knitr::opts_chunk$set(echo = TRUE)
setwd("C:/Users/N11094427/OneDrive - Queensland University of Technology/Documents/ArcGIS/Projects/MaxENT/Data/OutputforR")

library(dplyr)
library(spatialEco)
library(raster)
library(rgdal)
library(MASS)
library(sf)
library(shapefiles)
library(blockCV)
library(gstat)
library(sp)
library(nlme)
library(leaflet)
library(biomod2)
library(ggplot2)
library(AppliedPredictiveModeling)
library(ROSE)
library(caret)
library(tidyverse)
library(ggpubr)
library(terra)
library(corrplot)
library(Hmisc)
library(PerformanceAnalytics)
library(rlang)
library(devtools)


library(plyr)
library(corpcor)
library(stats)
library(MASS)
library(GlmSimulatoR)
library(pscl)
library(AER)
library(MASS)
library(boot)
library(car)
library(mctest)
library(GGally)
library(purrr)
library(ggpmisc)
library(mgcv)
library(cowplot)
library(ggpmisc)
library(ggmap)
library(plotly)
library(mapdeck)
library(rayshader)
library(ROCR)
library(precrec)
library(sp)
library(geoR)
library(ncf)
library(visreg)
library(spdep)
library(ape)
library(leaps)
library(spNetwork)
library(rasterVis)
library(ggplot2)
library(classInt)
library(RStoolbox)
library(gridExtra)
library(openxlsx)
library(readxl)
library(yardstick)
#import ice free area boundary
Antarctica <- st_read("ADD_Coastline_low_res_polygon.shp")
## Reading layer `ADD_Coastline_low_res_polygon' from data source 
##   `C:\Users\N11094427\OneDrive - Queensland University of Technology\Documents\ArcGIS\Projects\MaxENT\Data\OutputforR\ADD_Coastline_low_res_polygon.shp' 
##   using driver `ESRI Shapefile'
## Simple feature collection with 592 features and 1 field
## Geometry type: POLYGON
## Dimension:     XY
## Bounding box:  xmin: -2661733 ymin: -2489515 xmax: 2745916 ymax: 2321777
## Projected CRS: WGS 84 / Antarctic Polar Stereographic
#import data frame
bioactivity <- read.csv("Fishnet5km_icefreeareabuffer500m_WGS84SSP_16012023.csv") # import the data table

bioactivity <- bioactivity %>% relocate(Countlandscapetype, .before = DEM_mean)

#add a column with the presence and absence of bioactivity
bioactivity$bioact_PA <- NA # create a new column with NA values
bioactivity$bioact_PA <- ifelse(bioactivity$Bioactivititycount == 0, 0, 1)
bioactivity <- bioactivity %>% relocate(bioact_PA, .before = Bioactivititycount)

#add a column with the presence and absence of non-bioactivity
bioactivity$Nonbioact_PA <- NA # create a new column with NA values
bioactivity$Nonbioact_PA <- ifelse(bioactivity$Nonbioactivitycount == 0, 0, 1)
bioactivity <- bioactivity %>% relocate(Nonbioact_PA, .before = Nonbioactivitycount)

#add a column for sloperecl
bioactivity$sloperecl <- NA # create a new column with NA values
bioactivity <- bioactivity %>% relocate(sloperecl, .after = SlopeMeanpercent)

# reclass slope 0-3%: little or none; 4-9%: Gentle; 10-15%: moderate; 16-30%: Steep; 31-60%: extremely steep; >60%: excessively steep https://sis.agr.gc.ca/cansis/nsdb/slc/v3.2/cmp/slope.html
bioactivity$sloperecl <- with(bioactivity, ifelse(SlopeMeanpercent > 60, 6, 
                                                  ifelse(SlopeMeanpercent > 30 & SlopeMeanpercent <= 60, 5,
                                                         ifelse(SlopeMeanpercent > 15 & SlopeMeanpercent <= 30, 4,
                                                                ifelse(SlopeMeanpercent > 9 & SlopeMeanpercent <= 15, 3,
                                                                       ifelse(SlopeMeanpercent > 3 & SlopeMeanpercent <= 9, 2, 1))))))

# reclass peak population 
bioactivity$Peak_Popul_recl <- with(bioactivity, ifelse(Peak_Popul > 150 , 5,
                                                         ifelse(Peak_Popul > 50 & Peak_Popul <= 150, 4,
                                                                ifelse(Peak_Popul > 20 & Peak_Popul <= 50, 3,
                                                                       ifelse(Peak_Popul > 10 & Peak_Popul <= 20, 2, 1)))))
#modify data
#1 combine categoryof0 2 and 4 together, because they are the ture presence of biodiversity-related activity
# replace 4 with 2
bioactivity$Categoryof0[bioactivity$Categoryof0 == 4] <- 2
class(bioactivity$Categoryof0) = "integer"

bioactivity.60s <- subset(bioactivity, bioactivity$Latitude_WGS84 < -60.0) #only keep points south then 60s

