## 470 0.5 1000 250 250 0.5 0.8 200
## 471 0.5 1000 250 250 0.5 0.8 200
## 472 0.5 1000 250 250 0.5 0.8 200
## 473 0.5 1000 250 250 0.5 0.8 200
## 474 0.5 1000 250 250 0.5 0.8 200
## 475 0.5 1000 250 250 0.5 0.8 200
## 476 0.5 1000 250 250 0.5 0.8 200
## 477 0.5 1000 250 250 0.5 0.8 200
## 478 0.5 1000 250 250 0.5 0.8 200
## 479 0.5 1000 250 250 0.5 0.8 200
## 480 0.5 1000 250 250 0.5 0.8 200
## 481 0.5 1000 250 250 0.5 0.8 200
## 482 0.5 1000 250 250 0.5 0.8 200
## 483 0.5 1000 250 250 0.5 0.8 200
## 484 0.5 1000 250 250 0.5 0.8 200
## 485 0.5 1000 250 250 0.5 0.8 200
## 486 0.5 1000 250 250 0.5 0.8 200
## 487 0.5 1000 250 250 0.5 0.8 200
## 488 0.5 1000 250 250 0.5 0.8 200
## 489 0.5 1000 250 250 0.5 0.8 200
## 490 0.5 1000 250 250 0.5 0.8 200
## 491 0.5 1000 250 250 0.5 0.8 200
## 492 0.5 1000 250 250 0.5 0.8 200
## 493 0.5 1000 250 250 0.5 0.8 200
## 494 0.5 1000 250 250 0.5 0.8 200
## 495 0.5 1000 250 250 0.5 0.8 200
## 496 0.5 1000 250 250 0.5 0.8 200
## 497 0.5 1000 250 250 0.5 0.8 200
## 498 0.5 1000 250 250 0.5 0.8 200
## 499 0.5 1000 250 250 0.5 0.8 200
## 500 0.5 1000 250 250 0.5 0.8 200
## 501 0.5 1000 250 250 0.5 0.8 200
## 502 0.5 1000 250 250 0.5 0.8 200
## 503 0.5 1000 250 250 0.5 0.8 200
## 504 0.5 1000 250 250 0.5 0.8 200
## 505 0.5 1000 250 250 0.5 0.8 200
## 506 0.5 1000 250 250 0.5 0.8 200
## 507 0.5 1000 250 250 0.5 0.8 200
## 508 0.5 1000 250 250 0.5 0.8 200
## 509 0.5 1000 250 250 0.5 0.8 200
## 510 0.5 1000 250 250 0.5 0.8 200
## 511 0.5 1000 250 250 0.5 0.8 200
## 512 0.5 1000 250 250 0.5 0.8 200
## 513 0.5 1000 250 250 0.5 0.8 200
## 514 0.5 1000 250 250 0.5 0.8 200
## 515 0.5 1000 250 250 0.5 0.8 200
## 516 0.5 1000 250 250 0.5 0.8 200
## 517 0.5 1000 250 250 0.5 0.8 200
## 518 0.5 1000 250 250 0.5 0.8 200
## 519 0.5 1000 250 250 0.5 0.8 200
## 520 0.5 1000 250 250 0.5 0.8 200
## 521 0.5 1000 250 250 0.5 0.8 200
## 522 0.5 1000 250 250 0.5 0.8 200
## 523 0.5 1000 250 250 0.5 0.8 200
## 524 0.5 1000 250 250 0.5 0.8 200
## 525 0.5 1000 250 250 0.5 0.8 200
## 526 0.5 1000 250 250 0.5 0.8 200
## 527 0.5 1000 250 250 0.5 0.8 200
## 528 0.5 1000 250 250 0.5 0.8 200
## 529 0.5 1000 250 250 0.5 0.8 200
## 530 0.5 1000 250 250 0.5 0.8 200
## 531 0.5 1000 250 250 0.5 0.8 200
## 532 0.5 1000 250 250 0.5 0.8 200
## 533 0.5 1000 250 250 0.5 0.8 200
## 534 0.5 1000 250 250 0.5 0.8 200
## 535 0.5 1000 250 250 0.5 0.8 200
## 536 0.5 1000 250 250 0.5 0.8 200
## 537 0.5 1000 250 250 0.5 0.8 200
## 538 0.5 1000 250 250 0.5 0.8 200
## 539 0.5 1000 250 250 0.5 0.8 200
## 540 0.5 1000 250 250 0.5 0.8 200
## 541 0.5 1000 250 250 0.5 0.8 200
## 542 0.5 1000 250 250 0.5 0.8 200
## 543 0.5 1000 250 250 0.5 0.8 200
## 544 0.5 1000 250 250 0.5 0.8 200
## 545 0.5 1000 250 250 0.5 0.8 200
## 546 0.5 1000 250 250 0.5 0.8 200
## 547 0.5 1000 250 250 0.5 0.8 200
## 548 0.5 1000 250 250 0.5 0.8 200
## 549 0.5 1000 250 250 0.5 0.8 200
## 550 0.5 1000 250 250 0.5 0.8 200
## 551 0.5 1000 250 250 0.5 0.8 200
## 552 0.5 1000 250 250 0.5 0.8 200
## 553 0.5 1000 250 250 0.5 0.8 200
## 554 0.5 1000 250 250 0.5 0.8 200
## 555 0.5 1000 250 250 0.5 0.8 200
## 556 0.5 1000 250 250 0.5 0.8 200
## 557 0.5 1000 250 250 0.5 0.8 200
## 558 0.5 1000 250 250 0.5 0.8 200
## 559 0.5 1000 250 250 0.5 0.8 200
## 560 0.5 1000 250 250 0.5 0.8 200
## 561 0.5 1000 250 250 0.5 0.8 200
## 562 0.5 1000 250 250 0.5 0.8 200
## 563 0.5 1000 250 250 0.5 0.8 200
## 564 0.5 1000 250 250 0.5 0.8 200
## 565 0.5 1000 250 250 0.5 0.8 200
## 566 0.5 1000 250 250 0.5 0.8 200
## 567 0.5 1000 250 250 0.5 0.8 200
## 568 0.5 1000 250 250 0.5 0.8 200
## 569 0.5 1000 250 250 0.5 0.8 200
## 570 0.5 1000 250 250 0.5 0.8 200
## 571 0.5 1000 250 250 0.5 0.8 200
## 572 0.5 1000 250 250 0.5 0.8 200
## 573 0.5 1000 250 250 0.5 0.8 200
## 574 0.5 1000 250 250 0.5 0.8 200
## 575 0.5 1000 250 250 0.5 0.8 200
## 576 0.5 1000 250 250 0.5 0.8 200
## 577 0.5 1000 250 250 0.5 0.8 200
## 578 0.5 1000 250 250 0.5 0.8 200
## 579 0.5 1000 250 250 0.5 0.8 200
## 580 0.5 1000 250 250 0.5 0.8 200
## 581 0.5 1000 250 250 0.5 0.8 200
## 582 0.5 1000 250 250 0.5 0.8 200
## 583 0.5 1000 250 250 0.5 0.8 200
## 584 0.5 1000 250 250 0.5 0.8 200
## 585 0.5 1000 250 250 0.5 0.8 200
## 586 0.5 1000 250 250 0.5 0.8 200
## 587 0.5 1000 250 250 0.5 0.8 200
## 588 0.5 1000 250 250 0.5 0.8 200
## 589 0.5 1000 250 250 0.5 0.8 200
## 590 0.5 1000 250 250 0.5 0.8 200
## 591 0.5 1000 250 250 0.5 0.8 200
## 592 0.5 1000 250 250 0.5 0.8 200
## 593 0.5 1000 250 250 0.5 0.8 200
## 594 0.5 1000 250 250 0.5 0.8 200
## 595 0.5 1000 250 250 0.5 0.8 200
## 596 0.5 1000 250 250 0.5 0.8 200
## 597 0.5 1000 250 250 0.5 0.8 200
## 598 0.5 1000 250 250 0.5 0.8 200
## 599 0.5 1000 250 250 0.5 0.8 200
## 600 0.5 1000 250 250 0.5 0.8 200
## 601 0.5 1000 250 250 0.5 0.8 200
## 602 0.5 1000 250 250 0.5 0.8 200
## 603 0.5 1000 250 250 0.5 0.8 200
## 604 0.5 1000 250 250 0.5 0.8 200
## 605 0.5 1000 250 250 0.5 0.8 200
## 606 0.5 1000 250 250 0.5 0.8 200
## 607 0.5 1000 250 250 0.5 0.8 200
## 608 0.5 1000 250 250 0.5 0.8 200
## 609 0.5 1000 250 250 0.5 0.8 200
## 610 0.5 1000 250 250 0.5 0.8 200
## 611 0.5 1000 250 250 0.5 0.8 200
## 612 0.5 1000 250 250 0.5 0.8 200
## 613 0.5 1000 250 250 0.5 0.8 200
## 614 0.5 1000 250 250 0.5 0.8 200
## 615 0.5 1000 250 250 0.5 0.8 200
## 616 0.5 1000 250 250 0.5 0.8 200
## 617 0.5 1000 250 250 0.5 0.8 200
## 618 0.5 1000 250 250 0.5 0.8 200
## 619 0.5 1000 250 250 0.5 0.8 200
## 620 0.5 1000 250 250 0.5 0.8 200
## 621 0.5 1000 250 250 0.5 0.8 200
## 622 0.5 1000 250 250 0.5 0.8 200
## 623 0.5 1000 250 250 0.5 0.8 200
## 624 0.5 1000 250 250 0.5 0.8 200
## 625 0.5 1000 250 250 0.5 0.8 200
## 626 0.5 1000 250 250 0.5 0.8 200
## 627 0.5 1000 250 250 0.5 0.8 200
## 628 0.5 1000 250 250 0.5 0.8 200
## 629 0.5 1000 250 250 0.5 0.8 200
## 630 0.5 1000 250 250 0.5 0.8 200
## 631 0.5 1000 250 250 0.5 0.8 200
## 632 0.5 1000 250 250 0.5 0.8 200
## 633 0.5 1000 250 250 0.5 0.8 200
## 634 0.5 1000 250 250 0.5 0.8 200
## 635 0.5 1000 250 250 0.5 0.8 200
## 636 0.5 1000 250 250 0.5 0.8 200
## 637 0.5 1000 250 250 0.5 0.8 200
## 638 0.5 1000 250 250 0.5 0.8 200
## 639 0.5 1000 250 250 0.5 0.8 200
## 640 0.5 1000 250 250 0.5 0.8 200
## 641 0.5 1000 250 250 0.5 0.8 200
## 642 0.5 1000 250 250 0.5 0.8 200
## 643 0.5 1000 250 250 0.5 0.8 200
## 644 0.5 1000 250 250 0.5 0.8 200
## 645 0.5 1000 250 250 0.5 0.8 200
## 646 0.5 1000 250 250 0.5 0.8 200
## 647 0.5 1000 250 250 0.5 0.8 200
## 648 0.5 1000 250 250 0.5 0.8 200
## 649 0.5 1000 250 250 0.5 0.8 200
## 650 0.5 1000 250 250 0.5 0.8 200
## 651 0.5 1000 250 250 0.5 0.8 200
## 652 0.5 1000 250 250 0.5 0.8 200
## 653 0.5 1000 250 250 0.5 0.8 200
## 654 0.5 1000 250 250 0.5 0.8 200
## 655 0.5 1000 250 250 0.5 0.8 200
## 656 0.5 1000 250 250 0.5 0.8 200
## 657 0.5 1000 250 250 0.5 0.8 200
## 658 0.5 1000 250 250 0.5 0.8 200
## 659 0.5 1000 250 250 0.5 0.8 200
## 660 0.5 1000 250 250 0.5 0.8 200
## 661 0.5 1000 250 250 0.5 0.8 200
## 662 0.5 1000 250 250 0.5 0.8 200
## 663 0.5 1000 250 250 0.5 0.8 200
## 664 0.5 1000 250 250 0.5 0.8 200
## 665 0.5 1000 250 250 0.5 0.8 200
## 666 0.5 1000 250 250 0.5 0.8 200
## 667 0.5 1000 250 250 0.5 0.8 200
## 668 0.5 1000 250 250 0.5 0.8 200
## 669 0.5 1000 250 250 0.5 0.8 200
## 670 0.5 1000 250 250 0.5 0.8 200
## 671 0.5 1000 250 250 0.5 0.8 200
## 672 0.5 1000 250 250 0.5 0.8 200
## 673 0.5 1000 250 250 0.5 0.8 200
## 674 0.5 1000 250 250 0.5 0.8 200
## 675 0.5 1000 250 250 0.5 0.8 200
## 676 0.5 1000 250 250 0.5 0.8 200
## 677 0.5 1000 250 250 0.5 0.8 200
## 678 0.5 1000 250 250 0.5 0.8 200
## 679 0.5 1000 250 250 0.5 0.8 200
## 680 0.5 1000 250 250 0.5 0.8 200
## 681 0.5 1000 250 250 0.5 0.8 200
## 682 0.5 1000 250 250 0.5 0.8 200
## 683 0.5 1000 250 250 0.5 0.8 200
## 684 0.5 1000 250 250 0.5 0.8 200
## 685 0.5 1000 250 250 0.5 0.8 200
## 686 0.5 1000 250 250 0.5 0.8 200
## 687 0.5 1000 250 250 0.5 0.8 200
## 688 0.5 1000 250 250 0.5 0.8 200
## 689 0.5 1000 250 250 0.5 0.8 200
## 690 0.5 1000 250 250 0.5 0.8 200
## 691 0.5 1000 250 250 0.5 0.8 200
## 692 0.5 1000 250 250 0.5 0.8 200
## 693 0.5 1000 250 250 0.5 0.8 200
## 694 0.5 1000 250 250 0.5 0.8 200
## 695 0.5 1000 250 250 0.5 0.8 200
## 696 0.5 1000 250 250 0.5 0.8 200
## 697 0.5 1000 250 250 0.5 0.8 200
## 698 0.5 1000 250 250 0.5 0.8 200
## 699 0.5 1000 250 250 0.5 0.8 200
## 700 0.5 1000 250 250 0.5 0.8 200
## 701 0.5 1000 250 250 0.5 0.8 200
## 702 0.5 1000 250 250 0.5 0.8 200
## 703 0.5 1000 250 250 0.5 0.8 200
## 704 0.5 1000 250 250 0.5 0.8 200
## 705 0.5 1000 250 250 0.5 0.8 200
## 706 0.5 1000 250 250 0.5 0.8 200
## 707 0.5 1000 250 250 0.5 0.8 200
## 708 0.5 1000 250 250 0.5 0.8 200
## 709 0.5 1000 250 250 0.5 0.8 200
## 710 0.5 1000 250 250 0.5 0.8 200
## 711 0.5 1000 250 250 0.5 0.8 200
## 712 0.5 1000 250 250 0.5 0.8 200
## 713 0.5 1000 250 250 0.5 0.8 200
## 714 0.5 1000 250 250 0.5 0.8 200
## 715 0.5 1000 250 250 0.5 0.8 200
## 716 0.5 1000 250 250 0.5 0.8 200
## 717 0.5 1000 250 250 0.5 0.8 200
## 718 0.5 1000 250 250 0.5 0.8 200
## 719 0.5 1000 250 250 0.5 0.8 200
## 720 0.5 1000 250 250 0.5 0.8 200
## 721 0.5 1000 250 250 0.5 0.8 200
## 722 0.5 1000 250 250 0.5 0.8 200
## 723 0.5 1000 250 250 0.5 0.8 200
## 724 0.5 1000 250 250 0.5 0.8 200
## 725 0.5 1000 250 250 0.5 0.8 200
## 726 0.5 1000 250 250 0.5 0.8 200
## 727 0.5 1000 250 250 0.5 0.8 200
## 728 0.5 1000 250 250 0.5 0.8 200
## 729 0.5 1000 250 250 0.5 0.8 200
## 730 0.5 1000 250 250 0.5 0.8 200
## 731 0.5 1000 250 250 0.5 0.8 200
## 732 0.5 1000 250 250 0.5 0.8 200
## 733 0.5 1000 250 250 0.5 0.8 200
## 734 0.5 1000 250 250 0.5 0.8 200
## 735 0.5 1000 250 250 0.5 0.8 200
## 736 0.5 1000 250 250 0.5 0.8 200
## 737 0.5 1000 250 250 0.5 0.8 200
## 738 0.5 1000 250 250 0.5 0.8 200
## 739 0.5 1000 250 250 0.5 0.8 200
## 740 0.5 1000 250 250 0.5 0.8 200
## 741 0.5 1000 250 250 0.5 0.8 200
## 742 0.5 1000 250 250 0.5 0.8 200
## 743 0.5 1000 250 250 0.5 0.8 200
## 744 0.5 1000 250 250 0.5 0.8 200
## 745 0.5 1000 250 250 0.5 0.8 200
## 746 0.5 1000 250 250 0.5 0.8 200
## 747 0.5 1000 250 250 0.5 0.8 200
## 748 0.5 1000 250 250 0.5 0.8 200
## 749 0.5 1000 250 250 0.5 0.8 200
## 750 0.5 1000 250 250 0.5 0.8 200
## 751 0.5 1000 250 250 0.5 0.8 200
## 752 0.5 1000 250 250 0.5 0.8 200
## 753 0.5 1000 250 250 0.5 0.8 200
## 754 0.5 1000 250 250 0.5 0.8 200
## 755 0.5 1000 250 250 0.5 0.8 200
## 756 0.5 1000 250 250 0.5 0.8 200
## 757 0.5 1000 250 250 0.5 0.8 200
## 758 0.5 1000 250 250 0.5 0.8 200
## 759 0.5 1000 250 250 0.5 0.8 200
## 760 0.5 1000 250 250 0.5 0.8 200
## 761 0.5 1000 250 250 0.5 0.8 200
## 762 0.5 1000 250 250 0.5 0.8 200
## 763 0.5 1000 250 250 0.5 0.8 200
## 764 0.5 1000 250 250 0.5 0.8 200
## 765 0.5 1000 250 250 0.5 0.8 200
## 766 0.5 1000 250 250 0.5 0.8 200
## 767 0.5 1000 250 250 0.5 0.8 200
## 768 0.5 1000 250 250 0.5 0.8 200
## 769 0.5 1000 250 250 0.5 0.8 200
## 770 0.5 1000 250 250 0.5 0.8 200
## 771 0.5 1000 250 250 0.5 0.8 200
## 772 0.5 1000 250 250 0.5 0.8 200
## 773 0.5 1000 250 250 0.5 0.8 200
## 774 0.5 1000 250 250 0.5 0.8 200
## 775 0.5 1000 250 250 0.5 0.8 200
## 776 0.5 1000 250 250 0.5 0.8 200
## 777 0.5 1000 250 250 0.5 0.8 200
## 778 0.5 1000 250 250 0.5 0.8 200
## 779 0.5 1000 250 250 0.5 0.8 200
## 780 0.5 1000 250 250 0.5 0.8 200
## 781 0.5 1000 250 250 0.5 0.8 200
## 782 0.5 1000 250 250 0.5 0.8 200
## 783 0.5 1000 250 250 0.5 0.8 200
## 784 0.5 1000 250 250 0.5 0.8 200
## 785 0.5 1000 250 250 0.5 0.8 200
## 786 0.5 1000 250 250 0.5 0.8 200
## 787 0.5 1000 250 250 0.5 0.8 200
## 788 0.5 1000 250 250 0.5 0.8 200
## 789 0.5 1000 250 250 0.5 0.8 200
## 790 0.5 1000 250 250 0.5 0.8 200
## 791 0.5 1000 250 250 0.5 0.8 200
## 792 0.5 1000 250 250 0.5 0.8 200
## 793 0.5 1000 250 250 0.5 0.8 200
## 794 0.5 1000 250 250 0.5 0.8 200
## 795 0.5 1000 250 250 0.5 0.8 200
## 796 0.5 1000 250 250 0.5 0.8 200
## 797 0.5 1000 250 250 0.5 0.8 200
## 798 0.5 1000 250 250 0.5 0.8 200
## 799 0.5 1000 250 250 0.5 0.8 200
## 800 0.5 1000 250 250 