cat("\014") # clean terminal
rm(list = ls()) # clean workspace
try(dev.off(), silent = TRUE) # close all plots
library(ggplot2)
library(GGally)
# theme_set(
# theme_minimal()
# )
df <- read.csv('rhos_and_mean_rts.csv')
# df <- df[df$Subject != 'S28_F_A', ]
df[sapply(df, is.character)] <- lapply(df[sapply(df, is.character)], as.factor)
df_intero <- read.csv('rhos_and_answers.csv')
# df_intero <- df_intero[df_intero$Subject != 'S28_F_A', ]
df_intero[sapply(df_intero, is.character)] <- lapply(df_intero[sapply(df_intero, is.character)], as.factor)
# angle_data <- read.csv('angle_and_rt_data.csv')
# angle_data <- angle_data[angle_data$Subject != 'S28_F_A', ]
# angle_data[sapply(angle_data, is.character)] <- lapply(angle_data[sapply(angle_data, is.character)], as.factor)
General
description
options(width = 100)
summary(df)
Subject Block keystrokes mean_angle rho
S21_M_A: 6 Interoception 1 :10 Min. : 98.00 Min. :-3.0376 Min. :0.01381
S22_M_A: 6 Interoception 2 :10 1st Qu.: 99.00 1st Qu.:-0.7406 1st Qu.:0.05038
S23_F_A: 6 Irregular Beat :10 Median :100.00 Median : 1.4487 Median :0.13765
S26_M_A: 6 Irregular keys to heart:10 Mean : 99.67 Mean : 0.7136 Mean :0.34448
S27_M_A: 6 Regular Beat :10 3rd Qu.:100.00 3rd Qu.: 2.1735 3rd Qu.:0.71368
S29_F_A: 6 Regular keys to heart :10 Max. :101.00 Max. : 2.9649 Max. :0.93620
(Other):24
rayleigh_p_value mean_rt_from_R cv_rt_from_R mean_rt_until_R cv_rt_until_R
Min. :0.0000 Min. :217.3 Min. :10.64 Min. : 331.4 Min. : 9.085
1st Qu.:0.0000 1st Qu.:375.9 1st Qu.:40.90 1st Qu.: 380.7 1st Qu.:34.748
Median :0.1520 Median :404.6 Median :54.87 Median : 423.1 Median :55.602
Mean :0.3523 Mean :411.8 Mean :48.59 Mean : 534.1 Mean :46.953
3rd Qu.:0.7759 3rd Qu.:436.6 3rd Qu.:59.94 3rd Qu.: 655.9 3rd Qu.:58.020
Max. :0.9811 Max. :623.0 Max. :65.91 Max. :1092.8 Max. :72.135
Rho v/s CV
ggplot(df[!grepl('keys to heart', df$Block), ], aes(x = rho, y = cv_rt_from_R, color = Block)) +
geom_point(size = 5)

Rho v/s CV, just
sound beat blocks
ggplot(df[grepl('Beat', df$Block), ], aes(x = rho, y = cv_rt_from_R, color = Block)) +
geom_point(size = 5)

Rho v/s CV, just
interoception blocks
ggplot(df[grepl('Interoception', df$Block), ], aes(x = rho, y = cv_rt_from_R, color = Block)) +
geom_point(size = 5)

ggplot(df[grepl('Interoception', df$Block), ], aes(x = rho, y = cv_rt_from_R, color = Subject)) +
geom_point(size = 5)

Angle v/s Rho
ggplot(df[grepl('Interoception', df$Block), ], aes(x = mean_angle, y = rho, color = Block)) +
geom_point(size = 5)