summary(bioactivity.60s )
##       OID_         OID1               ID        Longtitude_WGS84  
##  Min.   :    1   Mode:logical   Min.   :    1   Min.   :-179.940  
##  1st Qu.: 5721   NA's:22880     1st Qu.: 5721   1st Qu.: -65.319  
##  Median :11440                  Median :11440   Median :   3.788  
##  Mean   :11440                  Mean   :11440   Mean   :  23.655  
##  3rd Qu.:17160                  3rd Qu.:17160   3rd Qu.: 160.359  
##  Max.   :22880                  Max.   :22880   Max.   : 179.586  
##  Latitude_WGS84    POINT_X_SSP        POINT_Y_SSP         Windspeed     
##  Min.   :-87.45   Min.   :-2665635   Min.   :-2488784   Min.   : 1.230  
##  1st Qu.:-78.07   1st Qu.:-1830635   1st Qu.:-1043783   1st Qu.: 4.754  
##  Median :-72.14   Median :   39366   Median :  521217   Median : 6.842  
##  Mean   :-73.55   Mean   : -361131   Mean   :   92817   Mean   : 7.292  
##  3rd Qu.:-69.10   3rd Qu.:  479366   3rd Qu.: 1111218   3rd Qu.: 9.057  
##  Max.   :-60.34   Max.   : 2614367   Max.   : 2326218   Max.   :20.955  
##       Temp             Precip           bioact_PA       Bioactivititycount
##  Min.   :-39.961   Min.   :   0.791   Min.   :0.00000   Min.   :   0.000  
##  1st Qu.:-24.916   1st Qu.: 129.244   1st Qu.:0.00000   1st Qu.:   0.000  
##  Median :-19.696   Median : 271.032   Median :0.00000   Median :   0.000  
##  Mean   :-19.160   Mean   : 609.732   Mean   :0.08387   Mean   :   2.974  
##  3rd Qu.:-13.679   3rd Qu.: 644.410   3rd Qu.:0.00000   3rd Qu.:   0.000  
##  Max.   : -1.436   Max.   :6500.416   Max.   :1.00000   Max.   :2865.000  
##   Nonbioact_PA    Nonbioactivitycount  Categoryof0    Countlandscapetype
##  Min.   :0.0000   Min.   :   0.000    Min.   :1.000   Min.   :1.00      
##  1st Qu.:0.0000   1st Qu.:   0.000    1st Qu.:1.000   1st Qu.:2.00      
##  Median :0.0000   Median :   0.000    Median :3.000   Median :2.00      
##  Mean   :0.3477   Mean   :   4.258    Mean   :2.345   Mean   :2.05      
##  3rd Qu.:1.0000   3rd Qu.:   2.000    3rd Qu.:3.000   3rd Qu.:2.00      
##  Max.   :1.0000   Max.   :3169.000    Max.   :3.000   Max.   :5.00      
##     DEM_mean       SlopeMeanpercent      sloperecl     Edgedensitity_mperkm2
##  Min.   : -58.05   Min.   :  0.00043   Min.   :1.000   Min.   : 0.001026    
##  1st Qu.: 328.51   1st Qu.:  3.93691   1st Qu.:2.000   1st Qu.: 0.122701    
##  Median : 969.32   Median :  8.74753   Median :2.000   Median : 0.335598    
##  Mean   :1006.16   Mean   : 12.45425   Mean   :2.711   Mean   : 0.584848    
##  3rd Qu.:1552.47   3rd Qu.: 18.15785   3rd Qu.:4.000   3rd Qu.: 0.762789    
##  Max.   :4467.39   Max.   :134.71022   Max.   :6.000   Max.   :12.824759    
##   sum_Area_km2      IcefreePolygon_Count IcefreepolygonMeanSize_km2
##  Min.   : 0.00000   Min.   :  0.00       Min.   : 0.00000          
##  1st Qu.: 0.01884   1st Qu.:  2.00       1st Qu.: 0.00352          
##  Median : 0.21415   Median :  7.00       Median : 0.01666          
##  Mean   : 1.38305   Mean   : 17.06       Mean   : 0.28076          
##  3rd Qu.: 1.18745   3rd Qu.: 22.00       3rd Qu.: 0.08441          
##  Max.   :30.31898   Max.   :604.00       Max.   :26.25244          
##     TRI_Mean        ClaimCountry_Count  Country_1          Country_2        
##  Min.   :  0.0037   Min.   :0.000      Length:22880       Length:22880      
##  1st Qu.:  9.7357   1st Qu.:1.000      Class :character   Class :character  
##  Median : 21.3252   Median :1.000      Mode  :character   Mode  :character  
##  Mean   : 30.6591   Mean   :1.597                                           
##  3rd Qu.: 43.8652   3rd Qu.:3.000                                           
##  Max.   :523.7536   Max.   :3.000                                           
##   Country_3           GNI_Claim           PPP_Claim        Feb_Seaice_median_km
##  Length:22880       Min.   :1.096e+11   Min.   :  0.6922   Min.   :   0.0      
##  Class :character   1st Qu.:1.096e+11   1st Qu.:  1.4725   1st Qu.:   0.0      
##  Mode  :character   Median :7.876e+11   Median :  1.6579   Median :   0.0      
##                     Mean   :6.071e+11   Mean   : 46.3605   Mean   : 119.4      
##                     3rd Qu.:8.904e+11   3rd Qu.:104.4277   3rd Qu.: 133.0      
##                     Max.   :2.191e+12   Max.   :309.9673   Max.   :1371.0      
##  Sept_Seaice_median_km Mainshippiingzone Shiptrafficintensity    Penornot     
##  Min.   :   0.0        Min.   :0.0000    Min.   :  0.00       Min.   :0.0000  
##  1st Qu.: 610.0        1st Qu.:1.0000    1st Qu.:  0.00       1st Qu.:0.0000  
##  Median : 890.0        Median :1.0000    Median :  0.00       Median :0.0000  
##  Mean   : 910.9        Mean   :0.8211    Mean   : 45.89       Mean   :0.3104  
##  3rd Qu.:1192.0        3rd Qu.:1.0000    3rd Qu.: 75.00       3rd Qu.:1.0000  
##  Max.   :2284.0        Max.   :1.0000    Max.   :150.00       Max.   :1.0000  
##  Travelspeedkmhour Dist_Claimline_km Dist_Claim_recl  Dist_air_km    
##  Min.   : 0.2325   Min.   :   0.0    Min.   :1.000   Min.   :  0.00  
##  1st Qu.: 1.1496   1st Qu.:  85.0    1st Qu.:2.000   1st Qu.: 85.59  
##  Median : 1.3261   Median : 217.3    Median :3.000   Median :191.64  
##  Mean   : 2.9080   Mean   : 284.5    Mean   :2.545   Mean   :218.90  
##  3rd Qu.: 1.5078   3rd Qu.: 378.0    3rd Qu.:3.000   3rd Qu.:332.42  
##  Max.   :19.5634   Max.   :1781.9    Max.   :3.000   Max.   :901.14  
##  Dist_air_recl   Dis_traverseskm  Dist_travese_recl  Dist_port_km     
##  Min.   :1.000   Min.   :   0.0   Min.   :1.000     Min.   :   1.487  
##  1st Qu.:1.000   1st Qu.: 330.9   1st Qu.:3.000     1st Qu.:  67.633  
##  Median :1.000   Median : 731.2   Median :3.000     Median : 228.119  
##  Mean   :1.445   Mean   : 999.1   Mean   :2.879     Mean   : 303.352  
##  3rd Qu.:2.000   3rd Qu.:1869.4   3rd Qu.:3.000     3rd Qu.: 491.373  
##  Max.   :3.000   Max.   :2459.7   Max.   :3.000     Max.   :1155.318  
##  Dist_port_recl  Dist_station_km   Dist_station_recl  GNI_station       
##  Min.   :1.000   Min.   :  1.497   Min.   :1.000     Min.   :3.056e+10  
##  1st Qu.:2.000   1st Qu.: 95.565   1st Qu.:2.000     1st Qu.:3.375e+11  
##  Median :3.000   Median :249.462   Median :3.000     Median :9.663e+11  
##  Mean   :2.478   Mean   :278.435   Mean   :2.602     Mean   :4.188e+12  
##  3rd Qu.:3.000   3rd Qu.:431.421   3rd Qu.:3.000     3rd Qu.:1.303e+13  
##  Max.   :3.000   Max.   :920.636   Max.   :3.000     Max.   :1.303e+13  
##   PPP_station         Record_ID_      English_Na         Official_N       
##  Min.   :  0.1536   Min.   :  1.00   Length:22880       Length:22880      
##  1st Qu.:  1.0000   1st Qu.: 15.00   Class :character   Class :character  
##  Median :  1.3900   Median : 45.00   Mode  :character   Mode  :character  
##  Mean   : 11.3670   Mean   : 45.52                                        
##  3rd Qu.:  2.6237   3rd Qu.: 71.00                                        
##  Max.   :771.1880   Max.   :236.00                                        
##   Operator_1         Operator_2            Type            Seasonalit       
##  Length:22880       Length:22880       Length:22880       Length:22880      
##  Class :character   Class :character   Class :character   Class :character  
##  Mode  :character   Mode  :character   Mode  :character   Mode  :character  
##                                                                             
##                                                                             
##                                                                             
##     Status            Year_Estab    Antarctic         Latitude_stationWGS84
##  Length:22880       Min.   :   0   Length:22880       Min.   :-90.00       
##  Class :character   1st Qu.:1956   Class :character   1st Qu.:-77.85       
##  Mode  :character   Median :1971   Mode  :character   Median :-70.77       
##                     Mean   :1967                      Mean   :-72.85       
##                     3rd Qu.:1987                      3rd Qu.:-68.13       
##                     Max.   :2012                      Max.   :-60.71       
##  Longitude_stationWGS84   Peak_Popul       Landtrans         Seatrans     
##  Min.   :-149.00        Min.   :   0.0   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.: -67.10        1st Qu.:  20.0   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :  23.35        Median :  24.0   Median :0.0000   Median :0.0000  
##  Mean   :  30.54        Mean   : 169.9   Mean   :0.4722   Mean   :0.2956  
##  3rd Qu.: 159.39        3rd Qu.:  70.0   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   : 166.77        Max.   :1200.0   Max.   :1.0000   Max.   :1.0000  
##     Airstrap         Flights           Ships            Helipad      
##  Min.   :0.0000   Min.   : 0.000   Min.   :  0.000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.: 0.000   1st Qu.:  0.000   1st Qu.:0.0000  
##  Median :1.0000   Median : 0.000   Median :  1.000   Median :1.0000  
##  Mean   :0.5844   Mean   : 2.396   Mean   :  3.823   Mean   :0.5876  
##  3rd Qu.:1.0000   3rd Qu.: 5.000   3rd Qu.:  2.000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :60.000   Max.   :100.000   Max.   :1.0000  
##  ikbioactf1under0 ikbioactf2under0  DistancetoSea     Peak_Popul_recl
##  Min.   :0.0000   Min.   :0.00000   Min.   :      0   Min.   :1.000  
##  1st Qu.:0.1176   1st Qu.:0.05577   1st Qu.:  20616   1st Qu.:2.000  
##  Median :0.2856   Median :0.24743   Median :  85000   Median :3.000  
##  Mean   :0.3434   Mean   :0.33683   Mean   : 209517   Mean   :3.085  
##  3rd Qu.:0.5261   3rd Qu.:0.55552   3rd Qu.: 289935   3rd Qu.:4.000  
##  Max.   :1.0000   Max.   :1.00000   Max.   :1061567   Max.   :5.000
#convert some categorical variables to factor
#bioactivity.60s$bioact_PA <- factor(bioactivity.60s$bioact_PA)
bioactivity.60s$Nonbioact_PA <- factor(bioactivity.60s$Nonbioact_PA) 
bioactivity.60s$Categoryof0 <- factor(bioactivity.60s$Categoryof0)
bioactivity.60s$Countlandscapetype <- factor(bioactivity.60s$Countlandscapetype)
bioactivity.60s$sloperecl <- factor(bioactivity.60s$sloperecl)
bioactivity.60s$ClaimCountry_Count <- factor(bioactivity.60s$ClaimCountry_Count)
bioactivity.60s$Mainshippiingzone <- factor(bioactivity.60s$Mainshippiingzone)
bioactivity.60s$Shiptrafficintensity <- factor(bioactivity.60s$Shiptrafficintensity)
bioactivity.60s$Penornot <- factor(bioactivity.60s$Penornot)
bioactivity.60s$Dist_Claim_recl <- factor(bioactivity.60s$Dist_Claim_recl)
bioactivity.60s$Dist_air_recl <- factor(bioactivity.60s$Dist_air_recl)
bioactivity.60s$Dist_travese_recl <- factor(bioactivity.60s$Dist_travese_recl)
bioactivity.60s$Dist_port_recl <- factor(bioactivity.60s$Dist_port_recl)
bioactivity.60s$Dist_station_recl <- factor(bioactivity.60s$Dist_station_recl)
bioactivity.60s$Peak_Popul_recl <- factor(bioactivity.60s$Peak_Popul_recl)