0.5 0.8 200
## 801 0.5 1000 250 250 0.5 0.8 200
## 802 0.5 1000 250 250 0.5 0.8 200
## 803 0.5 1000 250 250 0.5 0.8 200
## 804 0.5 1000 250 250 0.5 0.8 200
## 805 0.5 1000 250 250 0.5 0.8 200
## 806 0.5 1000 250 250 0.5 0.8 200
## 807 0.5 1000 250 250 0.5 0.8 200
## 808 0.5 1000 250 250 0.5 0.8 200
## 809 0.5 1000 250 250 0.5 0.8 200
## 810 0.5 1000 250 250 0.5 0.8 200
## 811 0.5 1000 250 250 0.5 0.8 200
## 812 0.5 1000 250 250 0.5 0.8 200
## 813 0.5 1000 250 250 0.5 0.8 200
## 814 0.5 1000 250 250 0.5 0.8 200
## 815 0.5 1000 250 250 0.5 0.8 200
## 816 0.5 1000 250 250 0.5 0.8 200
## 817 0.5 1000 250 250 0.5 0.8 200
## 818 0.5 1000 250 250 0.5 0.8 200
## 819 0.5 1000 250 250 0.5 0.8 200
## 820 0.5 1000 250 250 0.5 0.8 200
## 821 0.5 1000 250 250 0.5 0.8 200
## 822 0.5 1000 250 250 0.5 0.8 200
## 823 0.5 1000 250 250 0.5 0.8 200
## 824 0.5 1000 250 250 0.5 0.8 200
## 825 0.5 1000 250 250 0.5 0.8 200
## 826 0.5 1000 250 250 0.5 0.8 200
## 827 0.5 1000 250 250 0.5 0.8 200
## 828 0.5 1000 250 250 0.5 0.8 200
## 829 0.5 1000 250 250 0.5 0.8 200
## 830 0.5 1000 250 250 0.5 0.8 200
## 831 0.5 1000 250 250 0.5 0.8 200
## 832 0.5 1000 250 250 0.5 0.8 200
## 833 0.5 1000 250 250 0.5 0.8 200
## 834 0.5 1000 250 250 0.5 0.8 200
## 835 0.5 1000 250 250 0.5 0.8 200
## 836 0.5 1000 250 250 0.5 0.8 200
## 837 0.5 1000 250 250 0.5 0.8 200
## 838 0.5 1000 250 250 0.5 0.8 200
## 839 0.5 1000 250 250 0.5 0.8 200
## 840 0.5 1000 250 250 0.5 0.8 200
## 841 0.5 1000 250 250 0.5 0.8 200
## 842 0.5 1000 250 250 0.5 0.8 200
## 843 0.5 1000 250 250 0.5 0.8 200
## 844 0.5 1000 250 250 0.5 0.8 200
## 845 0.5 1000 250 250 0.5 0.8 200
## 846 0.5 1000 250 250 0.5 0.8 200
## 847 0.5 1000 250 250 0.5 0.8 200
## 848 0.5 1000 250 250 0.5 0.8 200
## 849 0.5 1000 250 250 0.5 0.8 200
## 850 0.5 1000 250 250 0.5 0.8 200
## 851 0.5 1000 250 250 0.5 0.8 200
## 852 0.5 1000 250 250 0.5 0.8 200
## 853 0.5 1000 250 250 0.5 0.8 200
## 854 0.5 1000 250 250 0.5 0.8 200
## 855 0.5 1000 250 250 0.5 0.8 200
## 856 0.5 1000 250 250 0.5 0.8 200
## 857 0.5 1000 250 250 0.5 0.8 200
## 858 0.5 1000 250 250 0.5 0.8 200
## 859 0.5 1000 250 250 0.5 0.8 200
## 860 0.5 1000 250 250 0.5 0.8 200
## 861 0.5 1000 250 250 0.5 0.8 200
## 862 0.5 1000 250 250 0.5 0.8 200
## 863 0.5 1000 250 250 0.5 0.8 200
## 864 0.5 1000 250 250 0.5 0.8 200
## 865 0.5 1000 250 250 0.5 0.8 200
## 866 0.5 1000 250 250 0.5 0.8 200
## 867 0.5 1000 250 250 0.5 0.8 200
## 868 0.5 1000 250 250 0.5 0.8 200
## 869 0.5 1000 250 250 0.5 0.8 200
## 870 0.5 1000 250 250 0.5 0.8 200
## 871 0.5 1000 250 250 0.5 0.8 200
## 872 0.5 1000 250 250 0.5 0.8 200
## 873 0.5 1000 250 250 0.5 0.8 200
## 874 0.5 1000 250 250 0.5 0.8 200
## 875 0.5 1000 250 250 0.5 0.8 200
## 876 0.5 1000 250 250 0.5 0.8 200
## 877 0.5 1000 250 250 0.5 0.8 200
## 878 0.5 1000 250 250 0.5 0.8 200
## 879 0.5 1000 250 250 0.5 0.8 200
## 880 0.5 1000 250 250 0.5 0.8 200
## 881 0.5 1000 250 250 0.5 0.8 200
## 882 0.5 1000 250 250 0.5 0.8 200
## 883 0.5 1000 250 250 0.5 0.8 200
## 884 0.5 1000 250 250 0.5 0.8 200
## 885 0.5 1000 250 250 0.5 0.8 200
## 886 0.5 1000 250 250 0.5 0.8 200
## 887 0.5 1000 250 250 0.5 0.8 200
## 888 0.5 1000 250 250 0.5 0.8 200
## 889 0.5 1000 250 250 0.5 0.8 200
## 890 0.5 1000 250 250 0.5 0.8 200
## 891 0.5 1000 250 250 0.5 0.8 200
## 892 0.5 1000 250 250 0.5 0.8 200
## 893 0.5 1000 250 250 0.5 0.8 200
## 894 0.5 1000 250 250 0.5 0.8 200
## 895 0.5 1000 250 250 0.5 0.8 200
## 896 0.5 1000 250 250 0.5 0.8 200
## 897 0.5 1000 250 250 0.5 0.8 200
## 898 0.5 1000 250 250 0.5 0.8 200
## 899 0.5 1000 250 250 0.5 0.8 200
## 900 0.5 1000 250 250 0.5 0.8 200
## 901 0.5 1000 250 250 0.5 0.8 200
## 902 0.5 1000 250 250 0.5 0.8 200
## 903 0.5 1000 250 250 0.5 0.8 200
## 904 0.5 1000 250 250 0.5 0.8 200
## 905 0.5 1000 250 250 0.5 0.8 200
## 906 0.5 1000 250 250 0.5 0.8 200
## 907 0.5 1000 250 250 0.5 0.8 200
## 908 0.5 1000 250 250 0.5 0.8 200
## 909 0.5 1000 250 250 0.5 0.8 200
## 910 0.5 1000 250 250 0.5 0.8 200
## 911 0.5 1000 250 250 0.5 0.8 200
## 912 0.5 1000 250 250 0.5 0.8 200
## 913 0.5 1000 250 250 0.5 0.8 200
## 914 0.5 1000 250 250 0.5 0.8 200
## 915 0.5 1000 250 250 0.5 0.8 200
## 916 0.5 1000 250 250 0.5 0.8 200
## 917 0.5 1000 250 250 0.5 0.8 200
## 918 0.5 1000 250 250 0.5 0.8 200
## 919 0.5 1000 250 250 0.5 0.8 200
## 920 0.5 1000 250 250 0.5 0.8 200
## 921 0.5 1000 250 250 0.5 0.8 200
## 922 0.5 1000 250 250 0.5 0.8 200
## 923 0.5 1000 250 250 0.5 0.8 200
## 924 0.5 1000 250 250 0.5 0.8 200
## 925 0.5 1000 250 250 0.5 0.8 200
## 926 0.5 1000 250 250 0.5 0.8 200
## 927 0.5 1000 250 250 0.5 0.8 200
## 928 0.5 1000 250 250 0.5 0.8 200
## 929 0.5 1000 250 250 0.5 0.8 200
## 930 0.5 1000 250 250 0.5 0.8 200
## 931 0.5 1000 250 250 0.5 0.8 200
## 932 0.5 1000 250 250 0.5 0.8 200
## 933 0.5 1000 250 250 0.5 0.8 200
## 934 0.5 1000 250 250 0.5 0.8 200
## 935 0.5 1000 250 250 0.5 0.8 200
## 936 0.5 1000 250 250 0.5 0.8 200
## 937 0.5 1000 250 250 0.5 0.8 200
## 938 0.5 1000 250 250 0.5 0.8 200
## 939 0.5 1000 250 250 0.5 0.8 200
## 940 0.5 1000 250 250 0.5 0.8 200
## 941 0.5 1000 250 250 0.5 0.8 200
## 942 0.5 1000 250 250 0.5 0.8 200
## 943 0.5 1000 250 250 0.5 0.8 200
## 944 0.5 1000 250 250 0.5 0.8 200
## 945 0.5 1000 250 250 0.5 0.8 200
## 946 0.5 1000 250 250 0.5 0.8 200
## 947 0.5 1000 250 250 0.5 0.8 200
## 948 0.5 1000 250 250 0.5 0.8 200
## 949 0.5 1000 250 250 0.5 0.8 200
## 950 0.5 1000 250 250 0.5 0.8 200
## 951 0.5 1000 250 250 0.5 0.8 200
## 952 0.5 1000 250 250 0.5 0.8 200
## 953 0.5 1000 250 250 0.5 0.8 200
## 954 0.5 1000 250 250 0.5 0.8 200
## 955 0.5 1000 250 250 0.5 0.8 200
## 956 0.5 1000 250 250 0.5 0.8 200
## 957 0.5 1000 250 250 0.5 0.8 200
## 958 0.5 1000 250 250 0.5 0.8 200
## 959 0.5 1000 250 250 0.5 0.8 200
## 960 0.5 1000 250 250 0.5 0.8 200
## 961 0.5 1000 250 250 0.5 0.8 200
## 962 0.5 1000 250 250 0.5 0.8 200
## 963 0.5 1000 250 250 0.5 0.8 200
## 964 0.5 1000 250 250 0.5 0.8 200
## 965 0.5 1000 250 250 0.5 0.8 200
## 966 0.5 1000 250 250 0.5 0.8 200
## 967 0.5 1000 250 250 0.5 0.8 200
## 968 0.5 1000 250 250 0.5 0.8 200
## 969 0.5 1000 250 250 0.5 0.8 200
## 970 0.5 1000 250 250 0.5 0.8 200
## 971 0.5 1000 250 250 0.5 0.8 200
## 972 0.5 1000 250 250 0.5 0.8 200
## 973 0.5 1000 250 250 0.5 0.8 200
## 974 0.5 1000 250 250 0.5 0.8 200
## 975 0.5 1000 250 250 0.5 0.8 200
## 976 0.5 1000 250 250 0.5 0.8 200
## 977 0.5 1000 250 250 0.5 0.8 200
## 978 0.5 1000 250 250 0.5 0.8 200
## 979 0.5 1000 250 250 0.5 0.8 200
## 980 0.5 1000 250 250 0.5 0.8 200
## 981 0.5 1000 250 250 0.5 0.8 200
## 982 0.5 1000 250 250 0.5 0.8 200
## 983 0.5 1000 250 250 0.5 0.8 200
## 984 0.5 1000 250 250 0.5 0.8 200
## 985 0.5 1000 250 250 0.5 0.8 200
## 986 0.5 1000 250 250 0.5 0.8 200
## 987 0.5 1000 250 250 0.5 0.8 200
## 988 0.5 1000 250 250 0.5 0.8 200
## 989 0.5 1000 250 250 0.5 0.8 200
## 990 0.5 1000 250 250 0.5 0.8 200
## 991 0.5 1000 250 250 0.5 0.8 200
## 992 0.5 1000 250 250 0.5 0.8 200
## 993 0.5 1000 250 250 0.5 0.8 200
## 994 0.5 1000 250 250 0.5 0.8 200
## 995 0.5 1000 250 250 0.5 0.8 200
## 996 0.5 1000 250 250 0.5 0.8 200
## 997 0.5 1000 250 250 0.5 0.8 200
## 998 0.5 1000 250 250 0.5 0.8 200
## 999 0.5 1000 250 250 0.5 0.8 200
## 1000 0.5 1000 250 250 0.5 0.8 200
## 1001 0.5 1000 250 250 0.5 0.8 200
## 1002 0.5 1000 250 250 0.5 0.8 200
## 1003 0.5 1000 250 250 0.5 0.8 200
## 1004 0.5 1000 250 250 0.5 0.8 200
## 1005 0.5 1000 250 250 0.5 0.8 200
## 1006 0.5 1000 250 250 0.5 0.8 200
## 1007 0.5 1000 250 250 0.5 0.8 200
## 1008 0.5 1000 250 250 0.5 0.8 200
## 1009 0.5 1000 250 250 0.5 0.8 200
## 1010 0.5 1000 250 250 0.5 0.8 200
## 1011 0.5 1000 250 250 0.5 0.8 200
## 1012 0.5 1000 250 250 0.5 0.8 200
## 1013 0.5 1000 250 250 0.5 0.8 200
## 1014 0.5 1000 250 250 0.5 0.8 200
## 1015 0.5 1000 250 250 0.5 0.8 200
## 1016 0.5 1000 250 250 0.5 0.8 200
## 1017 0.5 1000 250 250 0.5 0.8 200
## 1018 0.5 1000 250 250 0.5 0.8 200
## 1019 0.5 1000 250 250 0.5 0.8 200
## 1020 0.5 1000 250 250 0.5 0.8 200
## 1021 0.5 1000 250 250 0.5 0.8 200
## 1022 0.5 1000 250 250 0.5 0.8 200
## 1023 0.5 1000 250 250 0.5 0.8 200
## 1024 0.5 1000 250 250 0.5 0.8 200
## 1025 0.5 1000 250 250 0.5 0.8 200
## 1026 0.5 1000 250 250 0.5 0.8 200
## 1027 0.5 1000 250 250 0.5 0.8 200
## 1028 0.5 1000 250 250 0.5 0.8 200
## 1029 0.5 1000 250 250 0.5 0.8 200
## 1030 0.5 1000 250 250 0.5 0.8 200
## 1031 0.5 1000 250 250 0.5 0.8 200
## 1032 0.5 1000 250 250 0.5 0.8 200
## 1033 0.5 1000 250 250 0.5 0.8 200
## 1034 0.5 1000 250 250 0.5 0.8 200
## 1035 0.5 1000 250 250 0.5 0.8 200
## 1036 0.5 1000 250 250 0.5 0.8 200
## 1037 0.5 1000 250 250 0.5 0.8 200
## 1038 0.5 1000 250 250 0.5 0.8 200
## 1039 0.5 1000 250 250 0.5 0.8 200
## 1040 0.5 1000 250 250 0.5 0.8 200
## 1041 0.5 1000 250 250 0.5 0.8 200
## 1042 0.5 1000 250 250 0.5 0.8 200
## 1043 0.5 1000 250 250 0.5 0.8 200
## 1044 0.5 1000 250 250 0.5 0.8 200
## 1045 0.5 1000 250 250 0.5 0.8 200
## 1046 0.5 1000 250 250 0.5 0.8 200
## 1047 0.5 1000 250 250 0.5 0.8 200
## 1048 0.5 1000 250 250 0.5 0.8 200
## 1049 0.5 1000 250 250 0.5 0.8 200
## 1050 0.5 1000 250 250 0.5 0.8 200
## 1051 0.5 1000 250 250 0.5 0.8 200
## 1052 0.5 1000 250 250 0.5 0.8 200
## 1053 0.5 1000 250 250 0.5 0.8 200
## 1054 0.5 1000 250 250 0.5 0.8 200
## 1055 0.5 1000 250 250 0.5 0.8 200
## 1056 0.5 1000 250 250 0.5 0.8 200
## 1057 0.5 1000 250 250 0.5 0.8 200
## 1058 0.5 1000 250 250 0.5 0.8 200
## 1059 0.5 1000 250 250 0.5 0.8 200
## 1060 0.5 1000 250 250 0.5 0.8 200
## 1061 0.5 1000 250 250 0.5 0.8 200
## 1062 0.5 1000 250 250 0.5 0.8 200
## 1063 0.5 1000 250 250 0.5 0.8 200
## 1064 0.5 1000 250 250 0.5 0.8 200
## 1065 0.5 1000 250 250 0.5 0.8 200
## 1066 0.5 1000 250 250 0.5 0.8 200
## 1067 0.5 1000 250 250 0.5 0.8 200
## 1068 0.5 1000 250 250 0.5 0.8 200
## 1069 0.5 1000 250 250 0.5 0.8 200
## 1070 0.5 1000 250 250 0.5 0.8 200
## 1071 0.5 1000 250 250 0.5 0.8 200
## 1072 0.5 1000 250 250 0.5 0.8 200
## 1073 0.5 1000 250 250 0.5 0.8 200
## 1074 0.5 1000 250 250 0.5 0.8 200
## 1075 0.5 1000 250 250 0.5 0.8 200
## 1076 0.5 1000 250 250 0.5 0.8 200
## 1077 0.5 1000 250 250 0.5 0.8 200
## 1078 0.5 1000 250 250 0.5 0.8 200
## 1079 0.5 1000 250 250 0.5 0.8 200
## 1080 0.5 1000 250 250 0.5 0.8 200
## 1081 0.5 1000 250 250 0.5 0.8 200
## 1082 0.5 1000 250 250 0.5 0.8 200
## 1083 0.5 1000 250 250 0.5 0.8 200
## 1084 0.5 1000 250 250 0.5 0.8 200
## 1085 0.5 1000 250 250 0.5 0.8 200
## 1086 0.5 1000 250 250 0.5 0.8 200
## 1087 0.5 1000 250 250 0.5 0.8 200
## 1088 0.5 1000 250 250 0.5 0.8 200
## 1089 0.5 1000 250 250 0.5 0.8 200
## 1090 0.5 1000 250 250 0.5 0.8 200
## 1091 0.5 1000 250 250 0.5 0.8 200
## 1092 0.5 1000 250 250 0.5 0.8 200
## 1093 0.5 1000 250 250 0.5 0.8 200
## 1094 0.5 1000 250 250 0.5 0.8 200
## 1095 0.5 1000 250 250 0.5 0.8 200
## 1096 0.5 1000 250 250 0.5 0.8 200
## 1097 0.5 1000 250 250 0.5 0.8 200
## 1098 0.5 1000 250 250 0.5 0.8 200
## 1099 0.5 1000 250 250 0.5 0.8 200
## 1100 0.5 1000 250 250 0.5 0.8 200
## 1101 0.5 1000 250 250 0.5 0.8 200
## 1102 0.5 1000 250 250 0.5 0.8 200
## 1103 0.5 1000 250 250 0.5 0.8 200
## 1104 0.5 1000 250 250 0.5 0.8 200
## 1105 0.5 1000 250 250 0.5 0.8 200
## 1106 0.5 1000 250 250 0.5 0.8 200
## 1107 0.5 1000 250 250 0.5 0.8 200
## 1108 0.5 1000 250 250 0.5 0.8 200
## 1109 0.5 1000 250 250 0.5 0.8 200
## 1110 0.5 1000 250 250 0.5 0.8 200
## 1111 0.5 1000 250 250 0.5 0.8 200
## 1112 0.5 1000 250 250 0.5 0.8 200
## 1113 0.5 1000 250 250 0.5 0.8 200
## 1114 0.5 1000 250 250 0.5 0.8 200
## 1115 0.5 1000 250 250 0.5 0.8 200
## 1116 0.5 1000 250 250 0.5 0.8 200
## 1117 0.5 1000 250 250 0.5 0.8 200
## 1118 0.5 1000 250 250 0.5 0.8 200
## 1119 0.5 1000 250 250 0.5 0.8 200
## 1120 0.5 1000 250 250 0.5 0.8 200
## 1121 0.5 1000 250 250 0.5 0.8 200
## 1122 0.5 1000 250 250 0.5 0.8 200
## 1123 0.5 1000 250 250 0.5 0.8 200
## 1124 0.5 1000 250 250 0.5 0.8 200
## 1125 0.5 1000 250 250 0.5 0.8 200
## 1126 0.5 1000 250 250 0.5 0.8 200
## 1127 0.5 1000 250 250 0.5 