Total cups of coffee/tea consumed during #DHH23: 637

Histogram of coffee/tea consumed by person

coffee %>%
  filter(name!="Guests") %>%
  group_by(name) %>%
  summarise(cups=sum(cups)) %>%
  count(cups) %>%
  ggplot(aes(x=cups,y=n)) +
  geom_col() +
  theme_hsci_discrete() +
  ylab("Number of people") +
  xlab("Cups of coffee consumed") +
  coord_cartesian(ylim=c(0,8)) +
  scale_y_continuous(breaks=seq(0,10,by=2)) +
  scale_x_continuous(breaks=0:25) +
  annotation_custom(grob=ggplotGrob(coffee %>%
                                      group_by(name) %>%
                                      summarise(cups=sum(cups)) %>%
    ggplot(aes(x=cups)) +
    geom_boxplot() +
    theme_hsci_discrete() +
    theme_transparent()),ymin=6,ymax=7)

Coffee/tea consumption by day

coffee %>%
  group_by(date,role) %>% summarise(cups=sum(cups),.groups="drop") %>%
  ggplot(aes(x=date,y=cups,fill=role)) +
  geom_col(position='dodge') +
  theme_hsci_discrete() +
  scale_y_continuous(breaks=seq(0,260,by=10)) +
  ylab("Cups of coffee consumed") +
  xlab("Date") +
  labs(color="Role")

Coffee/tea consumption by day by group

coffee %>%
  group_by(date,group) %>%
  summarise(cups=sum(cups),.groups="drop") %>%
  ggplot(aes(x=date,y=cups,fill=group)) +
  geom_col(position='dodge') +
  theme_hsci_discrete() +
  scale_y_continuous(breaks=seq(0,30,by=2)) +
  ylab("Cups of coffee consumed") +
  xlab("Group") +
  labs(color="Group")

Coffee/tea consumption by group and role

coffee %>%
  filter(name!="Guests") %>%
  group_by(group,name,role) %>% summarise(cups=sum(cups),.groups="drop") %>%
  ggplot(aes(x=group,y=cups,color=role)) +
  geom_boxplot() +
  theme_hsci_discrete() +
  scale_y_continuous(breaks=seq(0,30,by=2)) +
  ylab("Cups of coffee consumed") +
  xlab("Group") +
  labs(color="Role")

Annotated histogram of coffee/tea consumed by person

coffee %>%
  filter(name!="Guests") %>%
  group_by(name) %>%
  summarise(cups=sum(cups)) %>%
  count(cups) %>%
  ggplot(aes(x=cups,y=n)) +
  geom_col() +
  theme_hsci_discrete() +
  ylab("Number of people") +
  xlab("Cups of coffee consumed") +
  coord_cartesian(ylim=c(0,8)) +
  scale_y_continuous(breaks=seq(0,10,by=2)) +
  scale_x_continuous(breaks=0:25) +
  annotation_custom(grob=ggplotGrob(coffee %>%
                                      group_by(name) %>%
                                      summarise(cups=sum(cups)) %>%
    ggplot(aes(x=cups)) +
    geom_boxplot() +
    theme_hsci_discrete() +
    theme_transparent()),ymin=6,ymax=7) +
  annotate(geom = "text", x = 19, y = 2.2, label = "Eetu Mäkelä", color = "red",
             angle = 90) +
  annotate(geom = "text", x = 22, y = 2.4, label = "Michele Stefani", color = "red",
             angle = 90) +
  annotate(geom = "text", x = 23, y = 3.6, label = "Efthymios Damianos Kokordelis", color = "red",
             angle = 90)