#data round
bioactivity.60s$DEM_mean <- round(bioactivity.60s$DEM_mean)
bioactivity.60s$SlopeMeanpercent <- round(bioactivity.60s$SlopeMeanpercent)

# data scale
bioactivity.60s$sc.Windspeed <- c(scale(bioactivity.60s$Windspeed))
bioactivity.60s$sc.Temp <- c(scale(bioactivity.60s$Temp))
bioactivity.60s$sc.logPrecip <- c(scale(log(bioactivity.60s$Precip)))
bioactivity.60s$sc.Lon <- c(scale(bioactivity.60s$Longtitude_WGS84))
bioactivity.60s$sc.Lat <- c(scale(bioactivity.60s$Latitude_WGS84))
# bioactivity.60s$sc.Nonbioact_PA <- c(scale(bioactivity.60s$Nonbioact_PA))
bioactivity.60s$sc.log1p.Nonbioactcount <- c(scale(log1p(bioactivity.60s$Nonbioactivitycount)))
bioactivity.60s$sc.DEM.100 <- c(scale((bioactivity.60s$DEM_mean)/100))
bioactivity.60s$sc.SlopeMeanpercent <- c(scale(bioactivity.60s$SlopeMeanpercent))
# bioactivity.60s$sc.sloperecl <- c(scale(bioactivity.60s$sloperecl))
bioactivity.60s$sc.sqrt.Edgedensity <- c(scale(sqrt(bioactivity.60s$Edgedensitity_mperkm2)))
bioactivity.60s$sc.log1p.sumArea <- c(scale(log1p(bioactivity.60s$sum_Area_km2)))
bioactivity.60s$sc.log1p.IcefreePolygon_Count <- c(scale(log1p(bioactivity.60s$IcefreePolygon_Count)))
bioactivity.60s$sc.sqrt.IcefreepolygonMeanSize <- c(scale(sqrt(bioactivity.60s$IcefreepolygonMeanSize_km2)))
# bioactivity.60s$sc.ClaimCountry_Count <- c(scale(bioactivity.60s$ClaimCountry_Count))
bioactivity.60s$sc.log.GNI_Claim <- c(scale(log(bioactivity.60s$GNI_Claim)))
bioactivity.60s$sc.log.PPP_Claim <- c(scale(log(bioactivity.60s$PPP_Claim)))
bioactivity.60s$sc.log1p.Feb_Seaice_median_km <- c(scale(log1p(bioactivity.60s$Feb_Seaice_median_km)))
bioactivity.60s$sc.log1p.Sept_Seaice_median_km <- c(scale(log1p(bioactivity.60s$Sept_Seaice_median_km)))
# bioactivity.60s$sc.Mainshippiingzone <- c(scale((bioactivity.60s$Mainshippiingzone)))
# bioactivity.60s$sc.Shiptrafficintensity <- c(scale((bioactivity.60s$Shiptrafficintensity)))
# bioactivity.60s$sc.Penornot <- c(scale((bioactivity.60s$Penornot)))
bioactivity.60s$sc.log.Travelspeedkmhour <- c(scale(log(bioactivity.60s$Travelspeedkmhour)))
bioactivity.60s$sc.sqrt.Dist_Claimline_km <- c(scale(sqrt(bioactivity.60s$Dist_Claimline_km)))
# bioactivity.60s$sc.Dist_Claim_recl <- c(scale(bioactivity.60s$Dist_Claim_recl))
bioactivity.60s$sc.sqrt.Dist_air_km <- c(scale(sqrt(bioactivity.60s$Dist_air_km)))
# bioactivity.60s$sc.Dist_air_recl <- c(scale(bioactivity.60s$Dist_air_recl))
bioactivity.60s$sc.sqrt.Dist_port_km <- c(scale(sqrt(bioactivity.60s$Dist_port_km)))
# bioactivity.60s$sc.Dist_port_recl <- c(scale(bioactivity.60s$Dist_port_recl))
bioactivity.60s$sc.sqrt.Dis_traverseskm <- c(scale(sqrt(bioactivity.60s$Dis_traverseskm)))
# bioactivity.60s$sc.Dist_travese_recl <- c(scale(bioactivity.60s$Dist_travese_recl))
bioactivity.60s$sc.sqrt.Dist_station_km <- c(scale(sqrt(bioactivity.60s$Dist_station_km)))
# bioactivity.60s$sc.Dist_station_recl <- c(scale(bioactivity.60s$Dist_station_recl))
bioactivity.60s$sc.log.GNI_station <- c(scale(log(bioactivity.60s$GNI_station)))
bioactivity.60s$sc.log.PPP_station <- c(scale(log(bioactivity.60s$PPP_station)))
bioactivity.60s$sc.sqrt.Peak_Popul <- c(scale(sqrt(bioactivity.60s$Peak_Popul)))
bioactivity.60s$sc.sqrt.TRI_Mean <- c(scale(sqrt(bioactivity.60s$TRI_Mean)))
bioactivity.60s$sc.sqrt.DistancetoSea <- scale(sqrt(bioactivity.60s$DistancetoSea))

#Pen or notPen
Pen <- subset(bioactivity.60s, bioactivity.60s$Penornot == 1)
Not_Pen <- subset(bioactivity.60s, bioactivity.60s$Penornot == 0)

#subset1: random zeros and true presence;
#subset2: structural zero
#subset3: true presence
#subset4: random zeros
subset1 <- subset(bioactivity.60s, bioactivity.60s$Categoryof0 == 1 | bioactivity.60s$Categoryof0 == 2)
subset2 <- subset(bioactivity.60s, bioactivity.60s$Categoryof0 == 3)
subset3 <- subset(bioactivity.60s, bioactivity.60s$Categoryof0 == 2)
subset4 <- subset(bioactivity.60s, bioactivity.60s$Categoryof0 == 1)
# Mapping our data
bioactivity.60s.forSAC <- bioactivity.60s

names(bioactivity.60s.forSAC)
##  [1] "OID_"                           "OID1"                          
##  [3] "ID"                             "Longtitude_WGS84"              
##  [5] "Latitude_WGS84"                 "POINT_X_SSP"                   
##  [7] "POINT_Y_SSP"                    "Windspeed"                     
##  [9] "Temp"                           "Precip"                        
## [11] "bioact_PA"                      "Bioactivititycount"            
## [13] "Nonbioact_PA"                   "Nonbioactivitycount"           
## [15] "Categoryof0"                    "Countlandscapetype"            
## [17] "DEM_mean"                       "SlopeMeanpercent"              
## [19] "sloperecl"                      "Edgedensitity_mperkm2"         
## [21] "sum_Area_km2"                   "IcefreePolygon_Count"          
## [23] "IcefreepolygonMeanSize_km2"     "TRI_Mean"                      
## [25] "ClaimCountry_Count"             "Country_1"                     
## [27] "Country_2"                      "Country_3"                     
## [29] "GNI_Claim"                      "PPP_Claim"                     
## [31] "Feb_Seaice_median_km"           "Sept_Seaice_median_km"         
## [33] "Mainshippiingzone"              "Shiptrafficintensity"          
## [35] "Penornot"                       "Travelspeedkmhour"             
## [37] "Dist_Claimline_km"              "Dist_Claim_recl"               
## [39] "Dist_air_km"                    "Dist_air_recl"                 
## [41] "Dis_traverseskm"                "Dist_travese_recl"             
## [43] "Dist_port_km"                   "Dist_port_recl"                
## [45] "Dist_station_km"                "Dist_station_recl"             
## [47] "GNI_station"                    "PPP_station"                   
## [49] "Record_ID_"                     "English_Na"                    
## [51] "Official_N"                     "Operator_1"                    
## [53] "Operator_2"                     "Type"                          
## [55] "Seasonalit"                     "Status"                        
## [57] "Year_Estab"                     "Antarctic"                     
## [59] "Latitude_stationWGS84"          "Longitude_stationWGS84"        
## [61] "Peak_Popul"                     "Landtrans"                     
## [63] "Seatrans"                       "Airstrap"                      
## [65] "Flights"                        "Ships"                         
## [67] "Helipad"                        "ikbioactf1under0"              
## [69] "ikbioactf2under0"               "DistancetoSea"                 
## [71] "Peak_Popul_recl"                "sc.Windspeed"                  
## [73] "sc.Temp"                        "sc.logPrecip"                  
## [75] "sc.Lon"                         "sc.Lat"                        
## [77] "sc.log1p.Nonbioactcount"        "sc.DEM.100"                    
## [79] "sc.SlopeMeanpercent"            "sc.sqrt.Edgedensity"           
## [81] "sc.log1p.sumArea"               "sc.log1p.IcefreePolygon_Count" 
## [83] "sc.sqrt.IcefreepolygonMeanSize" "sc.log.GNI_Claim"              
## [85] "sc.log.PPP_Claim"               "sc.log1p.Feb_Seaice_median_km" 
## [87] "sc.log1p.Sept_Seaice_median_km" "sc.log.Travelspeedkmhour"      
## [89] "sc.sqrt.Dist_Claimline_km"      "sc.sqrt.Dist_air_km"           
## [91] "sc.sqrt.Dist_port_km"           "sc.sqrt.Dis_traverseskm"       
## [93] "sc.sqrt.Dist_station_km"        "sc.log.GNI_station"            
## [95] "sc.log.PPP_station"             "sc.sqrt.Peak_Popul"            
## [97] "sc.sqrt.TRI_Mean"               "sc.sqrt.DistancetoSea"
coordinates(bioactivity.60s.forSAC) = ~ POINT_X_SSP + POINT_Y_SSP