0.8 200
## 1128 0.5 1000 250 250 0.5 0.8 200
## 1129 0.5 1000 250 250 0.5 0.8 200
## 1130 0.5 1000 250 250 0.5 0.8 200
## 1131 0.5 1000 250 250 0.5 0.8 200
## 1132 0.5 1000 250 250 0.5 0.8 200
## 1133 0.5 1000 250 250 0.5 0.8 200
## 1134 0.5 1000 250 250 0.5 0.8 200
## 1135 0.5 1000 250 250 0.5 0.8 200
## 1136 0.5 1000 250 250 0.5 0.8 200
## 1137 0.5 1000 250 250 0.5 0.8 200
## 1138 0.5 1000 250 250 0.5 0.8 200
## 1139 0.5 1000 250 250 0.5 0.8 200
## 1140 0.5 1000 250 250 0.5 0.8 200
## 1141 0.5 1000 250 250 0.5 0.8 200
## 1142 0.5 1000 250 250 0.5 0.8 200
## 1143 0.5 1000 250 250 0.5 0.8 200
## 1144 0.5 1000 250 250 0.5 0.8 200
## 1145 0.5 1000 250 250 0.5 0.8 200
## 1146 0.5 1000 250 250 0.5 0.8 200
## 1147 0.5 1000 250 250 0.5 0.8 200
## 1148 0.5 1000 250 250 0.5 0.8 200
## 1149 0.5 1000 250 250 0.5 0.8 200
## 1150 0.5 1000 250 250 0.5 0.8 200
## 1151 0.5 1000 250 250 0.5 0.8 200
## 1152 0.5 1000 250 250 0.5 0.8 200
## 1153 0.5 1000 250 250 0.5 0.8 200
## 1154 0.5 1000 250 250 0.5 0.8 200
## 1155 0.5 1000 250 250 0.5 0.8 200
## 1156 0.5 1000 250 250 0.5 0.8 200
## 1157 0.5 1000 250 250 0.5 0.8 200
## 1158 0.5 1000 250 250 0.5 0.8 200
## 1159 0.5 1000 250 250 0.5 0.8 200
## 1160 0.5 1000 250 250 0.5 0.8 200
## 1161 0.5 1000 250 250 0.5 0.8 200
## 1162 0.5 1000 250 250 0.5 0.8 200
## 1163 0.5 1000 250 250 0.5 0.8 200
## 1164 0.5 1000 250 250 0.5 0.8 200
## 1165 0.5 1000 250 250 0.5 0.8 200
## 1166 0.5 1000 250 250 0.5 0.8 200
## 1167 0.5 1000 250 250 0.5 0.8 200
## 1168 0.5 1000 250 250 0.5 0.8 200
## 1169 0.5 1000 250 250 0.5 0.8 200
## 1170 0.5 1000 250 250 0.5 0.8 200
## 1171 0.5 1000 250 250 0.5 0.8 200
## 1172 0.5 1000 250 250 0.5 0.8 200
## 1173 0.5 1000 250 250 0.5 0.8 200
## 1174 0.5 1000 250 250 0.5 0.8 200
## 1175 0.5 1000 250 250 0.5 0.8 200
## 1176 0.5 1000 250 250 0.5 0.8 200
## 1177 0.5 1000 250 250 0.5 0.8 200
## 1178 0.5 1000 250 250 0.5 0.8 200
## 1179 0.5 1000 250 250 0.5 0.8 200
## 1180 0.5 1000 250 250 0.5 0.8 200
## 1181 0.5 1000 250 250 0.5 0.8 200
## 1182 0.5 1000 250 250 0.5 0.8 200
## 1183 0.5 1000 250 250 0.5 0.8 200
## 1184 0.5 1000 250 250 0.5 0.8 200
## 1185 0.5 1000 250 250 0.5 0.8 200
## 1186 0.5 1000 250 250 0.5 0.8 200
## 1187 0.5 1000 250 250 0.5 0.8 200
## 1188 0.5 1000 250 250 0.5 0.8 200
## 1189 0.5 1000 250 250 0.5 0.8 200
## 1190 0.5 1000 250 250 0.5 0.8 200
## 1191 0.5 1000 250 250 0.5 0.8 200
## 1192 0.5 1000 250 250 0.5 0.8 200
## 1193 0.5 1000 250 250 0.5 0.8 200
## 1194 0.5 1000 250 250 0.5 0.8 200
## 1195 0.5 1000 250 250 0.5 0.8 200
## 1196 0.5 1000 250 250 0.5 0.8 200
## 1197 0.5 1000 250 250 0.5 0.8 200
## 1198 0.5 1000 250 250 0.5 0.8 200
## 1199 0.5 1000 250 250 0.5 0.8 200
## 1200 0.5 1000 250 250 0.5 0.8 200
## 1201 0.5 1000 250 250 0.5 0.8 200
## 1202 0.5 1000 250 250 0.5 0.8 200
## 1203 0.5 1000 250 250 0.5 0.8 200
## 1204 0.5 1000 250 250 0.5 0.8 200
## 1205 0.5 1000 250 250 0.5 0.8 200
## 1206 0.5 1000 250 250 0.5 0.8 200
## 1207 0.5 1000 250 250 0.5 0.8 200
## 1208 0.5 1000 250 250 0.5 0.8 200
## 1209 0.5 1000 250 250 0.5 0.8 200
## 1210 0.5 1000 250 250 0.5 0.8 200
## 1211 0.5 1000 250 250 0.5 0.8 200
## 1212 0.5 1000 250 250 0.5 0.8 200
## 1213 0.5 1000 250 250 0.5 0.8 200
## 1214 0.5 1000 250 250 0.5 0.8 200
## 1215 0.5 1000 250 250 0.5 0.8 200
## 1216 0.5 1000 250 250 0.5 0.8 200
## 1217 0.5 1000 250 250 0.5 0.8 200
## 1218 0.5 1000 250 250 0.5 0.8 200
## 1219 0.5 1000 250 250 0.5 0.8 200
## 1220 0.5 1000 250 250 0.5 0.8 200
## 1221 0.5 1000 250 250 0.5 0.8 200
## 1222 0.5 1000 250 250 0.5 0.8 200
## 1223 0.5 1000 250 250 0.5 0.8 200
## 1224 0.5 1000 250 250 0.5 0.8 200
## 1225 0.5 1000 250 250 0.5 0.8 200
## 1226 0.5 1000 250 250 0.5 0.8 200
## 1227 0.5 1000 250 250 0.5 0.8 200
## 1228 0.5 1000 250 250 0.5 0.8 200
## 1229 0.5 1000 250 250 0.5 0.8 200
## 1230 0.5 1000 250 250 0.5 0.8 200
## 1231 0.5 1000 250 250 0.5 0.8 200
## 1232 0.5 1000 250 250 0.5 0.8 200
## 1233 0.5 1000 250 250 0.5 0.8 200
## 1234 0.5 1000 250 250 0.5 0.8 200
## 1235 0.5 1000 250 250 0.5 0.8 200
## 1236 0.5 1000 250 250 0.5 0.8 200
## 1237 0.5 1000 250 250 0.5 0.8 200
## 1238 0.5 1000 250 250 0.5 0.8 200
## 1239 0.5 1000 250 250 0.5 0.8 200
## 1240 0.5 1000 250 250 0.5 0.8 200
## 1241 0.5 1000 250 250 0.5 0.8 200
## 1242 0.5 1000 250 250 0.5 0.8 200
## 1243 0.5 1000 250 250 0.5 0.8 200
## 1244 0.5 1000 250 250 0.5 0.8 200
## 1245 0.5 1000 250 250 0.5 0.8 200
## 1246 0.5 1000 250 250 0.5 0.8 200
## 1247 0.5 1000 250 250 0.5 0.8 200
## 1248 0.5 1000 250 250 0.5 0.8 200
## 1249 0.5 1000 250 250 0.5 0.8 200
## 1250 0.5 1000 250 250 0.5 0.8 200
## 1251 0.5 1000 250 250 0.5 0.8 200
## 1252 0.5 1000 250 250 0.5 0.8 200
## 1253 0.5 1000 250 250 0.5 0.8 200
## 1254 0.5 1000 250 250 0.5 0.8 200
## 1255 0.5 1000 250 250 0.5 0.8 200
## 1256 0.5 1000 250 250 0.5 0.8 200
## 1257 0.5 1000 250 250 0.5 0.8 200
## 1258 0.5 1000 250 250 0.5 0.8 200
## 1259 0.5 1000 250 250 0.5 0.8 200
## 1260 0.5 1000 250 250 0.5 0.8 200
## 1261 0.5 1000 250 250 0.5 0.8 200
## 1262 0.5 1000 250 250 0.5 0.8 200
## 1263 0.5 1000 250 250 0.5 0.8 200
## 1264 0.5 1000 250 250 0.5 0.8 200
## 1265 0.5 1000 250 250 0.5 0.8 200
## 1266 0.5 1000 250 250 0.5 0.8 200
## 1267 0.5 1000 250 250 0.5 0.8 200
## 1268 0.5 1000 250 250 0.5 0.8 200
## 1269 0.5 1000 250 250 0.5 0.8 200
## 1270 0.5 1000 250 250 0.5 0.8 200
## 1271 0.5 1000 250 250 0.5 0.8 200
## 1272 0.5 1000 250 250 0.5 0.8 200
## 1273 0.5 1000 250 250 0.5 0.8 200
## 1274 0.5 1000 250 250 0.5 0.8 200
## 1275 0.5 1000 250 250 0.5 0.8 200
## 1276 0.5 1000 250 250 0.5 0.8 200
## 1277 0.5 1000 250 250 0.5 0.8 200
## 1278 0.5 1000 250 250 0.5 0.8 200
## 1279 0.5 1000 250 250 0.5 0.8 200
## 1280 0.5 1000 250 250 0.5 0.8 200
## 1281 0.5 1000 250 250 0.5 0.8 200
## 1282 0.5 1000 250 250 0.5 0.8 200
## 1283 0.5 1000 250 250 0.5 0.8 200
## 1284 0.5 1000 250 250 0.5 0.8 200
## 1285 0.5 1000 250 250 0.5 0.8 200
## 1286 0.5 1000 250 250 0.5 0.8 200
## 1287 0.5 1000 250 250 0.5 0.8 200
## 1288 0.5 1000 250 250 0.5 0.8 200
## 1289 0.5 1000 250 250 0.5 0.8 200
## 1290 0.5 1000 250 250 0.5 0.8 200
## 1291 0.5 1000 250 250 0.5 0.8 200
## 1292 0.5 1000 250 250 0.5 0.8 200
## 1293 0.5 1000 250 250 0.5 0.8 200
## 1294 0.5 1000 250 250 0.5 0.8 200
## 1295 0.5 1000 250 250 0.5 0.8 200
## 1296 0.5 1000 250 250 0.5 0.8 200
## 1297 0.5 1000 250 250 0.5 0.8 200
## 1298 0.5 1000 250 250 0.5 0.8 200
## 1299 0.5 1000 250 250 0.5 0.8 200
## 1300 0.5 1000 250 250 0.5 0.8 200
## 1301 0.5 1000 250 250 0.5 0.8 200
## 1302 0.5 1000 250 250 0.5 0.8 200
## 1303 0.5 1000 250 250 0.5 0.8 200
## 1304 0.5 1000 250 250 0.5 0.8 200
## 1305 0.5 1000 250 250 0.5 0.8 200
## 1306 0.5 1000 250 250 0.5 0.8 200
## 1307 0.5 1000 250 250 0.5 0.8 200
## 1308 0.5 1000 250 250 0.5 0.8 200
## 1309 0.5 1000 250 250 0.5 0.8 200
## 1310 0.5 1000 250 250 0.5 0.8 200
## 1311 0.5 1000 250 250 0.5 0.8 200
## 1312 0.5 1000 250 250 0.5 0.8 200
## 1313 0.5 1000 250 250 0.5 0.8 200
## 1314 0.5 1000 250 250 0.5 0.8 200
## 1315 0.5 1000 250 250 0.5 0.8 200
## 1316 0.5 1000 250 250 0.5 0.8 200
## 1317 0.5 1000 250 250 0.5 0.8 200
## 1318 0.5 1000 250 250 0.5 0.8 200
## 1319 0.5 1000 250 250 0.5 0.8 200
## 1320 0.5 1000 250 250 0.5 0.8 200
## 1321 0.5 1000 250 250 0.5 0.8 200
## 1322 0.5 1000 250 250 0.5 0.8 200
## 1323 0.5 1000 250 250 0.5 0.8 200
## 1324 0.5 1000 250 250 0.5 0.8 200
## 1325 0.5 1000 250 250 0.5 0.8 200
## 1326 0.5 1000 250 250 0.5 0.8 200
## 1327 0.5 1000 250 250 0.5 0.8 200
## 1328 0.5 1000 250 250 0.5 0.8 200
## 1329 0.5 1000 250 250 0.5 0.8 200
## 1330 0.5 1000 250 250 0.5 0.8 200
## 1331 0.5 1000 250 250 0.5 0.8 200
## 1332 0.5 1000 250 250 0.5 0.8 200
## 1333 0.5 1000 250 250 0.5 0.8 200
## 1334 0.5 1000 250 250 0.5 0.8 200
## 1335 0.5 1000 250 250 0.5 0.8 200
## 1336 0.5 1000 250 250 0.5 0.8 200
## 1337 0.5 1000 250 250 0.5 0.8 200
## 1338 0.5 1000 250 250 0.5 0.8 200
## 1339 0.5 1000 250 250 0.5 0.8 200
## 1340 0.5 1000 250 250 0.5 0.8 200
## 1341 0.5 1000 250 250 0.5 0.8 200
## 1342 0.5 1000 250 250 0.5 0.8 200
## 1343 0.5 1000 250 250 0.5 0.8 200
## 1344 0.5 1000 250 250 0.5 0.8 200
## 1345 0.5 1000 250 250 0.5 0.8 200
## 1346 0.5 1000 250 250 0.5 0.8 200
## 1347 0.5 1000 250 250 0.5 0.8 200
## 1348 0.5 1000 250 250 0.5 0.8 200
## 1349 0.5 1000 250 250 0.5 0.8 200
## 1350 0.5 1000 250 250 0.5 0.8 200
## 1351 0.5 1000 250 250 0.5 0.8 200
## 1352 0.5 1000 250 250 0.5 0.8 200
## 1353 0.5 1000 250 250 0.5 0.8 200
## 1354 0.5 1000 250 250 0.5 0.8 200
## 1355 0.5 1000 250 250 0.5 0.8 200
## 1356 0.5 1000 250 250 0.5 0.8 200
## 1357 0.5 1000 250 250 0.5 0.8 200
## 1358 0.5 1000 250 250 0.5 0.8 200
## 1359 0.5 1000 250 250 0.5 0.8 200
## 1360 0.5 1000 250 250 0.5 0.8 200
## 1361 0.5 1000 250 250 0.5 0.8 200
## 1362 0.5 1000 250 250 0.5 0.8 200
## 1363 0.5 1000 250 250 0.5 0.8 200
## 1364 0.5 1000 250 250 0.5 0.8 200
## 1365 0.5 1000 250 250 0.5 0.8 200
## 1366 0.5 1000 250 250 0.5 0.8 200
## 1367 0.5 1000 250 250 0.5 0.8 200
## 1368 0.5 1000 250 250 0.5 0.8 200
## 1369 0.5 1000 250 250 0.5 0.8 200
## 1370 0.5 1000 250 250 0.5 0.8 200
## 1371 0.5 1000 250 250 0.5 0.8 200
## 1372 0.5 1000 250 250 0.5 0.8 200
## 1373 0.5 1000 250 250 0.5 0.8 200
## 1374 0.5 1000 250 250 0.5 0.8 200
## 1375 0.5 1000 250 250 0.5 0.8 200
## 1376 0.5 1000 250 250 0.5 0.8 200
## 1377 0.5 1000 250 250 0.5 0.8 200
## 1378 0.5 1000 250 250 0.5 0.8 200
## 1379 0.5 1000 250 250 0.5 0.8 200
## 1380 0.5 1000 250 250 0.5 0.8 200
## 1381 0.5 1000 250 250 0.5 0.8 200
## 1382 0.5 1000 250 250 0.5 0.8 200
## 1383 0.5 1000 250 250 0.5 0.8 200
## 1384 0.5 1000 250 250 0.5 0.8 200
## 1385 0.5 1000 250 250 0.5 0.8 200
## 1386 0.5 1000 250 250 0.5 0.8 200
## 1387 0.5 1000 250 250 0.5 0.8 200
## 1388 0.5 1000 250 250 0.5 0.8 200
## 1389 0.5 1000 250 250 0.5 0.8 200
## 1390 0.5 1000 250 250 0.5 0.8 200
## 1391 0.5 1000 250 250 0.5 0.8 200
## 1392 0.5 1000 250 250 0.5 0.8 200
## 1393 0.5 1000 250 250 0.5 0.8 200
## 1394 0.5 1000 250 250 0.5 0.8 200
## 1395 0.5 1000 250 250 0.5 0.8 200
## 1396 0.5 1000 250 250 0.5 0.8 200
## 1397 0.5 1000 250 250 0.5 0.8 200
## 1398 0.5 1000 250 250 0.5 0.8 200
## 1399 0.5 1000 250 250 0.5 0.8 200
## 1400 0.5 1000 250 250 0.5 0.8 200
## 1401 0.5 1000 250 250 0.5 0.8 200
## 1402 0.5 1000 250 250 0.5 0.8 200
## 1403 0.5 1000 250 250 0.5 0.8 200
## 1404 0.5 1000 250 250 0.5 0.8 200
## 1405 0.5 1000 250 250 0.5 0.8 200
## 1406 0.5 1000 250 250 0.5 0.8 200
## 1407 0.5 1000 250 250 0.5 0.8 200
## 1408 0.5 1000 250 250 0.5 0.8 200
## 1409 0.5 1000 250 250 0.5 0.8 200
## 1410 0.5 1000 250 250 0.5 0.8 200
## 1411 0.5 1000 250 250 0.5 0.8 200
## 1412 0.5 1000 250 250 0.5 0.8 200
## 1413 0.5 1000 250 250 0.5 0.8 200
## 1414 0.5 1000 250 250 0.5 0.8 200
## 1415 0.5 1000 250 250 0.5 0.8 200
## 1416 0.5 1000 250 250 0.5 0.8 200
## 1417 0.5 1000 250 250 0.5 0.8 200
## 1418 0.5 1000 250 250 0.5 0.8 200
## 1419 0.5 1000 250 250 0.5 0.8 200
## 1420 0.5 1000 250 250 0.5 0.8 200
## 1421 0.5 1000 250 250 0.5 0.8 200
## 1422 0.5 1000 250 250 0.5 0.8 200
## 1423 0.5 1000 250 250 0.5 0.8 200
## 1424 0.5 1000 250 250 0.5 0.8 200
## 1425 0.5 1000 250 250 0.5 0.8 200
## 1426 0.5 1000 250 250 0.5 0.8 200
## 1427 0.5 1000 250 250 0.5 0.8 200
## 1428 0.5 1000 250 250 0.5 0.8 200
## 1429 0.5 1000 250 250 0.5 0.8 200
## 1430 0.5 1000 250 250 0.5 0.8 200
## 1431 0.5 1000 250 250 0.5 0.8 200
## 1432 0.5 1000 250 250 0.5 0.8 200
## 1433 0.5 1000 250 250 0.5 0.8 200
## 1434 0.5 1000 250 250 0.5 0.8 200
## 1435 0.5 1000 250 250 0.5 0.8 200
## 1436 0.5 1000 250 250 0.5 0.8 200
## 1437 0.5 1000 250 250 0.5 0.8 200
## 1438 0.5 1000 250 250 0.5 0.8 200
## 1439 0.5 1000 250 250 0.5 0.8 200
## 1440 0.5 1000 250 250 0.5 0.8 200
## 1441 0.5 1000 250 250 0.5 0.8 200
## 1442 0.5 1000 250 250 0.5 0.8 200
## 1443 0.5 1000 250 250 0.5 0.8 200
## 1444 0.5 1000 250 250 0.5 0.8 200
## 1445 0.5 1000 250 250 0.5 0.8 200
## 1446 0.5 1000 250 250 0.5 0.8 200
## 1447 0.5 1000 250 250 0.5 0.8 200
## 1448 0.5 1000 250 250 0.5 0.8 200
## 1449 0.5 1000 250 