Correlations
options(width = 100)
summary(df_intero)
Subject rho_1 pval_1 rho_2 pval_2 belief_pre
S21_M_A:1 Min. :0.03661 Min. :0.00000 Min. :0.01456 Min. :0.00000 Min. :2.0
S22_M_A:1 1st Qu.:0.08566 1st Qu.:0.05123 1st Qu.:0.04402 1st Qu.:0.01086 1st Qu.:5.5
S23_F_A:1 Median :0.14967 Median :0.10771 Median :0.06803 Median :0.62701 Median :7.0
S26_M_A:1 Mean :0.18853 Mean :0.30129 Mean :0.16907 Mean :0.48793 Mean :6.5
S27_M_A:1 3rd Qu.:0.17376 3rd Qu.:0.48015 3rd Qu.:0.26487 3rd Qu.:0.82387 3rd Qu.:8.0
S29_F_A:1 Max. :0.63952 Max. :0.87457 Max. :0.65236 Max. :0.97902 Max. :8.0
(Other):4
confidence_pre belief_post confidence_post intero1_span intero2_span beats_1
Min. :3.00 Min. :1.00 Min. :2.0 Min. :115.2 Min. : 93.62 Min. : 130.0
1st Qu.:4.50 1st Qu.:3.25 1st Qu.:6.0 1st Qu.:167.3 1st Qu.:141.79 1st Qu.: 197.5
Median :7.00 Median :6.00 Median :6.5 Median :253.7 Median :181.50 Median : 316.0
Mean :6.20 Mean :4.90 Mean :6.0 Mean :321.9 Mean :249.99 Mean : 409.0
3rd Qu.:7.75 3rd Qu.:6.00 3rd Qu.:7.0 3rd Qu.:388.7 3rd Qu.:340.64 3rd Qu.: 519.2
Max. :8.00 Max. :8.00 Max. :8.0 Max. :772.7 Max. :578.18 Max. :1060.0
beats_2 occupancy_1 occupancy_2 pulse_1 pulse_2
Min. :101.0 Min. :0.09434 Min. :0.1256 Min. :67.36 Min. :64.73
1st Qu.:172.5 1st Qu.:0.19361 1st Qu.:0.2488 1st Qu.:70.77 1st Qu.:72.95
Median :229.0 Median :0.31960 Median :0.4260 Median :74.78 Median :74.89
Mean :318.2 Mean :0.35650 Mean :0.4459 Mean :74.86 Mean :75.14
3rd Qu.:409.2 3rd Qu.:0.51357 3rd Qu.:0.5759 3rd Qu.:79.15 3rd Qu.:77.53
Max. :796.0 Max. :0.76923 Max. :0.9901 Max. :82.31 Max. :82.64
variables1 <- c('rho_1', 'rho_2', 'intero1_span', 'intero2_span', 'occupancy_1', 'occupancy_2')
variables_pairs1 <- ggpairs(df_intero,
columns = variables1,
aes(alpha = .25),
progress = FALSE,
lower = list(continuous = wrap("points")))
suppressWarnings(print(variables_pairs1))

variables2 <- c('belief_pre', 'confidence_pre', 'belief_post', 'confidence_post')
variables_pairs2 <- ggpairs(df_intero,
columns = variables2,
aes(alpha = .25),
progress = FALSE,
lower = list(continuous = wrap("points")))
suppressWarnings(print(variables_pairs2))