crs(bioactivity.60s.forSAC) <- CRS("+proj=stere +lat_0=-90 +lon_0=0 +k=1 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs +type=crs")
bioactivity.60s.forSAC <- st_as_sf(bioactivity.60s.forSAC)


Antarctica <- st_transform(Antarctica, crs=crs(bioactivity.60s.forSAC))

Visualize data

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(bioactivity.60s.forSAC) +
  geom_sf(aes(color=Windspeed), size = 0.4)+
  labs(color = "Wind speed (km/h)")

ggplot(bioactivity.60s, aes(x = sc.Windspeed)) +
  geom_histogram(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = "Scaled wind speed")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(bioactivity.60s.forSAC) +
  geom_sf(aes(color=Temp), size = 0.4)+
  scale_color_gradient(low="blue", high="orange")+
  labs(color = "Temperature (Celsius)")

ggplot(bioactivity.60s, aes(x = sc.Temp)) +
  geom_histogram(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = "Scaled Temperture")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(bioactivity.60s, aes(x = Precip)) +
  geom_histogram(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = "Precip (?)")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(bioactivity.60s.forSAC) +
  geom_sf(aes(color=Precip), size = 0.4)+
  scale_color_gradient(low="grey", high="green")+
  labs(color = "Precipitation (?)")

ggplot(bioactivity.60s, aes(x = sc.logPrecip)) +
  geom_histogram(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = "Scaled Precipitation")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(bioactivity.60s, aes(x = Bioactivititycount)) +
  geom_histogram(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = "Bioactivitity counts")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(bioactivity.60s, aes(x = Nonbioactivitycount)) +
  geom_histogram(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = "Non-biodiversity related activity counts")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(bioactivity.60s.forSAC) +
  geom_sf(aes(color=Nonbioactivitycount), size = 0.4)+
  scale_color_gradient(low="grey", high="red")+
  labs(color = "Non-biodiversity related activity counts")

ggplot(bioactivity.60s, aes(x = sc.log1p.Nonbioactcount)) +
  geom_histogram(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = "Scaled Non-biodiversity related activity counts")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(bioactivity.60s, aes(x = Countlandscapetype)) +
  geom_bar(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = "Landscape types")

ggplot(bioactivity.60s.forSAC) +
  geom_sf(aes(color=Countlandscapetype), size = 0.4)+
  labs(color = "Landscape types")

ggplot(bioactivity.60s, aes(x = DEM_mean)) +
  geom_histogram(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = "DEM (m)")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(bioactivity.60s.forSAC) +
  geom_sf(aes(color=DEM_mean), size = 0.4)+
  scale_color_gradient(low="black", high="grey")+
  labs(color = "DEM (m)")

ggplot(bioactivity.60s, aes(x = sc.DEM.100)) +
  geom_histogram(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = "Scaled DEM")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(bioactivity.60s, aes(x = SlopeMeanpercent)) +
  geom_histogram(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = "Slope (%)")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(bioactivity.60s.forSAC) +
  geom_sf(aes(color=SlopeMeanpercent), size = 0.4)+
  scale_color_gradient(low="light green", high="red")+
  labs(color = "Slope (%)")

ggplot(bioactivity.60s, aes(x = sc.SlopeMeanpercent)) +
  geom_histogram(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = "Scaled Slope (%)")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(bioactivity.60s, aes(x = sloperecl)) +
  geom_bar(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = "Slope (reclassified)")

ggplot(bioactivity.60s.forSAC) +
  geom_sf(aes(color=sloperecl), size = 0.4)+
  labs(color = "Slope (reclassified)")

ggplot(bioactivity.60s, aes(x = Edgedensitity_mperkm2)) +
  geom_histogram(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = expression(paste("Edge density ", "(", m/Km^{2},")")))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(bioactivity.60s.forSAC) +
  geom_sf(aes(color=Edgedensitity_mperkm2), size = 0.4)+
  scale_color_gradient(low="light blue", high="black")+
  labs(color = expression(paste("Edge density ", "(", m/Km^{2},")")))

ggplot(bioactivity.60s, aes(x = sc.sqrt.Edgedensity)) +
  geom_histogram(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = "Scaled Edge Density")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(bioactivity.60s, aes(x = sum_Area_km2)) +
  geom_histogram(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = expression(paste("Area of ice free", " (", Km^{2},")")))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(bioactivity.60s.forSAC) +
  geom_sf(aes(color=sum_Area_km2), size = 0.4)+
  scale_color_gradient(low="light blue", high="black")+
  labs(color = expression(paste("Area of ice free", " (", Km^{2},")")))

ggplot(bioactivity.60s, aes(x = sc.log1p.sumArea)) +
  geom_histogram(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = "Scaled Area (Ice free)")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(bioactivity.60s, aes(x = IcefreePolygon_Count)) +
  geom_histogram(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = "Number of ice free patch")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(bioactivity.60s.forSAC) +
  geom_sf(aes(color=IcefreePolygon_Count), size = 0.4)+
  scale_color_gradient(low="light blue", high="black")+
  labs(color = "Number of ice free patch")