250 0.5 0.8 200
## 1450 0.5 1000 250 250 0.5 0.8 200
## 1451 0.5 1000 250 250 0.5 0.8 200
## 1452 0.5 1000 250 250 0.5 0.8 200
## 1453 0.5 1000 250 250 0.5 0.8 200
## 1454 0.5 1000 250 250 0.5 0.8 200
## 1455 0.5 1000 250 250 0.5 0.8 200
## 1456 0.5 1000 250 250 0.5 0.8 200
## 1457 0.5 1000 250 250 0.5 0.8 200
## 1458 0.5 1000 250 250 0.5 0.8 200
## 1459 0.5 1000 250 250 0.5 0.8 200
## 1460 0.5 1000 250 250 0.5 0.8 200
## exaggeration_factor cluster
## 1 12 1
## 2 12 2
## 3 12 1
## 4 12 3
## 5 12 1
## 6 12 4
## 7 12 5
## 8 12 2
## 9 12 6
## 10 12 7
## 11 12 8
## 12 12 1
## 13 12 9
## 14 12 5
## 15 12 7
## 16 12 3
## 17 12 10
## 18 12 11
## 19 12 7
## 20 12 8
## 21 12 1
## 22 12 3
## 23 12 5
## 24 12 4
## 25 12 9
## 26 12 5
## 27 12 2
## 28 12 5
## 29 12 7
## 30 12 3
## 31 12 3
## 32 12 7
## 33 12 5
## 34 12 2
## 35 12 12
## 36 12 1
## 37 12 7
## 38 12 2
## 39 12 8
## 40 12 11
## 41 12 7
## 42 12 2
## 43 12 9
## 44 12 9
## 45 12 9
## 46 12 12
## 47 12 4
## 48 12 5
## 49 12 6
## 50 12 8
## 51 12 2
## 52 12 13
## 53 12 9
## 54 12 4
## 55 12 7
## 56 12 4
## 57 12 14
## 58 12 1
## 59 12 1
## 60 12 8
## 61 12 7
## 62 12 3
## 63 12 12
## 64 12 3
## 65 12 1
## 66 12 1
## 67 12 7
## 68 12 5
## 69 12 3
## 70 12 3
## 71 12 7
## 72 12 8
## 73 12 15
## 74 12 9
## 75 12 6
## 76 12 14
## 77 12 8
## 78 12 3
## 79 12 6
## 80 12 3
## 81 12 15
## 82 12 12
## 83 12 5
## 84 12 7
## 85 12 2
## 86 12 1
## 87 12 1
## 88 12 14
## 89 12 13
## 90 12 7
## 91 12 11
## 92 12 7
## 93 12 3
## 94 12 6
## 95 12 1
## 96 12 2
## 97 12 5
## 98 12 7
## 99 12 10
## 100 12 10
## 101 12 5
## 102 12 1
## 103 12 11
## 104 12 5
## 105 12 3
## 106 12 1
## 107 12 10
## 108 12 9
## 109 12 3
## 110 12 7
## 111 12 3
## 112 12 1
## 113 12 1
## 114 12 7
## 115 12 15
## 116 12 14
## 117 12 2
## 118 12 7
## 119 12 1
## 120 12 1
## 121 12 4
## 122 12 3
## 123 12 9
## 124 12 12
## 125 12 7
## 126 12 13
## 127 12 4
## 128 12 3
## 129 12 15
## 130 12 4
## 131 12 15
## 132 12 1
## 133 12 8
## 134 12 5
## 135 12 7
## 136 12 7
## 137 12 7
## 138 12 6
## 139 12 1
## 140 12 1
## 141 12 8
## 142 12 5
## 143 12 3
## 144 12 5
## 145 12 6
## 146 12 14
## 147 12 3
## 148 12 1
## 149 12 7
## 150 12 3
## 151 12 8
## 152 12 5
## 153 12 15
## 154 12 9
## 155 12 3
## 156 12 3
## 157 12 11
## 158 12 1
## 159 12 1
## 160 12 4
## 161 12 7
## 162 12 1
## 163 12 5
## 164 12 3
## 165 12 3
## 166 12 6
## 167 12 9
## 168 12 1
## 169 12 1
## 170 12 5
## 171 12 13
## 172 12 7
## 173 12 1
## 174 12 9
## 175 12 7
## 176 12 7
## 177 12 2
## 178 12 3
## 179 12 5
## 180 12 3
## 181 12 14
## 182 12 3
## 183 12 11
## 184 12 1
## 185 12 3
## 186 12 13
## 187 12 7
## 188 12 13
## 189 12 10
## 190 12 4
## 191 12 10
## 192 12 15
## 193 12 5
## 194 12 14
## 195 12 8
## 196 12 14
## 197 12 5
## 198 12 9
## 199 12 13
## 200 12 5
## 201 12 5
## 202 12 2
## 203 12 3
## 204 12 12
## 205 12 3
## 206 12 4
## 207 12 7
## 208 12 9
## 209 12 1
## 210 12 7
## 211 12 3
## 212 12 5
## 213 12 1
## 214 12 2
## 215 12 2
## 216 12 2
## 217 12 5
## 218 12 3
## 219 12 2
## 220 12 12
## 221 12 5
## 222 12 1
## 223 12 1
## 224 12 9
## 225 12 5
## 226 12 14
## 227 12 1
## 228 12 14
## 229 12 8
## 230 12 12
## 231 12 9
## 232 12 1
## 233 12 14
## 234 12 9
## 235 12 1
## 236 12 14
## 237 12 5
## 238 12 4
## 239 12 5
## 240 12 3
## 241 12 5
## 242 12 3
## 243 12 3
## 244 12 1
## 245 12 1
## 246 12 2
## 247 12 6
## 248 12 7
## 249 12 1
## 250 12 2
## 251 12 10
## 252 12 12
## 253 12 1
## 254 12 2
## 255 12 8
## 256 12 1
## 257 12 1
## 258 12 5
## 259 12 4
## 260 12 11
## 261 12 9
## 262 12 1
## 263 12 7
## 264 12 13
## 265 12 3
## 266 12 7
## 267 12 1
## 268 12 13
## 269 12 9
## 270 12 7
## 271 12 1
## 272 12 9
## 273 12 1
## 274 12 7
## 275 12 8
## 276 12 3
## 277 12 5
## 278 12 8
## 279 12 5
## 280 12 15
## 281 12 4
## 282 12 5
## 283 12 12
## 284 12 5
## 285 12 12
## 286 12 14
## 287 12 3
## 288 12 8
## 289 12 8
## 290 12 3
## 291 12 1
## 292 12 3
## 293 12 3
## 294 12 15
## 295 12 7
## 296 12 7
## 297 12 3
## 298 12 15
## 299 12 2
## 300 12 2
## 301 12 7
## 302 12 1
## 303 12 5
## 304 12 8
## 305 12 10
## 306 12 5
## 307 12 1
## 308 12 3
## 309 12 8
## 310 12 5
## 311 12 1
## 312 12 8
## 313 12 3
## 314 12 9
## 315 12 3
## 316 12 1
## 317 12 15
## 318 12 1
## 319 12 1
## 320 12 7
## 321 12 1
## 322 12 1
## 323 12 15
## 324 12 3
## 325 12 1
## 326 12 3
## 327 12 12
## 328 12 7
## 329 12 3
## 330 12 3
## 331 12 6
## 332 12 8
## 333 12 5
## 334 12 12
## 335 12 1
## 336 12 9
## 337 12 5
## 338 12 5
## 339 12 7
## 340 12 9
## 341 12 1
## 342 12 3
## 343 12 11
## 344 12 12
## 345 12 14
## 346 12 3
## 347 12 10
## 348 12 7
## 349 12 14
## 350 12 1
## 351 12 12
## 352 12 4
## 353 12 2
## 354 12 3
## 355 12 3
## 356 12 5
## 357 12 5
## 358 12 4
## 359 12 2
## 360 12 1
## 361 12 9
## 362 12 3
## 363 12 11
## 364 12 14
## 365 12 1
## 366 12 3
## 367 12 9
## 368 12 2
## 369 12 7
## 370 12 9
## 371 12 1
## 372 12 11
## 373 12 9
## 374 12 9
## 375 12 1
## 376 12 3
## 377 12 7
## 378 12 1
## 379 12 5
## 380 12 1
## 381 12 3
## 382 12 5
## 383 12 1
## 384 12 3
## 385 12 1
## 386 12 12
## 387 12 3
## 388 12 7
## 389 12 5
## 390 12 1
## 391 12 3
## 392 12 1
## 393 12 11
## 394 12 8
## 395 12 3
## 396 12 8
## 397 12 8
## 398 12 15
## 399 12 3
## 400 12 1
## 401 12 4
## 402 12 5
## 403 12 3
## 404 12 1
## 405 12 1
## 406 12 7
## 407 12 13
## 408 12 3
## 409 12 1
## 410 12 1
## 411 12 8
## 412 12 7
## 413 12 5
## 414 12 3
## 415 12 2
## 416 12 5
## 417 12 15
## 418 12 10
## 419 12 3
## 420 12 8
## 421 12 6
## 422 12 2
## 423 12 8
## 424 12 1
## 425 12 7
## 426 12 3
## 427 12 12
## 428 12 8
## 429 12 5
## 430 12 7
## 431 12 14
## 432 12 3
## 433 12 14
## 434 12 1
## 435 12 14
## 436 12 1
## 437 12 3
## 438 12 3
## 439 12 3
## 440 12 10
## 441 12 5
## 442 12 6
## 443 12 3
## 444 12 12
## 445 12 1
## 446 12 7
## 447 12 7
## 448 12 1
## 449 12 3
## 450 12 3
## 451 12 3
## 452 12 7
## 453 12 1
## 454 12 1
## 455 12 6
## 456 12 7
## 457 12 3
## 458 12 7
## 459 12 3
## 460 12 3
## 461 12 1
## 462 12 7
## 463 12 9
## 464 12 3
## 465 12 7
## 466 12 12
## 467 12 9
## 468 12 15
## 469 12 5
## 470 12 1
## 471 12 4
## 472 12 15
## 473 12 12
## 474 12 5
## 475 12 12
## 476 12 9
## 477 12 5
## 478 12 1
## 479 12 5
## 480 12 8
## 481 12 5
## 482 12 5
## 483 12 3
## 484 12 12
## 485 12 8
## 486 12 8
## 487 12 7
## 488 12 9
## 489 12 6
## 490 12 14
## 491 12 14
## 492 12 3
## 493 12 1
## 494 12 9
## 495 12 3
## 496 12 3
## 497 12 5
## 498 12 3
## 499 12 7
## 500 12 2
## 501 12 14
## 502 12 1
## 503 12 10
## 504 12 9
## 505 12 14
## 506 12 6
## 507 12 1
## 508 12 5
## 509 12 3
## 510 12 7
## 511 12 10
## 512 12 12
## 513 12 9
## 514 12 8
## 515 12 3
## 516 12 5
## 517 12 15
## 518 12 1
## 519 12 1
## 520 12 3
## 521 12 11
## 522 12 7
## 523 12 3
## 524 12 1
## 525 12 1
## 526 12 5
## 527 12 8
## 528 12 1
## 529 12 3
## 530 12 5
## 531 12 7
## 532 12 3
## 533 12 11
## 534 12 11
## 535 12 1
## 536 12 3
## 537 12 1
## 538 12 8
## 539 12 7
## 540 12 7
## 541 12 5
## 542 12 1
## 543 12 5
## 544 12 12
## 545 12 1
## 546 12 1
## 547 12 4
## 548 12 7
## 549 12 9
## 550 12 1
## 551 12 4
## 552 12 8
## 553 12 5
## 554 12 11
## 555 12 1
## 556 12 3
## 557 12 9
## 558 12 3
## 559 12 2
## 560 12 12
## 561 12 9
## 562 12 9
## 563 12 8
## 564 12 3
## 565 12 1
## 566 12 3
## 567 12 1
## 568 12 5
## 569 12 4
## 570 12 7
## 571 12 6
## 572 12 7
## 573 12 1
## 574 12 1
## 575 12 2
## 576 12 3
## 577 12 3
## 578 12 9
## 579 12 14
## 580 12 3
## 581 12 2
## 582 12 5
## 583 12 7
## 584 12 10
## 585 12 3
## 586 12 5
## 587 12 9
## 588 12 7
## 589 12 9
## 590 12 13
## 591 12 1
## 592 12 1
## 593 12 8
## 594 12 12
## 595 12 8
## 596 12 5
## 597 12 3
## 598 12 12
## 599 12 7
## 600 12 14
## 601 12 1
## 602 12 3
## 603 12 1
## 604 12 14
## 605 12 5
## 606 12 15
## 607 12 7
## 608 12 3
## 609 12 10
## 610 12 7
## 611 12 1
## 612 12 2
## 613 12 1
## 614 12 7
## 615 12 14
## 616 12 7
## 617 12 1
## 618 12 8
## 619 12 5
## 620 12 1
## 621 12 3
## 622 12 15
## 623 12 7
## 624 12 14
## 625 12 15
## 626 12 9
## 627 12 10
## 628 12 9
## 629 12 2
## 630 12 9
## 631 12 3
## 632 12 12
## 633 12 7
## 634 12 2
## 635 12 10
## 636 12 13
## 637 12 3
## 638 12 6
## 639 12 3
## 640 12 12
## 641 12 12
## 642 12 1
## 643 12 1
## 644 12 15
## 645 12 5
## 646 12 9
## 647 12 11
## 648 12 9
## 649 12 15
## 650 12 14
## 651 12 1
## 652 12 3
## 653 12 1
## 654 12 3
## 655 12 5
## 656 12 14
## 657 12 8
## 658 12 3
## 659 12 3
## 660 12 8
## 661 12 15
## 662 12 1
## 663 12 7
## 664 12 9
## 665 12 5
## 666 12 1
## 667 12 15
## 668 12 5
## 669 12 8
## 670 12 3
## 671 12 1
## 672 12 3
## 673 12 7
## 674 12 9
## 675 12 8
## 676 12 14
## 677 12 6
## 678 12 3
## 679 12 5
## 680 12 7
## 681 12 4
## 682 12 3
## 683 12 12
## 684 12 5
## 685 12 1
## 686 12 1
## 687 12 1
## 688 12 14
## 689 12 5
## 690 12 12
## 691 12 12
## 692 12 1
## 693 12 1
## 694 12 3
## 695 12 3
## 696 12 7
## 697 12 3
## 698 12 2
## 699 12 9
## 700 12 12
## 701 12 5
## 702 12 7
## 703 12 1
## 704 12 6
## 705 12 4
## 706 12 11
## 707 12 7
## 708 12 12
## 709 12 1
## 710 12 7
## 711 12 3
## 712 12 3
## 713 12 12
## 714 12 7
## 715 12 15
## 716 12 7
## 717 12 3
## 718 12 2
## 719 12 1
## 720 12 8
## 721 12 12
## 722 12 12
## 723 12 8
## 724 12 3
## 725 12 5
## 726 12 10
## 727 12 4
## 728 12 5
## 729 12 6
## 730 12 13
## 731 12 12
## 732 12 12
## 733 12 1
## 734 12 10
## 735 12 8
## 736 12 3
## 737 12 11
## 738 12 1
## 739 12 6
## 740 12 1
## 741 12 3
## 742 12 2
## 743 12 5
## 744 12 2
## 745 12 4
## 746 12 2
## 747 12 1
## 748 12 3
## 749 12 5
## 750 12 11
## 751 12 3
## 752 12 1
## 753 12 5
## 754 12 1
## 755 12 9
## 756 12 14
## 757 12 1
## 758 12 15
## 759 12 14
## 760 12 1
## 761 12 10
## 762 12 8
## 763 12 1
## 764 12 1
## 765 12 4
## 766 12 5
## 767 12 2
## 768 12 2
## 769 12 5
## 770 12 1
## 771 12 7
## 772 12 7
## 773 12 9
## 774 12 8
## 775 12 5
## 776 12 12
## 777 12 5
## 778 12 8
## 779 12 11
## 780 12 7
## 781 12 5
## 782 12 1
## 783 12 5
## 784 12 7
## 785 12 3
## 786 12 9
## 787 12 3
## 788 12 1
## 789 12 3
## 790 12 15
## 791 12 12
## 792 12 7
## 793 12 1
## 794 12 5
## 795 12 2
## 796 12 15
## 797 12 7
## 798 12 8
## 799 12 1
## 800 12 3
## 801 12 2
## 802 12 3
## 803 12 1
## 804 12 1
## 805 12 8
## 806 12 5
## 807 12 9
## 808 12 1
## 809 12 9
## 810 12 6
## 811 12 9
## 812 12 12
## 813 12 10
## 814 12 10
## 815 12 3
## 816 12 5
## 817 12 8
## 818 12 5
## 819 12 7
## 820 12 12
## 821 12 1
## 822 12 3
## 823 12 1
## 824 12 3
## 825 12 5
## 826 12 5
## 827 12 3
## 828 12 5
## 829 12 2
## 830 12 14
## 831 12 9
## 832 12 14
## 833 12 1
## 834 12 9
## 835 12 7
## 836 12 8
## 837 12 8
## 838 12 14
## 839 12 7
## 840 12 3
## 841 12 3
## 842 12 3
## 843 12 9
## 844 12 6
## 845 12 3
## 846 12 7
## 847 12 1
## 848 12 8
## 849 12 3
## 850 12 15
## 851 12 12
## 852 12 12
## 853 12 3
## 854 12 7
## 855 12 9
## 856 12 8
## 857 12 9
## 858 12 1
## 859 12 7
## 860 12 15
## 861 12 3
## 862 12 7
## 863 12 7
## 864 12 8
## 865 12 5
## 866 12 7
## 867 12 5
## 868 12 10
## 869 12 11
## 870 12 1
## 871 12 8
## 872 12 1
## 873 12 3
## 874 12 13
## 875 12 3
## 876 12 1
## 877 12 8
## 878 12 1
## 879 12 10
## 880 12 8
## 881 12 7
## 882 12 1
## 883 12 1
## 884 12 13
## 885 12 7
## 886 12 12
## 887 12 6
## 888 12 3
## 889 12 5
## 890 12 4
## 891 12 10
## 892 12 15
## 893 12 2
## 894 12 7
## 895 12 11
## 896 12 15
## 897 12 3
## 898 12 11
## 899 12 5
## 900 12 8
## 901 12 8
## 902 12 8
## 903 12 1
## 904 12 5
## 905 12 7
## 906 12 9
## 907 12 5
## 908 12 3
## 909 12 9
## 910 12 1
## 911 12 6
## 912 12 8
## 913 12 10
## 914 12 6
## 915 12 14
## 916 12 14
## 917 12 3
## 918 12 8
## 919 12 1
## 920 12 9
## 921 12 2
## 922 12 10
## 923 12 5
## 924 12 12
## 925 12 7
## 926 12 2
## 927 12 1
## 928 12 15
## 929 12 5
## 930 12 1
## 931 12 5
## 932 12 2
## 933 12 5
## 934 12 5
## 935 12 5
## 936 12 3
## 937 12 5
## 938 12 1
## 939 12 1
## 940 12 3
## 941 12 6
## 942 12 4
## 943 12 6
## 944 12 6
## 945 12 2
## 946 12 13
## 947 12 9
## 948 