LS0tCnRpdGxlOiAiI0RISDIzIENvZmZlZS9UZWEgQ29uc3VtcHRpb24gQW5hbHlzaXMiCmF1dGhvcjogIkVldHUgTcOka2Vsw6QiCmRhdGU6ICJgciBTeXMuRGF0ZSgpYCIKb3V0cHV0OiAKICBodG1sX25vdGVib29rOgogICAgY29kZV9mb2xkaW5nOiBoaWRlCiAgICB0b2M6IHllcwotLS0KCmBgYHtyIHNldHVwLGluY2x1ZGU9RkFMU0V9CmtuaXRyOjpvcHRzX2tuaXQkc2V0KHJvb3QuZGlyID0gaGVyZTo6aGVyZSgpKQoKbGlicmFyeSh0aWR5dmVyc2UpCmxpYnJhcnkoZ2doc2NpKQpsaWJyYXJ5KGdvb2dsZXNoZWV0czQpCmxpYnJhcnkoZ2dwdWJyKQoKcCA8LSBmdW5jdGlvbihudW1iZXIpIHsKICByZXR1cm4oZm9ybWF0KG51bWJlciwgc2NpZW50aWZpYyA9IEZBTFNFLCBiaWcubWFyayA9ICIsIikpCn0KcHAgPC0gZnVuY3Rpb24ocGVyY2VudGFnZSxhY2N1cmFjeT0wLjAxKSB7CiAgcmV0dXJuKHNjYWxlczo6cGVyY2VudChwZXJjZW50YWdlLCBhY2N1cmFjeSA9IGFjY3VyYWN5KSkKfQpgYGAKCmBgYHtyIHJlYWRfZGF0YSxpbmNsdWRlPUZBTFNFfQpjb2ZmZWUgPC0gcmVhZF9zaGVldCgiMXdyWjBDYjhkMWFDejlkNW51bkxqZUpQN0psaEhnYVg1U1Y0TWNLdEJWZXMiKSAlPiUKICBzZWxlY3QoLWMoYFBlcnNvbmFsIFN1YmAsYDAyLjA2LjIwMjNgLC4uLjEyKSkgJT4lCiAgZmlsdGVyKCFpcy5uYShncm91cCkpICU+JQogIHBpdm90X2xvbmdlcihgMjQuMDUuMjAyM2A6YDAxLjA2LjIwMjNgLG5hbWVzX3RvPSJkYXRlIix2YWx1ZXNfdG89ImN1cHMiKSAlPiUKICByZXBsYWNlX25hKGxpc3Qocm9sZT0idGVhbSBtZW1iZXIiKSkgJT4lIAogIG11dGF0ZShkYXRlPWFzLkRhdGUoZGF0ZSwiJWQuJW0uJVkiKSkgJT4lCiAgbXV0YXRlKHJvbGU9cmVjb2RlKHJvbGUsIlRMIj0idGVhbSBsZWFkZXIiKSkKYGBgCgojIFRvdGFsIGN1cHMgb2YgY29mZmVlL3RlYSBjb25zdW1lZCBkdXJpbmcgI0RISDIzOiBgciBjb2ZmZWUgJT4lIHN1bW1hcml6ZShuPXN1bShjdXBzKSkgJT4lIHB1bGwobikgJT4lIHBgCgojIEhpc3RvZ3JhbSBvZiBjb2ZmZWUvdGVhIGNvbnN1bWVkIGJ5IHBlcnNvbgoKYGBge3IgaGlzdG9ncmFtfQpjb2ZmZWUgJT4lCiAgZmlsdGVyKG5hbWUhPSJHdWVzdHMiKSAlPiUKICBncm91cF9ieShuYW1lKSAlPiUKICBzdW1tYXJpc2UoY3Vwcz1zdW0oY3VwcykpICU+JQogIGNvdW50KGN1cHMpICU+JQogIGdncGxvdChhZXMoeD1jdXBzLHk9bikpICsKICBnZW9tX2NvbCgpICsKICB0aGVtZV9oc2NpX2Rpc2NyZXRlKCkgKwogIHlsYWIoIk51bWJlciBvZiBwZW9wbGUiKSArCiAgeGxhYigiQ3VwcyBvZiBjb2ZmZWUgY29uc3VtZWQiKSArCiAgY29vcmRfY2FydGVzaWFuKHlsaW09YygwLDgpKSArCiAgc2NhbGVfeV9jb250aW51b3VzKGJyZWFrcz1zZXEoMCwxMCxieT0yKSkgKwogIHNjYWxlX3hfY29udGludW91cyhicmVha3M9MDoyNSkgKwogIGFubm90YXRpb25fY3VzdG9tKGdyb2I9Z2dwbG90R3JvYihjb2ZmZWUgJT4lCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZ3JvdXBfYnkobmFtZSkgJT4lCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgc3VtbWFyaXNlKGN1cHM9c3VtKGN1cHMpKSAlPiUKICAgIGdncGxvdChhZXMoeD1jdXBzKSkgKwogICAgZ2VvbV9ib3hwbG90KCkgKwogICAgdGhlbWVfaHNjaV9kaXNjcmV0ZSgpICsKICAgIHRoZW1lX3RyYW5zcGFyZW50KCkpLHltaW49Nix5bWF4PTcpCmBgYAoKIyBDb2ZmZWUvdGVhIGNvbnN1bXB0aW9uIGJ5IGRheQoKYGBge3IgY29uc3VtcHRpb25fYnlfZGF5fQpjb2ZmZWUgJT4lCiAgZ3JvdXBfYnkoZGF0ZSxyb2xlKSAlPiUgc3VtbWFyaXNlKGN1cHM9c3VtKGN1cHMpLC5ncm91cHM9ImRyb3AiKSAlPiUKICBnZ3Bsb3QoYWVzKHg9ZGF0ZSx5PWN1cHMsZmlsbD1yb2xlKSkgKwogIGdlb21fY29sKHBvc2l0aW9uPSdkb2RnZScpICsKICB0aGVtZV9oc2NpX2Rpc2NyZXRlKCkgKwogIHNjYWxlX3lfY29udGludW91cyhicmVha3M9c2VxKDAsMjYwLGJ5PTEwKSkgKwogIHlsYWIoIkN1cHMgb2YgY29mZmVlIGNvbnN1bWVkIikgKwogIHhsYWIoIkRhdGUiKSArCiAgbGFicyhjb2xvcj0iUm9sZSIpCmBgYAoKIyBDb2ZmZWUvdGVhIGNvbnN1bXB0aW9uIGJ5IGRheSBieSBncm91cAoKYGBge3IgY29uc3VtcHRpb25fYnlfZGF0ZV9hbmRfZ3JvdXB9CmNvZmZlZSAlPiUKICBncm91cF9ieShkYXRlLGdyb3VwKSAlPiUKICBzdW1tYXJpc2UoY3Vwcz1zdW0oY3VwcyksLmdyb3Vwcz0iZHJvcCIpICU+JQogIGdncGxvdChhZXMoeD1kYXRlLHk9Y3VwcyxmaWxsPWdyb3VwKSkgKwogIGdlb21fY29sKHBvc2l0aW9uPSdkb2RnZScpICsKICB0aGVtZV9oc2NpX2Rpc2NyZXRlKCkgKwogIHNjYWxlX3lfY29udGludW91cyhicmVha3M9c2VxKDAsMzAsYnk9MikpICsKICB5bGFiKCJDdXBzIG9mIGNvZmZlZSBjb25zdW1lZCIpICsKICB4bGFiKCJHcm91cCIpICsKICBsYWJzKGNvbG9yPSJHcm91cCIpCmBgYAoKIyBDb2ZmZWUvdGVhIGNvbnN1bXB0aW9uIGJ5IGdyb3VwIGFuZCByb2xlCgpgYGB7ciBjb25zdW1wdGlvbl9ieV9ncm91cH0KY29mZmVlICU+JQogIGZpbHRlcihuYW1lIT0iR3Vlc3RzIikgJT4lCiAgZ3JvdXBfYnkoZ3JvdXAsbmFtZSxyb2xlKSAlPiUgc3VtbWFyaXNlKGN1cHM9c