ggplot(bioactivity.60s, aes(x = sc.log1p.IcefreePolygon_Count)) +
  geom_histogram(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = "Scaled count of ice free patches")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(bioactivity.60s, aes(x = IcefreepolygonMeanSize_km2)) +
  geom_histogram(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = expression(paste("Mean size of ice free patch", " (", Km^{2},")")))
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(bioactivity.60s.forSAC) +
  geom_sf(aes(color=IcefreepolygonMeanSize_km2), size = 0.4)+
  scale_color_gradient(low="light blue", high="black")+
  labs(color = expression(paste("Mean size of ice free patch", " (", Km^{2},")")))

ggplot(bioactivity.60s, aes(x = sc.sqrt.IcefreepolygonMeanSize)) +
  geom_histogram(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = "Scaled mean size of ice free patches")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(bioactivity.60s, aes(x = TRI_Mean)) +
  geom_histogram(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = "Topographic ruggedness index")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(bioactivity.60s.forSAC) +
  geom_sf(aes(color=TRI_Mean), size = 0.4)+
  scale_color_gradient(low="blue", high="red")+
  labs(color = "Topographic ruggedness index")

ggplot(bioactivity.60s, aes(x = sc.sqrt.TRI_Mean)) +
  geom_histogram(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = "Scaled topographic ruggedness index")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(bioactivity.60s, aes(x = ClaimCountry_Count)) +
  geom_bar(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = "Number of Claiming Country")

ggplot(bioactivity.60s.forSAC) +
  geom_sf(aes(color=ClaimCountry_Count), size = 0.4)+
  labs(color = "Number of Claiming Country")

ggplot(bioactivity.60s, aes(x = GNI_Claim)) +
  geom_histogram(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = "GNI of the claiming country")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(bioactivity.60s.forSAC) +
  geom_sf(aes(color=GNI_Claim), size = 0.4)+
  labs(color = "GNI of the claiming country")

ggplot(bioactivity.60s, aes(x = sc.log.GNI_Claim)) +
  geom_histogram(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = "Sclaed GNI of the claiming country")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(bioactivity.60s, aes(x = PPP_Claim)) +
  geom_histogram(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = "PPP of the claiming country")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(bioactivity.60s.forSAC) +
  geom_sf(aes(color=PPP_Claim), size = 0.4)+
  labs(color = "PPP of the claiming country")

ggplot(bioactivity.60s, aes(x = sc.log.PPP_Claim)) +
  geom_histogram(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = "Scaled PPP of the claiming country")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(bioactivity.60s, aes(x = Feb_Seaice_median_km)) +
  geom_histogram(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = "Extent of sea ice in Feb (Km)")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(bioactivity.60s.forSAC) +
  geom_sf(aes(color=Feb_Seaice_median_km), size = 0.4)+
  labs(color = "Extent of sea ice in Feb (Km)")

ggplot(bioactivity.60s, aes(x = sc.log1p.Feb_Seaice_median_km)) +
  geom_histogram(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = "Sclaed extent of sea ice in Fed")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(bioactivity.60s, aes(x = Sept_Seaice_median_km)) +
  geom_histogram(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = "Extent of sea ice in Sept (Km)")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(bioactivity.60s.forSAC) +
  geom_sf(aes(color=Sept_Seaice_median_km), size = 0.4)+
  labs(color = "Extent of sea ice in Sept (Km)")

ggplot(bioactivity.60s, aes(x = sc.log1p.Sept_Seaice_median_km)) +
  geom_histogram(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = "Sclaed extent of sea ice in Sept")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(bioactivity.60s, aes(x = Mainshippiingzone)) +
  geom_bar(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = "Mainshippiing zone")

ggplot(bioactivity.60s.forSAC) +
  geom_sf(aes(color=Mainshippiingzone), size = 0.4)+
  labs(color = "Mainshippiing zone")

ggplot(bioactivity.60s, aes(x = Shiptrafficintensity)) +
  geom_bar(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = "Ship traffic intensity")

ggplot(bioactivity.60s.forSAC) +
  geom_sf(aes(color=Shiptrafficintensity), size = 0.4)+
  labs(color = "Ship traffic intensity")

ggplot(bioactivity.60s, aes(x = Penornot)) +
  geom_bar(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = "Penornot")

ggplot(bioactivity.60s.forSAC) +
  geom_sf(aes(color=Penornot), size = 0.4)+
  labs(color = "Pen or not")

ggplot(bioactivity.60s, aes(x = Travelspeedkmhour)) +
  geom_histogram(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = "Travel speed (Km/hour)")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(bioactivity.60s.forSAC) +
  geom_sf(aes(color=Travelspeedkmhour), size = 0.4)+
  labs(color = "Travel speed (Km/hour)")

ggplot(bioactivity.60s, aes(x = sc.log.Travelspeedkmhour)) +
  geom_histogram(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = "Scled travel speed")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(bioactivity.60s, aes(x = Dist_Claimline_km)) +
  geom_histogram(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = "Distance to claiming line (Km)")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(bioactivity.60s.forSAC) +
  geom_sf(aes(color=Dist_Claimline_km), size = 0.4)+
  labs(color = "Distance to claiming line (Km)")

ggplot(bioactivity.60s, aes(x = Dist_Claim_recl)) +
  geom_bar(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = "Distance to claiming line (reclassfied)")

ggplot(bioactivity.60s.forSAC) +
  geom_sf(aes(color=Dist_Claim_recl), size = 0.4)+
  labs(color = "Distance to claiming line (reclassifed)")

ggplot(bioactivity.60s, aes(x = Dist_air_km)) +
  geom_histogram(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = "Distance to airport (Km)")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(bioactivity.60s.forSAC) +
  geom_sf(aes(color=Dist_air_km), size = 0.4)+
  labs(color = "Distance to airport (Km)")

ggplot(bioactivity.60s, aes(x = Dist_air_recl)) +
  geom_bar(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = "Distance to airport (reclassified)")

ggplot(bioactivity.60s.forSAC) +
  geom_sf(aes(color= Dist_air_recl), size = 0.4)+
  labs(color = "Distance to airport (reclassified)")

ggplot(bioactivity.60s, aes(x = Dis_traverseskm)) +
  geom_histogram(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = "Distance to traveses (Km)")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(bioactivity.60s.forSAC) +
  geom_sf(aes(color= Dis_traverseskm), size = 0.4)+
  labs(color = "Distance to traveses (Km)")