12 5
## 949 12 1
## 950 12 8
## 951 12 9
## 952 12 8
## 953 12 2
## 954 12 2
## 955 12 2
## 956 12 6
## 957 12 14
## 958 12 8
## 959 12 5
## 960 12 14
## 961 12 8
## 962 12 15
## 963 12 14
## 964 12 5
## 965 12 1
## 966 12 1
## 967 12 3
## 968 12 7
## 969 12 3
## 970 12 7
## 971 12 3
## 972 12 14
## 973 12 4
## 974 12 5
## 975 12 3
## 976 12 14
## 977 12 3
## 978 12 12
## 979 12 8
## 980 12 8
## 981 12 15
## 982 12 1
## 983 12 12
## 984 12 1
## 985 12 11
## 986 12 7
## 987 12 3
## 988 12 5
## 989 12 15
## 990 12 1
## 991 12 1
## 992 12 3
## 993 12 15
## 994 12 1
## 995 12 5
## 996 12 3
## 997 12 8
## 998 12 7
## 999 12 3
## 1000 12 5
## 1001 12 11
## 1002 12 3
## 1003 12 5
## 1004 12 6
## 1005 12 12
## 1006 12 7
## 1007 12 2
## 1008 12 14
## 1009 12 5
## 1010 12 13
## 1011 12 3
## 1012 12 11
## 1013 12 3
## 1014 12 9
## 1015 12 7
## 1016 12 1
## 1017 12 5
## 1018 12 12
## 1019 12 1
## 1020 12 12
## 1021 12 7
## 1022 12 5
## 1023 12 3
## 1024 12 12
## 1025 12 7
## 1026 12 9
## 1027 12 9
## 1028 12 5
## 1029 12 3
## 1030 12 14
## 1031 12 6
## 1032 12 13
## 1033 12 1
## 1034 12 5
## 1035 12 3
## 1036 12 11
## 1037 12 5
## 1038 12 15
## 1039 12 14
## 1040 12 14
## 1041 12 7
## 1042 12 2
## 1043 12 12
## 1044 12 1
## 1045 12 5
## 1046 12 11
## 1047 12 1
## 1048 12 2
## 1049 12 11
## 1050 12 11
## 1051 12 5
## 1052 12 5
## 1053 12 2
## 1054 12 7
## 1055 12 1
## 1056 12 2
## 1057 12 12
## 1058 12 1
## 1059 12 1
## 1060 12 15
## 1061 12 12
## 1062 12 10
## 1063 12 6
## 1064 12 3
## 1065 12 9
## 1066 12 1
## 1067 12 1
## 1068 12 15
## 1069 12 1
## 1070 12 2
## 1071 12 9
## 1072 12 3
## 1073 12 3
## 1074 12 15
## 1075 12 5
## 1076 12 3
## 1077 12 2
## 1078 12 9
## 1079 12 12
## 1080 12 7
## 1081 12 4
## 1082 12 8
## 1083 12 5
## 1084 12 10
## 1085 12 1
## 1086 12 7
## 1087 12 14
## 1088 12 1
## 1089 12 14
## 1090 12 12
## 1091 12 11
## 1092 12 14
## 1093 12 3
## 1094 12 8
## 1095 12 9
## 1096 12 5
## 1097 12 3
## 1098 12 12
## 1099 12 3
## 1100 12 7
## 1101 12 3
## 1102 12 9
## 1103 12 8
## 1104 12 2
## 1105 12 14
## 1106 12 1
## 1107 12 5
## 1108 12 1
## 1109 12 1
## 1110 12 5
## 1111 12 1
## 1112 12 15
## 1113 12 8
## 1114 12 8
## 1115 12 8
## 1116 12 5
## 1117 12 1
## 1118 12 8
## 1119 12 2
## 1120 12 8
## 1121 12 3
## 1122 12 5
## 1123 12 8
## 1124 12 2
## 1125 12 1
## 1126 12 8
## 1127 12 12
## 1128 12 5
## 1129 12 1
## 1130 12 7
## 1131 12 3
## 1132 12 7
## 1133 12 3
## 1134 12 1
## 1135 12 1
## 1136 12 3
## 1137 12 3
## 1138 12 3
## 1139 12 5
## 1140 12 3
## 1141 12 8
## 1142 12 15
## 1143 12 1
## 1144 12 8
## 1145 12 3
## 1146 12 3
## 1147 12 5
## 1148 12 3
## 1149 12 3
## 1150 12 3
## 1151 12 3
## 1152 12 9
## 1153 12 9
## 1154 12 3
## 1155 12 15
## 1156 12 9
## 1157 12 4
## 1158 12 12
## 1159 12 5
## 1160 12 15
## 1161 12 14
## 1162 12 4
## 1163 12 8
## 1164 12 10
## 1165 12 9
## 1166 12 5
## 1167 12 5
## 1168 12 1
## 1169 12 3
## 1170 12 1
## 1171 12 9
## 1172 12 10
## 1173 12 14
## 1174 12 13
## 1175 12 10
## 1176 12 1
## 1177 12 8
## 1178 12 3
## 1179 12 3
## 1180 12 11
## 1181 12 1
## 1182 12 4
## 1183 12 9
## 1184 12 8
## 1185 12 9
## 1186 12 3
## 1187 12 6
## 1188 12 5
## 1189 12 1
## 1190 12 1
## 1191 12 7
## 1192 12 14
## 1193 12 3
## 1194 12 12
## 1195 12 15
## 1196 12 1
## 1197 12 1
## 1198 12 3
## 1199 12 5
## 1200 12 7
## 1201 12 8
## 1202 12 1
## 1203 12 3
## 1204 12 5
## 1205 12 7
## 1206 12 7
## 1207 12 7
## 1208 12 5
## 1209 12 9
## 1210 12 5
## 1211 12 2
## 1212 12 1
## 1213 12 8
## 1214 12 2
## 1215 12 7
## 1216 12 9
## 1217 12 11
## 1218 12 5
## 1219 12 11
## 1220 12 14
## 1221 12 9
## 1222 12 9
## 1223 12 15
## 1224 12 7
## 1225 12 1
## 1226 12 2
## 1227 12 1
## 1228 12 8
## 1229 12 4
## 1230 12 3
## 1231 12 2
## 1232 12 7
## 1233 12 11
## 1234 12 7
## 1235 12 3
## 1236 12 3
## 1237 12 14
## 1238 12 1
## 1239 12 7
## 1240 12 5
## 1241 12 1
## 1242 12 5
## 1243 12 7
## 1244 12 5
## 1245 12 3
## 1246 12 15
## 1247 12 1
## 1248 12 7
## 1249 12 3
## 1250 12 9
## 1251 12 7
## 1252 12 12
## 1253 12 10
## 1254 12 15
## 1255 12 1
## 1256 12 3
## 1257 12 5
## 1258 12 3
## 1259 12 12
## 1260 12 9
## 1261 12 1
## 1262 12 8
## 1263 12 3
## 1264 12 3
## 1265 12 12
## 1266 12 14
## 1267 12 6
## 1268 12 5
## 1269 12 2
## 1270 12 3
## 1271 12 4
## 1272 12 7
## 1273 12 9
## 1274 12 9
## 1275 12 3
## 1276 12 6
## 1277 12 2
## 1278 12 7
## 1279 12 1
## 1280 12 3
## 1281 12 5
## 1282 12 9
## 1283 12 9
## 1284 12 10
## 1285 12 3
## 1286 12 3
## 1287 12 9
## 1288 12 2
## 1289 12 12
## 1290 12 1
## 1291 12 7
## 1292 12 14
## 1293 12 6
## 1294 12 15
## 1295 12 8
## 1296 12 7
## 1297 12 7
## 1298 12 12
## 1299 12 9
## 1300 12 9
## 1301 12 1
## 1302 12 3
## 1303 12 1
## 1304 12 5
## 1305 12 14
## 1306 12 5
## 1307 12 12
## 1308 12 7
## 1309 12 9
## 1310 12 5
## 1311 12 7
## 1312 12 5
## 1313 12 1
## 1314 12 1
## 1315 12 8
## 1316 12 15
## 1317 12 5
## 1318 12 12
## 1319 12 5
## 1320 12 8
## 1321 12 9
## 1322 12 11
## 1323 12 1
## 1324 12 3
## 1325 12 5
## 1326 12 3
## 1327 12 3
## 1328 12 2
## 1329 12 3
## 1330 12 1
## 1331 12 5
## 1332 12 7
## 1333 12 8
## 1334 12 3
## 1335 12 14
## 1336 12 2
## 1337 12 6
## 1338 12 3
## 1339 12 1
## 1340 12 8
## 1341 12 8
## 1342 12 7
## 1343 12 1
## 1344 12 3
## 1345 12 1
## 1346 12 3
## 1347 12 4
## 1348 12 5
## 1349 12 5
## 1350 12 13
## 1351 12 6
## 1352 12 15
## 1353 12 3
## 1354 12 1
## 1355 12 1
## 1356 12 15
## 1357 12 7
## 1358 12 8
## 1359 12 14
## 1360 12 5
## 1361 12 3
## 1362 12 5
## 1363 12 3
## 1364 12 1
## 1365 12 14
## 1366 12 1
## 1367 12 1
## 1368 12 14
## 1369 12 12
## 1370 12 5
## 1371 12 3
## 1372 12 9
## 1373 12 1
## 1374 12 5
## 1375 12 1
## 1376 12 5
## 1377 12 3
## 1378 12 3
## 1379 12 14
## 1380 12 1
## 1381 12 3
## 1382 12 7
## 1383 12 3
## 1384 12 3
## 1385 12 3
## 1386 12 3
## 1387 12 9
## 1388 12 3
## 1389 12 5
## 1390 12 3
## 1391 12 5
## 1392 12 6
## 1393 12 7
## 1394 12 6
## 1395 12 12
## 1396 12 1
## 1397 12 9
## 1398 12 3
## 1399 12 3
## 1400 12 3
## 1401 12 3
## 1402 12 1
## 1403 12 5
## 1404 12 5
## 1405 12 3
## 1406 12 12
## 1407 12 7
## 1408 12 8
## 1409 12 3
## 1410 12 1
## 1411 12 1
## 1412 12 3
## 1413 12 11
## 1414 12 5
## 1415 12 3
## 1416 12 12
## 1417 12 6
## 1418 12 1
## 1419 12 9
## 1420 12 7
## 1421 12 15
## 1422 12 4
## 1423 12 12
## 1424 12 9
## 1425 12 9
## 1426 12 7
## 1427 12 1
## 1428 12 3
## 1429 12 8
## 1430 12 7
## 1431 12 1
## 1432 12 4
## 1433 12 8
## 1434 12 1
## 1435 12 7
## 1436 12 8
## 1437 12 8
## 1438 12 4
## 1439 12 8
## 1440 12 15
## 1441 12 13
## 1442 12 12
## 1443 12 1
## 1444 12 3
## 1445 12 5
## 1446 12 9
## 1447 12 7
## 1448 12 1
## 1449 12 3
## 1450 12 14
## 1451 12 10
## 1452 12 5
## 1453 12 12
## 1454 12 7
## 1455 12 5
## 1456 12 1
## 1457 12 7
## 1458 12 2
## 1459 12 9
## 1460 12 9
ggplot(tsne_df, aes(x=Y.1, y=Y.2, color=y)) +
geom_point() +
scale_color_gradientn(colours = heat.colors(10))
ggplot(data.frame(table(tsne_df$cluster)), aes(x=Var1, y=Freq)) +
geom_bar(stat = "identity") +
coord_flip()
ggplot(tsne_df, aes(x=Y.1, y=Y.2, color=cluster)) +
geom_point() +
scale_color_viridis() +
scale_fill_viridis(discrete = T) +
geom_point(data = data.frame(centroids), aes(x=X1, y=X2), color="black", fill="white", shape=21, size=8) +
geom_text(data = data.frame(centroids), aes(x=X1, y=X2, label=1:k), color="black")
fviz_silhouette(silhouette(cutree(hclust_avg, k = k), dist_mat))
## cluster size ave.sil.width
## 1 1 241 0.32
## 2 2 71 0.48
## 3 3 240 0.19
## 4 4 39 0.50
## 5 5 175 0.52
## 6 6 42 0.83
## 7 7 152 0.17
## 8 8 104 0.52
## 9 9 105 0.32
## 10 10 35 0.57
## 11 11 37 0.85
## 12 12 77 0.60
## 13 13 21 0.90
## 14 14 66 0.72
## 15 15 55 0.56
baselines_rmse <- list()
baselines_rmse_test <- list()
actual_metrics_test <- list()
metrics_fusion <- function(y_pred, y) {
y_pred_inv <- expm1(y_pred)
y_inv <- expm1(y)
a <- mae(y_pred_inv, y_inv)
b <- mape(y_pred_inv, y_inv)
c <- rmse(y_pred_inv, y_inv)
d <- mse(y_pred_inv, y_inv)
e <- R2(y_pred_inv, y_inv)
return(c("mae" = a, "mape" = b, "rmse" = c, "mse" = d, "r2" = e))
}
linreg_tc <- trainControl(method = "cv", number = 5)
linreg_cv <- caret::train(
SalePrice ~ .,
data = cbind(X_train_val, SalePrice = y_train_val),
trControl = linreg_tc,
method = "lm"
)
## Warning in predict.lm(modelFit, newdata): prediction from a rank-deficient fit
## may be misleading
## Warning in predict.lm(modelFit, newdata): prediction from a rank-deficient fit
## may be misleading
## Warning in predict.lm(modelFit, newdata): prediction from a rank-deficient fit
## may be misleading
## Warning in predict.lm(modelFit, newdata): prediction from a rank-deficient fit
## may be misleading
## Warning in predict.lm(modelFit, newdata): prediction from a rank-deficient fit
## may be misleading
# Validation predictions and metrics
score_val <- linreg_cv$results$RMSE
baselines_rmse$linear_regression <- score_val
# Test predictions and metrics
linreg <- lm(SalePrice ~ ., data = cbind(X_train_val, SalePrice = y_train_val))
y_pred_test <- predict(linreg, newdata = X_test)
## Warning in predict.lm(linreg, newdata = X_test): prediction from a
## rank-deficient fit may be misleading
score_test <- rmse(y_pred_test, y_test)
baselines_rmse_test$linear_regression <- score_test
actual_metrics_test$linear_regression <- metrics_fusion(y_pred_test, y_test)
# Display scores
score_val
## [1] 0.1407635
score_test
## [1] 0.1350529
lasso <- cv.glmnet(x = as.matrix(X_train_val), y = y_train_val, alpha = 1)
# Validation predictions and metrics
score_val <- mean(sqrt(lasso$cvm))
baselines_rmse$lasso <- score_val
# Test predictions and metrics
y_pred_test <- predict(lasso, newx = as.matrix(X_test))
score_test <- rmse(y_pred_test, y_test)
baselines_rmse_test$lasso <- score_test
actual_metrics_test$lasso <- metrics_fusion(y_pred_test, y_test)
# Display scores
score_val
## [1] 0.1654072
score_test
## [1] 0.1360549
ridge <- cv.glmnet(x = as.matrix(X_train_val), y = y_train_val, alpha = 0)
# Validation predictions and metrics
score_val <- mean(sqrt(ridge$cvm))
baselines_rmse$ridge <- score_val
# Test predictions and metrics
y_pred_test <- predict(ridge, newx = as.matrix(X_test))
score_test <- rmse(y_pred_test, y_test)
baselines_rmse_test$ridge <- score_test
actual_metrics_test$ridge <- metrics_fusion(y_pred_test, y_test)
# Display scores
score_val
## [1] 0.2432459
score_test
## [1] 0.1434131
results <- data.frame()
for (i in 0:20) {
elasticnet <- cv.glmnet(x = as.matrix(X_train_val), y = y_train_val, alpha = i/20)
row <- data.frame(alpha = i/20, rmse_val = mean(sqrt(elasticnet$cvm)))
results <- rbind(results, row)
}
best_alpha <- results$alpha[which.min(results$rmse_val)]
# Validation predictions and metrics
score_val <- min(results$rmse_val)
baselines_rmse$elasticnet <- score_val
# Test predictions and metrics
elasticnet <- cv.glmnet(x = as.matrix(X_train_val), y = y_train_val, alpha = best_alpha)
y_pred_test <- predict(elasticnet, newx = as.matrix(X_test))
score_test <- rmse(y_pred_test, y_test)
baselines_rmse_test$elasticnet <- score_test
actual_metrics_test$elasticnet <- metrics_fusion(y_pred_test, y_test)
# Display scores
best_alpha
## [1] 0.7
score_val
## [1] 0.1639068
score_test
## [1] 0.1356406
knn_tc <- trainControl(method = "cv", number = 5)
knn_cv <- caret::train(
SalePrice ~ .,
data = cbind(X_train_val, SalePrice = y_train_val),
trControl = knn_tc,
method = "knn"
)
# Validation predictions and metrics
score_val <- mean(knn_cv$results$RMSE)
baselines_rmse$knn <- score_val
# Test predictions and metrics
knn <- knnreg(x = X_train_val, y = y_train_val)
y_pred_test <- predict(knn, newdata = X_test)
score_test <- rmse(y_pred_test, y_test)
baselines_rmse_test$knn <- score_test
actual_metrics_test$knn <- metrics_fusion(y_pred_test, y_test)
# Display scores
score_val
## [1] 0.1832128
score_test
## [1] 0.1880515
svr_tc <- trainControl(method = "cv", number = 5)
svr_cv <- caret::train(
SalePrice ~ .,
data = cbind(X_train_val, SalePrice = y_train_val),
trControl = svr_tc,
method = "svmLinear2"
)