3VtKGN1cHMpLC5ncm91cHM9ImRyb3AiKSAlPiUKICBnZ3Bsb3QoYWVzKHg9Z3JvdXAseT1jdXBzLGNvbG9yPXJvbGUpKSArCiAgZ2VvbV9ib3hwbG90KCkgKwogIHRoZW1lX2hzY2lfZGlzY3JldGUoKSArCiAgc2NhbGVfeV9jb250aW51b3VzKGJyZWFrcz1zZXEoMCwzMCxieT0yKSkgKwogIHlsYWIoIkN1cHMgb2YgY29mZmVlIGNvbnN1bWVkIikgKwogIHhsYWIoIkdyb3VwIikgKwogIGxhYnMoY29sb3I9IlJvbGUiKQpgYGAKCiMgQW5ub3RhdGVkIGhpc3RvZ3JhbSBvZiBjb2ZmZWUvdGVhIGNvbnN1bWVkIGJ5IHBlcnNvbgoKYGBge3IgYW5ub3RhdGVkX2hpc3RvZ3JhbX0KY29mZmVlICU+JQogIGZpbHRlcihuYW1lIT0iR3Vlc3RzIikgJT4lCiAgZ3JvdXBfYnkobmFtZSkgJT4lCiAgc3VtbWFyaXNlKGN1cHM9c3VtKGN1cHMpKSAlPiUKICBjb3VudChjdXBzKSAlPiUKICBnZ3Bsb3QoYWVzKHg9Y3Vwcyx5PW4pKSArCiAgZ2VvbV9jb2woKSArCiAgdGhlbWVfaHNjaV9kaXNjcmV0ZSgpICsKICB5bGFiKCJOdW1iZXIgb2YgcGVvcGxlIikgKwogIHhsYWIoIkN1cHMgb2YgY29mZmVlIGNvbnN1bWVkIikgKwogIGNvb3JkX2NhcnRlc2lhbih5bGltPWMoMCw4KSkgKwogIHNjYWxlX3lfY29udGludW91cyhicmVha3M9c2VxKDAsMTAsYnk9MikpICsKICBzY2FsZV94X2NvbnRpbnVvdXMoYnJlYWtzPTA6MjUpICsKICBhbm5vdGF0aW9uX2N1c3RvbShncm9iPWdncGxvdEdyb2IoY29mZmVlICU+JQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGdyb3VwX2J5KG5hbWUpICU+JQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHN1bW1hcmlzZShjdXBzPXN1bShjdXBzKSkgJT4lCiAgICBnZ3Bsb3QoYWVzKHg9Y3VwcykpICsKICAgIGdlb21fYm94cGxvdCgpICsKICAgIHRoZW1lX2hzY2lfZGlzY3JldGUoKSArCiAgICB0aGVtZV90cmFuc3BhcmVudCgpKSx5bWluPTYseW1heD03KSArCiAgYW5ub3RhdGUoZ2VvbSA9ICJ0ZXh0IiwgeCA9IDE5LCB5ID0gMi4yLCBsYWJlbCA9ICJFZXR1IE3DpGtlbMOkIiwgY29sb3IgPSAicmVkIiwKICAgICAgICAgICAgIGFuZ2xlID0gOTApICsKICBhbm5vdGF0ZShnZW9tID0gInRleHQiLCB4ID0gMjIsIHkgPSAyLjQsIGxhYmVsID0gIk1pY2hlbGUgU3RlZmFuaSIsIGNvbG9yID0gInJlZCIsCiAgICAgICAgICAgICBhbmdsZSA9IDkwKSArCiAgYW5ub3RhdGUoZ2VvbSA9ICJ0ZXh0IiwgeCA9IDIzLCB5ID0gMy42LCBsYWJlbCA9ICJFZnRoeW1pb3MgRGFtaWFub3MgS29rb3JkZWxpcyIsIGNvbG9yID0gInJlZCIsCiAgICAgICAgICAgICBhbmdsZSA9IDkwKQpgYGAK