This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.2 ✔ readr 2.1.4
## ✔ forcats 1.0.0 ✔ stringr 1.5.0
## ✔ ggplot2 3.4.2 ✔ tibble 3.2.1
## ✔ lubridate 1.9.2 ✔ tidyr 1.3.0
## ✔ purrr 1.0.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
## Loading required package: NLP
##
##
## Attaching package: 'NLP'
##
##
## The following object is masked from 'package:ggplot2':
##
## annotate
##
##
## Loading required package: Matrix
##
##
## Attaching package: 'Matrix'
##
##
## The following objects are masked from 'package:tidyr':
##
## expand, pack, unpack
##
##
##
## Attaching package: 'textmineR'
##
##
## The following object is masked from 'package:Matrix':
##
## update
##
##
## The following object is masked from 'package:stats':
##
## update
##
##
##
## Attaching package: 'scales'
##
##
## The following object is masked from 'package:purrr':
##
## discard
##
##
## The following object is masked from 'package:readr':
##
## col_factor
##
##
## randomForest 4.7-1.1
##
## Type rfNews() to see new features/changes/bug fixes.
##
##
## Attaching package: 'randomForest'
##
##
## The following object is masked from 'package:dplyr':
##
## combine
##
##
## The following object is masked from 'package:ggplot2':
##
## margin
##
##
##
## Attaching package: 'yardstick'
##
##
## The following object is masked from 'package:readr':
##
## spec
## Rows: 63,702
## Columns: 3
## $ X <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, …
## $ created_at <chr> "10/20/2022 3:48", "10/13/2022 6:38", "10/18/2022 11:04", "…
## $ text <chr> "@AmazfitGlobal My next Triumphs is gain weight & join …
## <<VCorpus>>
## Metadata: corpus specific: 0, document level (indexed): 0
## Content: documents: 63702
## Loading required package: RColorBrewer
## <<DocumentTermMatrix (documents: 6, terms: 108362)>>
## Non-/sparse entries: 92/650080
## Sparsity : 100%
## Maximal term length: 205
## Weighting : term frequency (tf)
## A LDA_VEM topic model with 3 topics.
## # A tibble: 6 × 3
## topic term beta
## <int> <chr> <dbl>
## 1 1 – cnet 0.00000116
## 2 2 – cnet 0.00000105
## 3 3 – cnet 0.000000818
## 4 1 – explained 0.000000581
## 5 2 – explained 0.00000128
## 6 3 – explained 0.00000118
## # A tibble: 325,086 × 3
## topic term beta
## <int> <chr> <dbl>
## 1 1 – cnet 0.00000116
## 2 2 – cnet 0.00000105
## 3 3 – cnet 0.000000818
## 4 1 – explained 0.000000581
## 5 2 – explained 0.00000128
## 6 3 – explained 0.00000118
## 7 1 –made 0.00000230
## 8 2 –made 0.00000119
## 9 3 –made 0.00000258
## 10 1 ——gt 0.00000487
## # ℹ 325,076 more rows
References: Text Mining with R: A Tidy Approach. https://www.tidytextmining.com/. Learning Social Media Analytics with R, Oreilly - Free e-book (online access available at https: //library.csub.edu/). Course notes, Zhenning Jimmy Xu, https://bookdown.org/utjimmyx/marketing_research/ https://rpubs.com/utjimmyx