## Warning in svm.default(x = as.matrix(x), y = y, kernel = "linear", cost =
## param$cost, : Variable(s) 'Condition1RRNe' and 'Condition2PosA' and
## 'Condition2RRAe' and 'Condition2RRAn' and 'Condition2RRNn' and 'RoofStyleShed'
## and 'RoofMatlRoll' and 'Exterior1stBrkComm' and 'Exterior1stCBlock' and
## 'Exterior1stStone' and 'ExterCondEx' and 'FoundationWood' and 'HeatingFloor'
## and 'HeatingOthW' and 'ElectricalMix' and 'GarageQualPo' and
## 'SaleConditionAdjLand' constant. Cannot scale data.
## Warning in svm.default(x = as.matrix(x), y = y, kernel = "linear", cost =
## param$cost, : Variable(s) 'Condition1RRNe' and 'Condition2PosA' and
## 'Condition2RRAe' and 'Condition2RRAn' and 'Condition2RRNn' and 'RoofStyleShed'
## and 'RoofMatlRoll' and 'Exterior1stBrkComm' and 'Exterior1stCBlock' and
## 'Exterior1stStone' and 'ExterCondEx' and 'FoundationWood' and 'HeatingFloor'
## and 'HeatingOthW' and 'ElectricalMix' and 'GarageQualPo' and
## 'SaleConditionAdjLand' constant. Cannot scale data.
## Warning in svm.default(x = as.matrix(x), y = y, kernel = "linear", cost =
## param$cost, : Variable(s) 'Condition1RRNe' and 'Condition2PosA' and
## 'Condition2RRAe' and 'Condition2RRAn' and 'Condition2RRNn' and 'RoofStyleShed'
## and 'RoofMatlRoll' and 'Exterior1stBrkComm' and 'Exterior1stCBlock' and
## 'Exterior1stStone' and 'ExterCondEx' and 'FoundationWood' and 'HeatingFloor'
## and 'HeatingOthW' and 'ElectricalMix' and 'GarageQualPo' and
## 'SaleConditionAdjLand' constant. Cannot scale data.
## Warning in svm.default(x = as.matrix(x), y = y, kernel = "linear", cost =
## param$cost, : Variable(s) 'Condition1RRNe' and 'Condition2PosA' and
## 'Condition2RRAe' and 'Condition2RRAn' and 'Condition2RRNn' and 'RoofStyleShed'
## and 'RoofMatlMembran' and 'RoofMatlMetal' and 'RoofMatlRoll' and
## 'RoofMatlWdShngl' and 'Exterior1stCBlock' and 'ExterCondEx' and 'BsmtCondPo'
## and 'HeatingFloor' and 'ElectricalMix' and 'GarageQualPo' and
## 'SaleConditionAdjLand' constant. Cannot scale data.
## Warning in svm.default(x = as.matrix(x), y = y, kernel = "linear", cost =
## param$cost, : Variable(s) 'Condition1RRNe' and 'Condition2PosA' and
## 'Condition2RRAe' and 'Condition2RRAn' and 'Condition2RRNn' and 'RoofStyleShed'
## and 'RoofMatlMembran' and 'RoofMatlMetal' and 'RoofMatlRoll' and
## 'RoofMatlWdShngl' and 'Exterior1stCBlock' and 'ExterCondEx' and 'BsmtCondPo'
## and 'HeatingFloor' and 'ElectricalMix' and 'GarageQualPo' and
## 'SaleConditionAdjLand' constant. Cannot scale data.
## Warning in svm.default(x = as.matrix(x), y = y, kernel = "linear", cost =
## param$cost, : Variable(s) 'Condition1RRNe' and 'Condition2PosA' and
## 'Condition2RRAe' and 'Condition2RRAn' and 'Condition2RRNn' and 'RoofStyleShed'
## and 'RoofMatlMembran' and 'RoofMatlMetal' and 'RoofMatlRoll' and
## 'RoofMatlWdShngl' and 'Exterior1stCBlock' and 'ExterCondEx' and 'BsmtCondPo'
## and 'HeatingFloor' and 'ElectricalMix' and 'GarageQualPo' and
## 'SaleConditionAdjLand' constant. Cannot scale data.
## Warning in svm.default(x = as.matrix(x), y = y, kernel = "linear", cost =
## param$cost, : Variable(s) 'Condition1RRNe' and 'Condition2PosA' and
## 'Condition2PosN' and 'Condition2RRAe' and 'Condition2RRAn' and 'Condition2RRNn'
## and 'RoofStyleShed' and 'RoofMatlRoll' and 'Exterior1stCBlock' and
## 'Exterior1stImStucc' and 'ExterCondEx' and 'HeatingFloor' and 'HeatingQCPo' and
## 'ElectricalFuseP' and 'ElectricalMix' and 'FunctionalSev' and 'GarageQualEx'
## and 'GarageQualPo' and 'GarageCondEx' and 'SaleConditionAdjLand' constant.
## Cannot scale data.
## Warning in svm.default(x = as.matrix(x), y = y, kernel = "linear", cost =
## param$cost, : Variable(s) 'Condition1RRNe' and 'Condition2PosA' and
## 'Condition2PosN' and 'Condition2RRAe' and 'Condition2RRAn' and 'Condition2RRNn'
## and 'RoofStyleShed' and 'RoofMatlRoll' and 'Exterior1stCBlock' and
## 'Exterior1stImStucc' and 'ExterCondEx' and 'HeatingFloor' and 'HeatingQCPo' and
## 'ElectricalFuseP' and 'ElectricalMix' and 'FunctionalSev' and 'GarageQualEx'
## and 'GarageQualPo' and 'GarageCondEx' and 'SaleConditionAdjLand' constant.
## Cannot scale data.
## Warning in svm.default(x = as.matrix(x), y = y, kernel = "linear", cost =
## param$cost, : Variable(s) 'Condition1RRNe' and 'Condition2PosA' and
## 'Condition2PosN' and 'Condition2RRAe' and 'Condition2RRAn' and 'Condition2RRNn'
## and 'RoofStyleShed' and 'RoofMatlRoll' and 'Exterior1stCBlock' and
## 'Exterior1stImStucc' and 'ExterCondEx' and 'HeatingFloor' and 'HeatingQCPo' and
## 'ElectricalFuseP' and 'ElectricalMix' and 'FunctionalSev' and 'GarageQualEx'
## and 'GarageQualPo' and 'GarageCondEx' and 'SaleConditionAdjLand' constant.
## Cannot scale data.
## Warning in svm.default(x = as.matrix(x), y = y, kernel = "linear", cost =
## param$cost, : Variable(s) 'Condition1RRNe' and 'Condition2PosA' and
## 'Condition2RRAe' and 'Condition2RRAn' and 'Condition2RRNn' and 'RoofStyleShed'
## and 'RoofMatlRoll' and 'Exterior1stCBlock' and 'ExterCondEx' and 'ExterCondPo'
## and 'HeatingFloor' and 'ElectricalMix' and 'GarageQualPo' and 'GarageCondPo'
## and 'SaleTypeConLw' and 'SaleConditionAdjLand' constant. Cannot scale data.
## Warning in svm.default(x = as.matrix(x), y = y, kernel = "linear", cost =
## param$cost, : Variable(s) 'Condition1RRNe' and 'Condition2PosA' and
## 'Condition2RRAe' and 'Condition2RRAn' and 'Condition2RRNn' and 'RoofStyleShed'
## and 'RoofMatlRoll' and 'Exterior1stCBlock' and 'ExterCondEx' and 'ExterCondPo'
## and 'HeatingFloor' and 'ElectricalMix' and 'GarageQualPo' and 'GarageCondPo'
## and 'SaleTypeConLw' and 'SaleConditionAdjLand' constant. Cannot scale data.
## Warning in svm.default(x = as.matrix(x), y = y, kernel = "linear", cost =
## param$cost, : Variable(s) 'Condition1RRNe' and 'Condition2PosA' and
## 'Condition2RRAe' and 'Condition2RRAn' and 'Condition2RRNn' and 'RoofStyleShed'
## and 'RoofMatlRoll' and 'Exterior1stCBlock' and 'ExterCondEx' and 'ExterCondPo'
## and 'HeatingFloor' and 'ElectricalMix' and 'GarageQualPo' and 'GarageCondPo'
## and 'SaleTypeConLw' and 'SaleConditionAdjLand' constant. Cannot scale data.
## Warning in svm.default(x = as.matrix(x), y = y, kernel = "linear", cost =
## param$cost, : Variable(s) 'Condition1RRNe' and 'Condition2PosA' and
## 'Condition2RRAe' and 'Condition2RRAn' and 'Condition2RRNn' and 'RoofStyleShed'
## and 'RoofMatlClyTile' and 'RoofMatlRoll' and 'Exterior1stCBlock' and
## 'ExterCondEx' and 'HeatingFloor' and 'ElectricalMix' and 'GarageQualPo' and
## 'SaleConditionAdjLand' constant. Cannot scale data.
## Warning in svm.default(x = as.matrix(x), y = y, kernel = "linear", cost =
## param$cost, : Variable(s) 'Condition1RRNe' and 'Condition2PosA' and
## 'Condition2RRAe' and 'Condition2RRAn' and 'Condition2RRNn' and 'RoofStyleShed'
## and 'RoofMatlClyTile' and 'RoofMatlRoll' and 'Exterior1stCBlock' and
## 'ExterCondEx' and 'HeatingFloor' and 'ElectricalMix' and 'GarageQualPo' and
## 'SaleConditionAdjLand' constant. Cannot scale data.
## Warning in svm.default(x = as.matrix(x), y = y, kernel = "linear", cost =
## param$cost, : Variable(s) 'Condition1RRNe' and 'Condition2PosA' and
## 'Condition2RRAe' and 'Condition2RRAn' and 'Condition2RRNn' and 'RoofStyleShed'
## and 'RoofMatlClyTile' and 'RoofMatlRoll' and 'Exterior1stCBlock' and
## 'ExterCondEx' and 'HeatingFloor' and 'ElectricalMix' and 'GarageQualPo' and
## 'SaleConditionAdjLand' constant. Cannot scale data.
## Warning in svm.default(x = as.matrix(x), y = y, kernel = "linear", cost =
## param$cost, : Variable(s) 'Condition1RRNe' and 'Condition2PosA' and
## 'Condition2RRAe' and 'Condition2RRAn' and 'Condition2RRNn' and 'RoofStyleShed'
## and 'RoofMatlRoll' and 'Exterior1stCBlock' and 'ExterCondEx' and 'HeatingFloor'
## and 'ElectricalMix' and 'GarageQualPo' and 'SaleConditionAdjLand' constant.
## Cannot scale data.
# Validation predictions and metrics
score_val <- mean(svr_cv$results$RMSE)
baselines_rmse$svr <- score_val
# Test predictions and metrics
svr <- e1071::svm(SalePrice ~ ., data = cbind(X_train_val, SalePrice = y_train_val))
## Warning in svm.default(x, y, scale = scale, ..., na.action = na.action):
## Variable(s) 'Condition1RRNe' and 'Condition2PosA' and 'Condition2RRAe' and
## 'Condition2RRAn' and 'Condition2RRNn' and 'RoofStyleShed' and 'RoofMatlRoll'
## and 'Exterior1stCBlock' and 'ExterCondEx' and 'HeatingFloor' and
## 'ElectricalMix' and 'GarageQualPo' and 'SaleConditionAdjLand' constant. Cannot
## scale data.
y_pred_test <- predict(svr, newdata = X_test)
score_test <- rmse(y_pred_test, y_test)
baselines_rmse_test$svr <- score_test
actual_metrics_test$svr <- metrics_fusion(y_pred_test, y_test)
# Display scores
score_val
## [1] 0.1419871
score_test
## [1] 0.1327052
dt_tc <- trainControl(method = "cv", number = 5)
dt_cv <- caret::train(
SalePrice ~ .,
data = cbind(X_train_val, SalePrice = y_train_val),
trControl = dt_tc,
method = "rpart"
)
## Warning in nominalTrainWorkflow(x = x, y = y, wts = weights, info = trainInfo,
## : There were missing values in resampled performance measures.
# Validation predictions and metrics
score_val <- mean(dt_cv$results$RMSE, na.rm = TRUE)
baselines_rmse$decision_tree <- score_val
# Test predictions and metrics
dt <- caret::train(x = X_train_val, y = y_train_val, method = "rpart")
## Warning in nominalTrainWorkflow(x = x, y = y, wts = weights, info = trainInfo,
## : There were missing values in resampled performance measures.
y_pred_test <- predict(dt, newdata = X_test)
score_test <- rmse(y_pred_test, y_test)
baselines_rmse_test$decision_tree <- score_test
actual_metrics_test$decision_tree <- metrics_fusion(y_pred_test, y_test)
# Display scores
score_val
## [1] 0.299904
score_test
## [1] 0.2722831
ensemble_rmse <- list()
ensemble_actual_metrics <- list()
ensemble_rmse_test <- list()
ensemble_actual_metrics_test <- list()
rf_tc <- trainControl(method = "cv", number = 5)
rf_cv <- caret::train(
SalePrice ~ .,
data = cbind(X_train_val, SalePrice = y_train_val),
trControl = rf_tc,
method = "rf"
)
# Validation predictions and metrics
score_val <- mean(rf_cv$results$RMSE)
ensemble_rmse$random_forest <- score_val
# Test predictions and metrics
rf <- randomForest(x = X_train_val, y = y_train_val, proximity = T)
y_pred_test_rf <- predict(rf, newdata = X_test)
score_test <- rmse(y_pred_test_rf, y_test)
ensemble_rmse_test$random_forest <- score_test
ensemble_actual_metrics_test$random_forest <- metrics_fusion(y_pred_test_rf, y_test)
y_pred_train_rf <- predict(rf, newdata = X_train_val)
# Display scores
score_val
## [1] 0.1713973
score_test
## [1] 0.1357491
rf_df <- data.frame(rf$importance) %>%
mutate(Feature = rownames(rf$importance)) %>%
arrange(desc(IncNodePurity)) %>%
head(30)
rf_df