ggplot(bioactivity.60s, aes(x = Dist_travese_recl)) +
  geom_bar(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = "Distance to traveses (reclassified)")

ggplot(bioactivity.60s.forSAC) +
  geom_sf(aes(color= Dist_travese_recl), size = 0.4)+
  labs(color = "Distance to traveses (reclassified)")

ggplot(bioactivity.60s, aes(x = Dist_port_km)) +
  geom_histogram(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = "Distance to port (Km)")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(bioactivity.60s.forSAC) +
  geom_sf(aes(color= Dist_port_km), size = 0.4)+
  labs(color = "Distance to port (Km)")

ggplot(bioactivity.60s, aes(x = Dist_port_recl)) +
  geom_bar(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = "Distance to port (reclassified)")

ggplot(bioactivity.60s.forSAC) +
  geom_sf(aes(color=Dist_port_recl), size = 0.4)+
  labs(color = "Distance to port (reclassified)")

ggplot(bioactivity.60s, aes(x = Dist_station_km)) +
  geom_histogram(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = "Distance to station (Km)")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(bioactivity.60s.forSAC) +
  geom_sf(aes(color=Dist_station_km), size = 0.4)+
  labs(color = "Distance to station (km)")

ggplot(bioactivity.60s, aes(x = Dist_station_recl)) +
  geom_bar(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = "Distance to station (reclassified)")

ggplot(bioactivity.60s.forSAC) +
  geom_sf(aes(color=Dist_station_recl), size = 0.4)+
  labs(color = "Distance to station (reclassified)")

ggplot(bioactivity.60s, aes(x = Peak_Popul)) +
  geom_bar(fill = "white", colour = "black")+
  xlim(c(0,250))+
  ggtitle("Histogram")+
  labs(y= "Count", x = "Peak population of the closest station")
## Warning: Removed 2505 rows containing non-finite values (`stat_count()`).
## Warning: Removed 1 rows containing missing values (`geom_bar()`).

ggplot(bioactivity.60s.forSAC) +
  geom_sf(aes(color=Peak_Popul), size = 0.4)+
  labs(color = "Peak population of the closest station")

ggplot(bioactivity.60s, aes(x = Peak_Popul_recl)) +
  geom_bar(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = "Peak population of the closest station (reclassified)")

ggplot(bioactivity.60s.forSAC) +
  geom_sf(aes(color=Peak_Popul_recl), size = 0.4)+
  labs(color = "Peak population of the closest station (reclassified)")

ggplot(bioactivity.60s, aes(x = DistancetoSea)) +
  geom_histogram(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = "Distance to sea (Km)")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(bioactivity.60s.forSAC) +
  geom_sf(aes(color= DistancetoSea), size = 0.4)+
  labs(color = "Distance to sea (Km)")

ggplot(bioactivity.60s, aes(x =sc.sqrt.DistancetoSea)) +
  geom_histogram(fill = "white", colour = "black")+
  ggtitle("Histogram")+
  labs(y= "Count", x = "Scaled distance to sea")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