LS0tCnRpdGxlOiAiSW50ZXJvY2VwdGlvbiAyMDIyLTIwMjMiCmF1dGhvcjogIkFsdmFybyBSaXZlcmEtUmVpIgpkYXRlOiAiYHIgZm9ybWF0KFN5cy50aW1lKCksICclZCAlQiwgJVknKWAiCm91dHB1dDoKICBodG1sX25vdGVib29rOgogICAgY29kZV9mb2xkaW5nOiBoaWRlCiAgICBoaWdobGlnaHQ6IHRhbmdvCiAgICBudW1iZXJfc2VjdGlvbnM6IHllcwogICAgdGhlbWU6IGNlcnVsZWFuCiAgICB0b2M6IHllcwogICAgdG9jX2Zsb2F0OgogICAgICBjb2xsYXBzZWQ6IG5vCiAgICAgIHNtb290aF9zY3JvbGw6IG5vCiAgcGRmX2RvY3VtZW50OgogICAgdG9jOiB5ZXMKc3VidGl0bGU6IGhlYXJ0IGFuZCBzdHVmZi4uLgotLS0KCmBgYHtyIENsZWFuIGFuZCBMb2FkIExpYnJhcmllc30KY2F0KCJcMDE0IikgICAgICMgY2xlYW4gdGVybWluYWwKcm0obGlzdCA9IGxzKCkpICMgY2xlYW4gd29ya3NwYWNlCnRyeShkZXYub2ZmKCksIHNpbGVudCA9IFRSVUUpICMgY2xvc2UgYWxsIHBsb3RzCmxpYnJhcnkoZ2dwbG90MikKbGlicmFyeShHR2FsbHkpCmBgYAoKYGBge3IgU2V0IERlZmF1bHRzfQojIHRoZW1lX3NldCgKIyAgIHRoZW1lX21pbmltYWwoKQojICkKYGBgCgpgYGB7ciBMb2FkIG9kZGJhbGwgZGF0YX0KZGYgPC0gcmVhZC5jc3YoJ3Job3NfYW5kX21lYW5fcnRzLmNzdicpCiMgZGYgPC0gZGZbZGYkU3ViamVjdCAhPSAnUzI4X0ZfQScsIF0KZGZbc2FwcGx5KGRmLCBpcy5jaGFyYWN0ZXIpXSA8LSBsYXBwbHkoZGZbc2FwcGx5KGRmLCBpcy5jaGFyYWN0ZXIpXSwgYXMuZmFjdG9yKQpkZl9pbnRlcm8gPC0gcmVhZC5jc3YoJ3Job3NfYW5kX2Fuc3dlcnMuY3N2JykKIyBkZl9pbnRlcm8gPC0gZGZfaW50ZXJvW2RmX2ludGVybyRTdWJqZWN0ICE9ICdTMjhfRl9BJywgXQpkZl9pbnRlcm9bc2FwcGx5KGRmX2ludGVybywgaXMuY2hhcmFjdGVyKV0gPC0gbGFwcGx5KGRmX2ludGVyb1tzYXBwbHkoZGZfaW50ZXJvLCBpcy5jaGFyYWN0ZXIpXSwgYXMuZmFjdG9yKQojIGFuZ2xlX2RhdGEgPC0gcmVhZC5jc3YoJ2FuZ2xlX2FuZF9ydF9kYXRhLmNzdicpCiMgYW5nbGVfZGF0YSA8LSBhbmdsZV9kYXRhW2FuZ2xlX2RhdGEkU3ViamVjdCAhPSAnUzI4X0ZfQScsIF0KIyBhbmdsZV9kYXRhW3NhcHBseShhbmdsZV9kYXRhLCBpcy5jaGFyYWN0ZXIpXSA8LSBsYXBwbHkoYW5nbGVfZGF0YVtzYXBwbHkoYW5nbGVfZGF0YSwgaXMuY2hhcmFjdGVyKV0sIGFzLmZhY3RvcikKYGBgCgojIEdlbmVyYWwgZGVzY3JpcHRpb24KYGBge3IgZ2VuZXJhbCwgZmlnLndpZHRoID0gMTJ9Cm9wdGlvbnMod2lkdGggPSAxMDApCnN1bW1hcnkoZGYpCmBgYAoKIyMgUmhvIHYvcyBDVgpgYGB7ciwgZmlnLndpZHRoID0gMTJ9CmdncGxvdChkZlshZ3JlcGwoJ2tleXMgdG8gaGVhcnQnLCBkZiRCbG9jayksIF0sIGFlcyh4ID0gcmhvLCB5ID0gY3ZfcnRfZnJvbV9SLCBjb2xvciA9IEJsb2NrKSkgKwogIGdlb21fcG9pbnQoc2l6ZSA9IDUpCmBgYAoKIyMgUmhvIHYvcyBDViwganVzdCBzb3VuZCBiZWF0IGJsb2NrcwpgYGB7ciwgZmlnLndpZHRoID0gMTJ9CmdncGxvdChkZltncmVwbCgnQmVhdCcsIGRmJEJsb2NrKSwgXSwgYWVzKHggPSByaG8sIHkgPSBjdl9ydF9mcm9tX1IsIGNvbG9yID0gQmxvY2spKSArCiAgZ2VvbV9wb2ludChzaXplID0gNSkKYGBgCgojIyBSaG8gdi9zIENWLCBqdXN0IGludGVyb2NlcHRpb24gYmxvY2tzCmBgYHtyLCBmaWcud2lkdGggPSAxMn0KZ2dwbG90KGRmW2dyZXBsKCdJbnRlcm9jZXB0aW9uJywgZGYkQmxvY2spLCBdLCBhZXMoeCA9IHJobywgeSA9IGN2X3J0X2Zyb21fUiwgY29sb3IgPSBCbG9jaykpICsKICBnZW9tX3BvaW50KHNpemUgPSA1KQpnZ3Bsb3QoZGZbZ3JlcGwoJ0ludGVyb2NlcHRpb24nLCBkZiRCbG9jayksIF0sIGFlcyh4ID0gcmhvLCB5ID0gY3ZfcnRfZnJvbV9SLCBjb2xvciA9IFN1YmplY3QpKSArCiAgZ2VvbV9wb2ludChzaXplID0gNSkKYGBgCgojIyBBbmdsZSB2L3MgUmhvCmBgYHtyLCBmaWcud2lkdGggPSAxMn0KZ2dwbG90KGRmW2dyZXBsKCdJbnRlcm9jZXB0aW9uJywgZGYkQmxvY2spLCBdLCBhZXMoeCA9IG1lYW5fYW5nbGUsIHkgPSByaG8sIGNvbG9yID0gQmxvY2spKSArCiAgZ2VvbV9wb2ludChzaXplID0gNSkKYGBgCiMjIENvcnJlbGF0aW9ucwpgYGB7ciBtb3JlLCBmaWcud2lkdGggPSAxMn0Kb3B0aW9ucyh3aWR0aCA9IDEwMCkKc3VtbWFyeShkZl9pbnRlcm8pCgp2YXJpYWJsZXMxIDwtIGMoJ3Job18xJywgJ3Job18yJywgJ2ludGVybzFfc3BhbicsICdpbnRlcm8yX3NwYW4nLCAnb2NjdXBhbmN5XzEnLCAnb2NjdXBhbmN5XzInKQp2YXJpYWJsZXNfcGFpcnMxIDwtIGdncGFpcnMoZGZfaW50ZXJvLAogICAgICAgICAgICAgICAgICAgICAgICAgICBjb2x1bW5zID0gdmFyaWFibGVzMSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgYWVzKGFscGhhID0gLjI1KSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgcHJvZ3Jlc3MgPSBGQUxTRSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgbG93ZXIgPSBsaXN0KGNvbnRpbnVvdXMgPSB3cmFwKCJwb2ludHMiKSkpCnN1cHByZXNzV2FybmluZ3MocHJpbnQodmFyaWFibGVzX3BhaXJzMSkpCgp2YXJpYWJsZXMyIDwtIGMoJ2JlbGllZl9wcmUnLCAnY29uZmlkZW5jZV9wcmUnLCAnYmVsaWVmX3Bvc3QnLCAnY29uZmlkZW5jZV9wb3N0JykKdmFyaWFibGVzX3BhaXJzMiA8LSBnZ3BhaXJzKGRmX2ludGVybywKICAgICAgICAgICAgICAgICAgICAgICAgICAgY29sdW1ucyA9IHZhcmlhYmxlczIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgIGFlcyhhbHBoYSA9IC4yNSksCiAgICAgICAgICAgICAgICAgICAgICAgICAgIHByb2dyZXNzID0gRkFMU0UsCiAgICAgICAgICAgICAgICAgICAgICAgICAgIGxvd2VyID0gbGlzdChjb250aW51b3VzID0gd3JhcCgicG9pbnRzIikpKQpzdXBwcmVzc1dhcm5pbmdzKHByaW50KHZhcmlhYmxlc19wYWlyczIpKQpgYGAK