## IncNodePurity Feature
## OverallQual 39.7209019 OverallQual
## GrLivArea 24.5983039 GrLivArea
## YearBuilt 11.6601697 YearBuilt
## X1stFlrSF 7.5297066 X1stFlrSF
## GarageArea 6.9206338 GarageArea
## ExterQualTA 6.7091022 ExterQualTA
## FullBath 5.1375729 FullBath
## TotalBsmtSF 5.1111876 TotalBsmtSF
## YearRemodAdd 3.8569232 YearRemodAdd
## BsmtFinSF1 3.7129777 BsmtFinSF1
## X2ndFlrSF 3.2530535 X2ndFlrSF
## Fireplaces 3.0204553 Fireplaces
## LotArea 2.8762806 LotArea
## GarageFinishUnf 2.7743017 GarageFinishUnf
## KitchenQualTA 2.4958733 KitchenQualTA
## BsmtQualEx 2.4798451 BsmtQualEx
## OverallCond 1.5845403 OverallCond
## LotFrontage 1.5414618 LotFrontage
## CentralAirY 1.4865066 CentralAirY
## CentralAirN 1.4743146 CentralAirN
## FoundationPConc 1.0694477 FoundationPConc
## BsmtUnfSF 1.0666151 BsmtUnfSF
## OpenPorchSF 0.6653111 OpenPorchSF
## BsmtQualTA 0.6469899 BsmtQualTA
## MoSold 0.5691623 MoSold
## MasVnrArea 0.5445010 MasVnrArea
## BsmtQualGd 0.5343642 BsmtQualGd
## BedroomAbvGr 0.5102979 BedroomAbvGr
## MSSubClass 0.4899512 MSSubClass
## WoodDeckSF 0.4754511 WoodDeckSF
ggplot(data = rf_df, aes(x = reorder(Feature, IncNodePurity), y = IncNodePurity)) +
geom_bar(stat = "identity") +
coord_flip()
dtrain_val <- xgb.DMatrix(data = as.matrix(X_train_val), label = y_train_val)
dtest <- xgb.DMatrix(data = as.matrix(X_test), label = y_test)
xgb_params = list(
eta = 0.01,
gamma = 0.0468,
max_depth = 6,
min_child_weight = 1.41,
subsample = 0.769,
colsample_bytree = 0.283
)
xgb_cv <- xgb.cv(
params = xgb_params,
data = dtrain_val,
nround = 10000,
nfold = 5,
prediction = F,
showsd = T,
metrics = "rmse",
verbose = 1,
print_every_n = 500,
early_stopping_rounds = 25
)
## [1] train-rmse:11.421870+0.002228 test-rmse:11.421845+0.008812
## Multiple eval metrics are present. Will use test_rmse for early stopping.
## Will train until test_rmse hasn't improved in 25 rounds.
##
## [501] train-rmse:0.123310+0.001267 test-rmse:0.158822+0.014159
## [1001] train-rmse:0.066385+0.000492 test-rmse:0.125945+0.014985
## [1501] train-rmse:0.062994+0.000387 test-rmse:0.124761+0.015229
## Stopping. Best iteration:
## [1735] train-rmse:0.062190+0.000412 test-rmse:0.124509+0.015267
# Validation predictions and metrics
score_val <- xgb_cv$evaluation_log$test_rmse_mean %>% min
ensemble_rmse$xgboost <- score_val
# Test predictions and metrics
xgb <- xgboost(
params = xgb_params,
data = dtrain_val,
nround = 10000,
eval_metric = "rmse",
verbose = 1,
print_every_n = 500,
early_stopping_rounds = 25
)
## [1] train-rmse:11.421799
## Will train until train_rmse hasn't improved in 25 rounds.
##
## [501] train-rmse:0.121796
## [1001] train-rmse:0.065984
## [1501] train-rmse:0.062528
## [2001] train-rmse:0.060477
## Stopping. Best iteration:
## [2385] train-rmse:0.059566
y_pred_test_xgb <- predict(xgb, newdata = dtest)
score_test <- rmse(y_pred_test_xgb, y_test)
ensemble_rmse_test$xgboost_test <- score_test
ensemble_actual_metrics_test$xgboost_test <- metrics_fusion(y_pred_test_xgb, y_test)
y_pred_train_xgb <- predict(xgb, newdata = dtrain_val)
# Display scores
score_val
## [1] 0.1245088
score_test
## [1] 0.1244002
xgb_df <- xgb.importance(model = xgb) %>% head(30)
xgb_df
## Feature Gain Cover Frequency
## 1: OverallQual 0.219915277 0.045360040 0.032951459
## 2: GrLivArea 0.181955425 0.087390449 0.066257234
## 3: GarageArea 0.060513800 0.047418051 0.047360340
## 4: X1stFlrSF 0.059266543 0.030578246 0.039329160
## 5: TotalBsmtSF 0.052725009 0.040237936 0.043699067
## 6: Fireplaces 0.038946145 0.009199863 0.006732018
## 7: YearBuilt 0.037675189 0.033309176 0.032715247
## 8: BsmtFinSF1 0.029308536 0.041645129 0.036022204
## 9: YearRemodAdd 0.028532563 0.034051037 0.030235030
## 10: LotArea 0.026724925 0.056808245 0.055509626
## 11: GarageFinishUnf 0.023168899 0.008557950 0.006495807
## 12: OverallCond 0.020560107 0.051620499 0.037675682
## 13: BsmtQualEx 0.018100201 0.005172243 0.003779379
## 14: X2ndFlrSF 0.016061987 0.030427498 0.024565962
## 15: ExterQualTA 0.011281210 0.001924417 0.001653478
## 16: FullBath 0.010100371 0.005709918 0.005669068
## 17: KitchenQualTA 0.008496994 0.001953115 0.002007795
## 18: CentralAirN 0.008365267 0.003944825 0.004488012
## 19: LotFrontage 0.007479454 0.012298920 0.018660683
## 20: SaleConditionAbnorml 0.006871704 0.015901677 0.016889099
## 21: MSZoningRM 0.006198449 0.007454561 0.008503602
## 22: BsmtUnfSF 0.005889369 0.022203369 0.030116925
## 23: CentralAirY 0.005650806 0.002989873 0.002834534
## 24: NeighborhoodCrawfor 0.005282940 0.019267923 0.012637298
## 25: MSZoningC..all. 0.004798593 0.003262339 0.006259596
## 26: OpenPorchSF 0.004389543 0.020511504 0.018306366
## 27: Exterior1stBrkFace 0.003929712 0.021602030 0.013109720
## 28: FoundationPConc 0.003606362 0.001231376 0.001535373
## 29: SaleConditionFamily 0.003466460 0.008905296 0.010629503
## 30: KitchenQualEx 0.003458514 0.003924043 0.002952640
## Feature Gain Cover Frequency
ggplot(data = xgb_df, aes(x = reorder(Feature, Gain), y = Gain)) +
geom_bar(stat = "identity") +
coord_flip()
objective_fn <- makeSingleObjectiveFunction(
fn = function(x) {
params = list(
booster = "gbtree",
eta = x["eta"],
gamma = x["gamma"],
max_depth = x["max_depth"],
min_child_weight = x["min_child_weight"],
subsample = x["subsample"],
colsample_bytree = x["colsample_bytree"],
max_delta_step = x["max_delta_step"]
)
cv <- xgb.cv(
params = params,
data = dtrain_val,
nround = 10000,
nfold = 5,
prediction = F,
showsd = T,
metrics = "rmse",
verbose = 1,
print_every_n = 500,
early_stopping_rounds = 25
)
cv$evaluation_log$test_rmse_mean %>% min
},
par.set = makeParamSet(
makeNumericParam("eta", lower = 0.005, upper = 0.01),
makeNumericParam("gamma", lower = 0.01, upper = 5),
makeIntegerParam("max_depth", lower = 2, upper = 10),
makeIntegerParam("min_child_weight", lower = 1, upper = 2000),
makeNumericParam("subsample", lower = 0.20, upper = 0.8),
makeNumericParam("colsample_bytree", lower = 0.20, upper = 0.8),
makeNumericParam("max_delta_step", lower = 0, upper = 5)
),
minimize = TRUE
)
#Train model
design <- generateDesign(n = 1000, par.set = getParamSet(objective_fn), fun = lhs::randomLHS)
control <- makeMBOControl() %>% setMBOControlTermination(., iters = 10)
#run <- mbo(
# fun = objective_fn,
# design = design,
# learner = makeLearner("regr.km", predict.type = "se", covtype = "matern3_2", control = list(trace = FALSE)),
# control = control,
# show.info = TRUE
#)
# Best parameters
#run$x
lgb_train_val <- lgb.Dataset(data = as.matrix(X_train_val), label = y_train_val)
lgb_test <- lgb.Dataset(data = as.matrix(X_test), label = y_test)
params <- list(
objective = "regression",
metric = "rmse",
boosting_type = "gbdt",
num_boost_round = 100,
num_leaves = 15,
learning_rate = 0.1,
feature_fraction = 0.9,
bagging_fraction = 0.8,
bagging_freq = 5
)
lgb_cv <- lgb.cv(
params = params,
data = lgb_train_val,
early_stopping_rounds = 25,
verbose = 0
)
## [LightGBM] [Warning] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000572 seconds.
## You can set `force_row_wise=true` to remove the overhead.
## And if memory is not enough, you can set `force_col_wise=true`.
## [LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was 0.001091 seconds.
## You can set `force_col_wise=true` to remove the overhead.
## [LightGBM] [Warning] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000819 seconds.
## You can set `force_row_wise=true` to remove the overhead.
## And if memory is not enough, you can set `force_col_wise=true`.
## [LightGBM] [Info] Start training from score 12.031745
## [LightGBM] [Info] Start training from score 12.029589
## [LightGBM] [Info] Start training from score 12.028376
# Validation predictions and metrics
score_val <- min(unlist(lgb_cv$record_evals$valid$rmse$eval))
ensemble_rmse$lightgbm <- score_val
# Test predictions and metrics
lgb <- lgb.train(
params = params,
data = lgb_train_val,
verbose = 0
)
## [LightGBM] [Warning] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000794 seconds.
## You can set `force_row_wise=true` to remove the overhead.
## And if memory is not enough, you can set `force_col_wise=true`.
y_pred_test_lgb <- predict(lgb, data = as.matrix(X_test))
score_test <- rmse(y_pred_test_lgb, y_test)
ensemble_rmse_test$lightgbm <- score_test
ensemble_actual_metrics_test$lightgbm <- metrics_fusion(y_pred_test_lgb, y_test)
y_pred_train_lgb <- predict(lgb, data = as.matrix(X_train_val))
# Display scores
score_val
## [1] 0.1302412
score_test
## [1] 0.1376078
lgb_df <- lgb.importance(model = lgb) %>% head(30)
lgb_df
## Feature Gain Cover Frequency
## 1: OverallQual 0.448797848 0.0608210473 0.0464285714
## 2: GrLivArea 0.172172339 0.0797923563 0.0907142857
## 3: GarageArea 0.041167164 0.0739122523 0.0671428571
## 4: TotalBsmtSF 0.039537635 0.0458549970 0.0500000000
## 5: BsmtFinSF1 0.035684857 0.0290979274 0.0364285714
## 6: YearBuilt 0.031577184 0.0444728863 0.0535714286
## 7: YearRemodAdd 0.026329128 0.0381716066 0.0471428571
## 8: X1stFlrSF 0.023588562 0.0332381258 0.0378571429
## 9: LotArea 0.019733055 0.0406046121 0.0492857143
## 10: BsmtQualEx 0.019494303 0.0018094200 0.0014285714
## 11: OverallCond 0.014241708 0.0389076419 0.0314285714
## 12: Fireplaces 0.013110956 0.0056040907 0.0057142857
## 13: CentralAirN 0.011964934 0.0080534525 0.0057142857
## 14: ExterQualTA 0.008407335 0.0006338081 0.0007142857
## 15: CentralAirY 0.008154943 0.0019198253 0.0014285714
## 16: X2ndFlrSF 0.007339136 0.0175155947 0.0207142857
## 17: FullBath 0.006563982 0.0027274196 0.0042857143
## 18: BsmtUnfSF 0.005110355 0.0364746364 0.0478571429
## 19: LotFrontage 0.004669221 0.0303164747 0.0300000000
## 20: OpenPorchSF 0.003863542 0.0456852999 0.0328571429
## 21: MSZoningRM 0.003835061 0.0039234769 0.0057142857
## 22: KitchenQualEx 0.002896801 0.0018298654 0.0021428571
## 23: LotShapeReg 0.002610447 0.0015661195 0.0035714286
## 24: SaleConditionAbnorml 0.002499404 0.0192555003 0.0121428571
## 25: SaleConditionNormal 0.002244475 0.0083703566 0.0114285714
## 26: MoSold 0.002179210 0.0192779903 0.0214285714
## 27: GarageFinishUnf 0.002144017 0.0005683828 0.0028571429
## 28: NeighborhoodCrawfor 0.002110246 0.0090491447 0.0078571429
## 29: GarageTypeDetchd 0.002057353 0.0090409665 0.0071428571
## 30: WoodDeckSF 0.001994714 0.0178877015 0.0221428571
## Feature Gain Cover Frequency
ggplot(data = xgb_df, aes(x = reorder(Feature, Gain), y = Gain)) +
geom_bar(stat = "identity") +
coord_flip()
train_val_pool <- catboost.load_pool(data = X_train_val, label = y_train_val)
test_pool <- catboost.load_pool(data = X_test, label = y_test)
params <- list(
loss_function = "RMSE",
iterations = 10000,
learning_rate = 0.01,
metric_period = 1000
)
catb_cv <- catboost.cv(
train_val_pool,
params = params,
fold_count = 5,
early_stopping_rounds = 25
)
## Warning: Overfitting detector is active, thus evaluation metric is calculated on every iteration. 'metric_period' is ignored for evaluation metric.
## 0: learn: 11.9184021 test: 11.9183456 best: 11.9183456 (0) total: 126ms remaining: 20m 59s
## 1000: learn: 0.1244250 test: 0.2320500 best: 0.2320500 (1000) total: 38.6s remaining: 5m 47s
## 2000: learn: 0.0705784 test: 0.2061964 best: 0.2061964 (2000) total: 1m 16s remaining: 5m 5s
## 3000: learn: 0.0477268 test: 0.1987054 best: 0.1987054 (3000) total: 1m 53s remaining: 4m 24s
## 4000: learn: 0.0342460 test: 0.1954636 best: 0.1954636 (4000) total: 2m 29s remaining: 3m 44s
## 5000: learn: 0.0250191 test: 0.1938556 best: 0.1938556 (5000) total: 3m 8s remaining: 3m 8s
## 6000: learn: 0.0184365 test: 0.1929067 best: 0.1929060 (5999) total: 3m 49s remaining: 2m 33s
## 7000: learn: 0.0138769 test: 0.1923543 best: 0.1923543 (7000) total: 4m 30s remaining: 1m 55s
## 8000: learn: 0.0105367 test: 0.1920651 best: 0.1920648 (7995) total: 5m 6s remaining: 1m 16s
## 9000: learn: 0.0080681 test: 0.1918585 best: 0.1918559 (8995) total: 5m 42s remaining: 38s
## Stopped by overfitting detector (25 iterations wait)
# Validation predictions and metrics
score_val <- min(catb_cv$test.RMSE.mean)
ensemble_rmse$catboost <- score_val
# Test predictions and metrics
catb <- catboost.train(
params = params,
learn_pool = train_val_pool
)
## 0: learn: 0.3990236 total: 9.34ms remaining: 1m 33s
## 1000: learn: 0.0815022 total: 4.78s remaining: 43s
## 2000: learn: 0.0521736 total: 8.97s remaining: 35.9s
## 3000: learn: 0.0374963 total: 13.9s remaining: 32.3s
## 4000: learn: 0.0272295 total: 18.3s remaining: 27.5s
## 5000: learn: 0.0201268 total: 22.7s remaining: 22.7s
## 6000: learn: 0.0153246 total: 26.9s remaining: 17.9s
## 7000: learn: 0.0119705 total: 31.7s remaining: 13.6s
## 8000: learn: 0.0094310 total: 36.2s remaining: 9.04s
## 9000: learn: 0.0076078 total: 40.3s remaining: 4.47s
## 9999: learn: 0.0061117 total: 46s remaining: 0us
y_pred_test_catboost <- catboost.predict(catb, test_pool)
score_test <- rmse(y_pred_test_catboost, y_test)
ensemble_rmse_test$catboost <- score_test
ensemble_actual_metrics_test$catboost <- metrics_fusion(y_pred_test_catboost, y_test)
y_pred_train_catboost <- catboost.predict(catb, train_val_pool)
# Display scores
score_val
## [1] 0.1918585
score_test
## [1] 0.1245417
catb_df <- data.frame(catboost.get_feature_importance(catb))
catb_df <- catb_df %>%
mutate(Feature = rownames(catb_df)) %>%
rename(Importance = catboost.get_feature_importance.catb.) %>%
arrange(desc(Importance)) %>%
head(30)
catb_df
## Importance Feature
## OverallQual 21.3708169 OverallQual
## GrLivArea 13.2941599 GrLivArea
## GarageArea 4.2996937 GarageArea
## TotalBsmtSF 4.2248298 TotalBsmtSF
## X1stFlrSF 4.1532465 X1stFlrSF
## Fireplaces 3.6382169 Fireplaces
## YearRemodAdd 3.2718445 YearRemodAdd
## BsmtFinSF1 3.2528029 BsmtFinSF1
## LotArea 2.9909552 LotArea
## OverallCond 2.6934004 OverallCond
## YearBuilt 2.6535442 YearBuilt
## X2ndFlrSF 2.2081448 X2ndFlrSF
## FullBath 1.5628649 FullBath
## CentralAirN 1.4773335 CentralAirN
## LotFrontage 1.2242371 LotFrontage
## ExterQualTA 1.2221691 ExterQualTA
## BsmtQualEx 1.1670156 BsmtQualEx
## BsmtUnfSF 0.9903617 BsmtUnfSF
## HalfBath 0.9478941 HalfBath
## SaleConditionAbnorml 0.8230171 SaleConditionAbnorml
## OpenPorchSF 0.7818386 OpenPorchSF
## MSZoningRL 0.7047584 MSZoningRL
## KitchenQualGd 0.6986101 KitchenQualGd
## GarageFinishUnf 0.6937182 GarageFinishUnf
## BsmtFinType1Unf 0.6828694 BsmtFinType1Unf
## MoSold 0.6708278 MoSold
## KitchenQualTA 0.6656939 KitchenQualTA
## MSSubClass 0.6627088 MSSubClass
## NeighborhoodCrawfor 0.6209431 NeighborhoodCrawfor
## CentralAirY 0.5923854 CentralAirY
ggplot(data = catb_df, aes(x = reorder(Feature, Importance), y = Importance)) +
geom_bar(stat = "identity") +
coord_flip()
transactions <- transactions(categorical_data)
## Warning: Column(s) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
## 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37
## not logical or factor. Applying default discretization (see '? discretizeDF').
summary(transactions)
## transactions as itemMatrix in sparse format with
## 1460 rows (elements/itemsets/transactions) and
## 218 columns (items) and a density of 0.1697248
##
## most frequent items:
## Utilities=AllPub Street=Pave Condition2=Norm RoofMatl=CompShg
## 1459 1454 1445 1434
## Heating=GasA (Other)
## 1428 46800
##
## element (itemset/transaction) length distribution:
## sizes
## 37
## 1460
##
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 37 37 37 37 37 37
##
## includes extended item information - examples:
## labels variables levels
## 1 MSZoning=C (all) MSZoning C (all)
## 2 MSZoning=FV MSZoning FV
## 3 MSZoning=RH MSZoning RH
##
## includes extended transaction information - examples:
## transactionID
## 1 1
## 2 2
## 3 3
inspect(head(transactions, n = 1))
## items transactionID
## [1] {MSZoning=RL,
## Street=Pave,
## LotShape=Reg,
## LandContour=Lvl,
## Utilities=AllPub,
## LotConfig=Inside,
## LandSlope=Gtl,
## Neighborhood=CollgCr,
## Condition1=Norm,
## Condition2=Norm,
## BldgType=1Fam,
## HouseStyle=2Story,
## RoofStyle=Gable,
## RoofMatl=CompShg,
## Exterior1st=VinylSd,
## MasVnrType=BrkFace,
## ExterQual=Gd,
## ExterCond=TA,
## Foundation=PConc,
## BsmtQual=Gd,
## BsmtCond=TA,
## BsmtExposure=No,
## BsmtFinType1=GLQ,
## BsmtFinType2=Unf,
## Heating=GasA,
## HeatingQC=Ex,
## CentralAir=Y,
## Electrical=SBrkr,
## KitchenQual=Gd,
## Functional=Typ,
## GarageType=Attchd,
## GarageFinish=RFn,
## GarageQual=TA,
## GarageCond=TA,
## PavedDrive=Y,
## SaleType=WD,
## SaleCondition=Normal} 1
rules <- apriori(transactions, parameter = list(support = 0.95, confidence = 0.95))
## Apriori
##
## Parameter specification:
## confidence minval smax arem aval originalSupport maxtime support minlen
## 0.95 0.1 1 none FALSE TRUE 5 0.95 1
## maxlen target ext
## 10 rules TRUE
##
## Algorithmic control:
## filter tree heap memopt load sort verbose
## 0.1 TRUE TRUE FALSE TRUE 2 TRUE
##
## Absolute minimum support count: 1387
##
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[218 item(s), 1460 transaction(s)] done [0.01s].
## sorting and recoding items ... [7 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 4 done [0.00s].
## writing ... [94 rule(s)] done [0.00s].
## creating S4 object ... done [0.00s].
summary(rules)
## set of 94 rules
##
## rule length distribution (lhs + rhs):sizes
## 1 2 3 4
## 7 28 39 20
##
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.000 2.000 3.000 2.766 3.000 4.000
##
## summary of quality measures:
## support confidence coverage lift
## Min. :0.9500 Min. :0.9534 Min. :0.9507 Min. :0.9996
## 1st Qu.:0.9562 1st Qu.:0.9793 1st Qu.:0.9678 1st Qu.:0.9998
## Median :0.9637 Median :0.9895 Median :0.9781 Median :1.0000
## Mean :0.9664 Mean :0.9871 Mean :0.9791 Mean :1.0000
## 3rd Qu.:0.9740 3rd Qu.:0.9958 3rd Qu.:0.9897 3rd Qu.:1.0000
## Max. :0.9993 Max. :0.9993 Max. :1.0000 Max. :1.0010
## count
## Min. :1387
## 1st Qu.:1396
## Median :1407
## Mean :1411
## 3rd Qu.:1422
## Max. :1459
##
## mining info:
## data ntransactions support confidence
## transactions 1460 0.95 0.95
## call
## apriori(data = transactions, parameter = list(support = 0.95, confidence = 0.95))
con <- file("data_description.txt", open = "r")
column_dictionary <- list()
value_dictionary <- list()
repeat {
line <- readLines(con, n = 1)
if (length(line) == 0) {
break
}
first_character <- substr(line, 1, 1)
if (first_character == "") {
next
}
if (first_character != " ") {
column_name <- sub(":.*", "", line)
column_description <- trimws(sub(".*:", "", line))
column_dictionary[[column_name]] <- column_description
value_dictionary[[column_name]] <- list()
} else {
pairs <- unlist(strsplit(line, "\t"))
key <- trimws(pairs[1])
value <- trimws(pairs[2])
value_dictionary[[column_name]][[key]] <- value
}
}
close(con)
rules_top_ten_df <- data.frame(
lhs = labels(lhs(rules)),
rhs = labels(rhs(rules)),
rules@quality
) %>% arrange(desc(lift)) %>% head(n = 20)
for (i in 1:nrow(rules_top_ten_df)) {
row <- rules_top_ten_df[i, ]
explanation <- ""
lhs <- unlist(strsplit(gsub('^.|.$', '', row["lhs"]), ","))
for (i in 1:length(lhs)) {
pair <- unlist(strsplit(lhs[i], "="))
key <- pair[1]
value <- pair[2]
key_t <- column_dictionary[[key]]
value_t <- value_dictionary[[key]][[value]]
if (i == 1) {
explanation <- paste("IF", key_t, "=", value_t)
} else {
explanation <- paste(explanation, "AND", key_t, "=", value_t)
}
}
rhs <- unlist(strsplit(gsub('^.|.$', '', row["rhs"]), "="))
key <- rhs[1]
value <- rhs[2]
key_t <- column_dictionary[[key]]
value_t <- value_dictionary[[key]][[value]]
confidence_pct <- format(round(row["confidence"] * 100, 2), 2)
explanation <- paste(explanation, "THEN", key_t, "=", value_t, "(Confidence:", paste0(confidence_pct, "%)"))
print(explanation)
cat("\n")
}
## [1] "IF Proximity to various conditions (if more than one is present) = Normal THEN Garage condition = Typical/Average (Confidence: 96.47%)"
##
## [1] "IF Garage condition = Typical/Average THEN Proximity to various conditions (if more than one is present) = Normal (Confidence: 99.08%)"
##
## [1] "IF Type of utilities available = All public Utilities (E,G,W,& S) AND Garage condition = Typical/Average THEN Proximity to various conditions (if more than one is present) = Normal (Confidence: 99.08%)"
##
## [1] "IF Type of utilities available = All public Utilities (E,G,W,& S) AND Proximity to various conditions (if more than one is present) = Normal THEN Garage condition = Typical/Average (Confidence: 96.47%)"
##
## [1] "IF Type of road access to property = Paved AND Garage condition = Typical/Average THEN Proximity to various conditions (if more than one is present) = Normal (Confidence: 99.07%)"
##
## [1] "IF Type of road access to property = Paved AND Type of utilities available = All public Utilities (E,G,W,& S) AND Garage condition = Typical/Average THEN Proximity to various conditions (if more than one is present) = Normal (Confidence: 99.07%)"
##
## [1] "IF Type of road access to property = Paved AND Proximity to various conditions (if more than one is present) = Normal THEN Garage condition = Typical/Average (Confidence: 96.46%)"
##
## [1] "IF Type of road access to property = Paved AND Type of utilities available = All public Utilities (E,G,W,& S) AND Proximity to various conditions (if more than one is present) = Normal THEN Garage condition = Typical/Average (Confidence: 96.45%)"
##
## [1] "IF Type of heating = Gas forced warm air furnace THEN Roof material = Standard (Composite) Shingle (Confidence: 98.25%)"
##
## [1] "IF Roof material = Standard (Composite) Shingle THEN Type of heating = Gas forced warm air furnace (Confidence: 97.84%)"
##
## [1] "IF Type of utilities available = All public Utilities (E,G,W,& S) AND Type of heating = Gas forced warm air furnace THEN Roof material = Standard (Composite) Shingle (Confidence: 98.25%)"
##
## [1] "IF Type of utilities available = All public Utilities (E,G,W,& S) AND Roof material = Standard (Composite) Shingle THEN Type of heating = Gas forced warm air furnace (Confidence: 97.84%)"
##
## [1] "IF Type of road access to property = Paved AND Type of heating = Gas forced warm air furnace THEN Roof material = Standard (Composite) Shingle (Confidence: 98.24%)"
##
## [1] "IF Type of road access to property = Paved AND Type of utilities available = All public Utilities (E,G,W,& S) AND Type of heating = Gas forced warm air furnace THEN Roof material = Standard (Composite) Shingle (Confidence: 98.24%)"
##
## [1] "IF Type of road access to property = Paved AND Roof material = Standard (Composite) Shingle THEN Type of heating = Gas forced warm air furnace (Confidence: 97.83%)"
##
## [1] "IF Type of road access to property = Paved AND Type of utilities available = All public Utilities (E,G,W,& S) AND Roof material = Standard (Composite) Shingle THEN Type of heating = Gas forced warm air furnace (Confidence: 97.83%)"
##
## [1] "IF Proximity to various conditions (if more than one is present) = Normal AND Type of heating = Gas forced warm air furnace THEN Roof material = Standard (Composite) Shingle (Confidence: 98.23%)"
##
## [1] "IF Type of utilities available = All public Utilities (E,G,W,& S) AND Proximity to various conditions (if more than one is present) = Normal AND Type of heating = Gas forced warm air furnace THEN Roof material = Standard (Composite) Shingle (Confidence: 98.23%)"
##
## [1] "IF Proximity to various conditions (if more than one is present) = Normal AND Roof material = Standard (Composite) Shingle THEN Type of heating = Gas forced warm air furnace (Confidence: 97.82%)"
##
## [1] "IF Type of utilities available = All public Utilities (E,G,W,& S) AND Proximity to various conditions (if more than one is present) = Normal AND Roof material = Standard (Composite) Shingle THEN Type of heating = Gas forced warm air furnace (Confidence: 97.81%)"
stacked_data <- data.frame(y = y_train_val, prediction_rf = y_pred_train_rf, prediction_xgb = y_pred_train_xgb, prediction_lgb = y_pred_train_lgb, prediction_catboost = y_pred_train_catboost)
stacked_data_test <- data.frame(y = y_test, prediction_rf = y_pred_test_rf, prediction_xgb = y_pred_test_xgb, prediction_lgb = y_pred_test_lgb, prediction_catboost = y_pred_test_catboost)
model_meta <- caret::train(y ~ ., data = stacked_data, method = "lm")
predictions_meta <- predict(model_meta, newdata = stacked_data_test)
ensemble_rmse_test$stacking_score <- rmse(predictions_meta, y_test)
ensemble_actual_metrics_test$stacking <- metrics_fusion(predictions_meta, y_test)
# Plot RMSE for baseline models
df <- data.frame(models = names(baselines_rmse), rmse = unlist(baselines_rmse))
df
## models rmse
## linear_regression linear_regression 0.1407635
## lasso lasso 0.1654072
## ridge ridge 0.2432459
## elasticnet elasticnet 0.1639068
## knn knn 0.1832128
## svr svr 0.1419871
## decision_tree decision_tree 0.2999040
ggplot(df, aes(x = models, y = rmse)) +
geom_bar(stat = "identity", fill = "steelblue") +
xlab("Models") +
ylab("RMSE") +
ylim(0, 0.35) +
ggtitle("Baseline RMSE") +
theme_minimal()
# Plot RMSE for ensemble models
df <- data.frame(models = names(ensemble_rmse), rmse = unlist(ensemble_rmse))
df
## models rmse
## random_forest random_forest 0.1713973
## xgboost xgboost 0.1245088
## lightgbm lightgbm 0.1302412
## catboost catboost 0.1918585
ggplot(df, aes(x = models, y = rmse)) +
geom_bar(stat = "identity", fill = "steelblue") +
xlab("Models") +
ylab("RMSE") +
ylim(0, 0.35) +
ggtitle("Ensemble RMSE") +
theme_minimal()
# Plot RMSE for baseline models on the test set
df <- data.frame(models = names(baselines_rmse_test), rmse = unlist(baselines_rmse_test))
df
## models rmse
## linear_regression linear_regression 0.1350529
## lasso lasso 0.1360549
## ridge ridge 0.1434131
## elasticnet elasticnet 0.1356406
## knn knn 0.1880515
## svr svr 0.1327052
## decision_tree decision_tree 0.2722831
ggplot(df, aes(x = models, y = rmse)) +
geom_bar(stat = "identity", fill = "steelblue") +
xlab("Models") +
ylab("RMSE") +
ylim(0, 0.35) +
ggtitle("Baseline RMSE") +
theme_minimal()
# Plot RMSE for ensemble models on the test set
df <- data.frame(models = names(ensemble_rmse_test), rmse = unlist(ensemble_rmse_test))
df
## models rmse
## random_forest random_forest 0.1357491
## xgboost_test xgboost_test 0.1244002
## lightgbm lightgbm 0.1376078
## catboost catboost 0.1245417
## stacking_score stacking_score 0.1248171
ggplot(df, aes(x = models, y = rmse)) +
geom_bar(stat = "identity", fill = "steelblue") +
xlab("Models") +
ylab("RMSE") +
ylim(0, 0.35) +
ggtitle("Ensemble RMSE") +
theme_minimal()
data.frame(t(data.frame(actual_metrics_test))) %>% arrange(desc(r2))
## mae mape rmse mse r2
## linear_regression 16056.05 0.09045067 29117.05 847802651 0.8733346
## elasticnet 17289.46 0.09193298 32702.94 1069482248 0.8441074
## ridge 19094.63 0.10052425 34361.77 1180731262 0.8437131
## lasso 17272.65 0.09204278 32792.67 1075359017 0.8422404
## svr 16614.60 0.09025399 33192.63 1101750749 0.8350740
## knn 23965.75 0.13568260 42242.53 1784431556 0.7565352
## decision_tree 37014.43 0.20984270 54080.44 2924693697 0.5608676
data.frame(t(data.frame(ensemble_actual_metrics_test))) %>% arrange(desc(r2))
## mae mape rmse mse r2
## xgboost_test 15254.32 0.08386270 27981.27 782951571 0.8849246
## catboost 15316.05 0.08374207 28646.92 820646116 0.8805195
## stacking 15381.62 0.08394283 28771.87 827820452 0.8796489
## lightgbm 17119.48 0.09717112 29105.29 847118182 0.8727715
## random_forest 17074.57 0.09237490 30152.65 909182292 0.8705999
save(list=ls(), file="assignment_modell")