correlation test of variables

str(bioactivity.60s)
## 'data.frame':    22880 obs. of  98 variables:
##  $ OID_                          : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ OID1                          : logi  NA NA NA NA NA NA ...
##  $ ID                            : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ Longtitude_WGS84              : num  162 162 163 163 163 ...
##  $ Latitude_WGS84                : num  -66.3 -66.3 -66.5 -66.5 -66.5 ...
##  $ POINT_X_SSP                   : num  789366 794366 769366 764366 769366 ...
##  $ POINT_Y_SSP                   : num  -2488784 -2488784 -2473784 -2468784 -2468784 ...
##  $ Windspeed                     : num  7.82 7.85 7.54 7.55 7.53 ...
##  $ Temp                          : num  -9.3 -9.38 -9.29 -9.34 -9.38 ...
##  $ Precip                        : num  1081 1109 858 833 842 ...
##  $ bioact_PA                     : num  0 0 0 0 0 0 0 0 1 0 ...
##  $ Bioactivititycount            : int  0 0 0 0 0 0 0 0 1 0 ...
##  $ Nonbioact_PA                  : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 2 1 1 1 ...
##  $ Nonbioactivitycount           : int  0 0 0 0 0 0 2 0 0 0 ...
##  $ Categoryof0                   : Factor w/ 3 levels "1","2","3": 3 3 3 3 3 3 1 3 2 3 ...
##  $ Countlandscapetype            : Factor w/ 5 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ DEM_mean                      : num  151 597 -47 -42 -45 -48 -37 -46 -48 65 ...
##  $ SlopeMeanpercent              : num  18 29 0 1 1 0 3 1 0 17 ...
##  $ sloperecl                     : Factor w/ 6 levels "1","2","3","4",..: 4 4 1 1 1 1 1 1 1 4 ...
##  $ Edgedensitity_mperkm2         : num  0.0726 0.0766 0.0951 0.1041 0.1345 ...
##  $ sum_Area_km2                  : num  1.47 0.36 1.564 0.139 0.942 ...
##  $ IcefreePolygon_Count          : int  1 2 1 1 2 1 1 1 1 1 ...
##  $ IcefreepolygonMeanSize_km2    : num  1.47 0.18 1.564 0.139 0.471 ...
##  $ TRI_Mean                      : num  48.368 66.632 0.317 3.452 1.964 ...
##  $ ClaimCountry_Count            : Factor w/ 4 levels "0","1","2","3": 2 2 2 2 2 2 2 2 2 2 ...
##  $ Country_1                     : chr  "New_Zealand" "New_Zealand" "New_Zealand" "New_Zealand" ...
##  $ Country_2                     : chr  "" "" "" "" ...
##  $ Country_3                     : chr  "" "" "" "" ...
##  $ GNI_Claim                     : num  1.1e+11 1.1e+11 1.1e+11 1.1e+11 1.1e+11 ...
##  $ PPP_Claim                     : num  1.47 1.47 1.47 1.47 1.47 ...
##  $ Feb_Seaice_median_km          : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ Sept_Seaice_median_km         : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ Mainshippiingzone             : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
##  $ Shiptrafficintensity          : Factor w/ 4 levels "0","7","75","150": 1 1 1 1 1 1 1 1 1 1 ...
##  $ Penornot                      : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
##  $ Travelspeedkmhour             : num  14.27 7.93 19.54 19.01 19.18 ...
##  $ Dist_Claimline_km             : num  108 103 122 125 120 ...
##  $ Dist_Claim_recl               : Factor w/ 3 levels "1","2","3": 2 2 2 2 2 2 2 2 3 3 ...
##  $ Dist_air_km                   : num  817 816 810 807 805 ...
##  $ Dist_air_recl                 : Factor w/ 3 levels "1","2","3": 3 3 3 3 3 3 3 3 3 3 ...
##  $ Dis_traverseskm               : num  1008 1003 1017 1019 1015 ...
##  $ Dist_travese_recl             : Factor w/ 3 levels "1","2","3": 3 3 3 3 3 3 3 3 3 3 ...
##  $ Dist_port_km                  : num  151 156 126 120 124 ...
##  $ Dist_port_recl                : Factor w/ 3 levels "1","2","3": 3 3 2 2 2 2 2 2 2 2 ...
##  $ Dist_station_km               : num  382 382 368 363 363 ...
##  $ Dist_station_recl             : Factor w/ 3 levels "1","2","3": 3 3 3 3 3 3 3 3 3 3 ...
##  $ GNI_station                   : num  9.66e+11 9.66e+11 9.66e+11 9.66e+11 9.66e+11 ...
##  $ PPP_station                   : num  11.1 11.1 11.1 11.1 11.1 ...
##  $ Record_ID_                    : int  70 70 70 70 70 70 70 70 70 70 ...
##  $ English_Na                    : chr  "Leningradskaya" "Leningradskaya" "Leningradskaya" "Leningradskaya" ...
##  $ Official_N                    : chr  "Leningradskaya" "Leningradskaya" "Leningradskaya" "Leningradskaya" ...
##  $ Operator_1                    : chr  "Russia" "Russia" "Russia" "Russia" ...
##  $ Operator_2                    : chr  "" "" "" "" ...
##  $ Type                          : chr  "Station" "Station" "Station" "Station" ...
##  $ Seasonalit                    : chr  "Seasonal" "Seasonal" "Seasonal" "Seasonal" ...
##  $ Status                        : chr  "Temporarily Closed" "Temporarily Closed" "Temporarily Closed" "Temporarily Closed" ...
##  $ Year_Estab                    : int  1971 1971 1971 1971 1971 1971 1971 1971 1971 1971 ...
##  $ Antarctic                     : chr  "East Antarctica" "East Antarctica" "East Antarctica" "East Antarctica" ...
##  $ Latitude_stationWGS84         : num  -69.5 -69.5 -69.5 -69.5 -69.5 ...
##  $ Longitude_stationWGS84        : num  159 159 159 159 159 ...
##  $ Peak_Popul                    : int  10 10 10 10 10 10 10 10 10 10 ...
##  $ Landtrans                     : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ Seatrans                      : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ Airstrap                      : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ Flights                       : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ Ships                         : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ Helipad                       : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ ikbioactf1under0              : num  1 0.87 1 1 1 ...
##  $ ikbioactf2under0              : num  0.787 0.787 0.5 0.5 0.5 ...
##  $ DistancetoSea                 : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ Peak_Popul_recl               : Factor w/ 5 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ sc.Windspeed                  : num  0.1589 0.1676 0.0747 0.0757 0.0711 ...
##  $ sc.Temp                       : num  1.28 1.27 1.28 1.27 1.27 ...
##  $ sc.logPrecip                  : num  1.02 1.039 0.848 0.826 0.834 ...
##  $ sc.Lon                        : num  1.24 1.24 1.24 1.24 1.24 ...
##  $ sc.Lat                        : num  1.12 1.13 1.1 1.09 1.09 ...
##  $ sc.log1p.Nonbioactcount       : num  -0.59 -0.59 -0.59 -0.59 -0.59 ...
##  $ sc.DEM.100                    : num  -1.15 -0.55 -1.42 -1.41 -1.41 ...
##  $ sc.SlopeMeanpercent           : num  0.486 1.449 -1.091 -1.003 -1.003 ...
##  $ sc.sqrt.Edgedensity           : num  -0.951 -0.933 -0.855 -0.819 -0.709 ...
##  $ sc.log1p.sumArea              : num  0.552 -0.305 0.605 -0.56 0.206 ...
##  $ sc.log1p.IcefreePolygon_Count : num  -1.045 -0.738 -1.045 -1.045 -0.738 ...
##  $ sc.sqrt.IcefreepolygonMeanSize: num  2.07 0.328 2.154 0.215 0.907 ...
##  $ sc.log.GNI_Claim              : num  -1.37 -1.37 -1.37 -1.37 -1.37 ...
##  $ sc.log.PPP_Claim              : num  -0.916 -0.916 -0.916 -0.916 -0.916 ...
##  $ sc.log1p.Feb_Seaice_median_km : num  -0.651 -0.651 -0.651 -0.651 -0.651 ...
##  $ sc.log1p.Sept_Seaice_median_km: num  -3.03 -3.03 -3.03 -3.03 -3.03 ...
##  $ sc.log.Travelspeedkmhour      : num  2.58 1.88 2.96 2.93 2.94 ...
##  $ sc.sqrt.Dist_Claimline_km     : num  -0.611 -0.64 -0.525 -0.506 -0.534 ...
##  $ sc.sqrt.Dist_air_km           : num  2.71 2.71 2.69 2.68 2.67 ...
##  $ sc.sqrt.Dist_port_km          : num  -0.364 -0.343 -0.492 -0.529 -0.506 ...
##  $ sc.sqrt.Dis_traverseskm       : num  0.231 0.226 0.242 0.244 0.239 ...
##  $ sc.sqrt.Dist_station_km       : num  0.637 0.637 0.582 0.564 0.562 ...
##  $ sc.log.GNI_station            : num  -0.147 -0.147 -0.147 -0.147 -0.147 ...
##  $ sc.log.PPP_station            : num  1.23 1.23 1.23 1.23 1.23 ...
##  $ sc.sqrt.Peak_Popul            : num  -0.642 -0.642 -0.642 -0.642 -0.642 ...
##  $ sc.sqrt.TRI_Mean              : num  0.808 1.294 -1.766 -1.244 -1.428 ...
##  $ sc.sqrt.DistancetoSea         : num [1:22880, 1] -1.3 -1.3 -1.3 -1.3 -1.3 ...
##   ..- attr(*, "scaled:center")= num 363
##   ..- attr(*, "scaled:scale")= num 279

Deal with multicollinearity

### correlation test
M = cor(bioactivity.60s[,c("sc.Windspeed", "sc.Temp", "sc.logPrecip","sc.Lon",
                           "sc.Lat", "sc.log1p.Nonbioactcount", "sc.DEM.100", 
                           "sc.SlopeMeanpercent","sc.sqrt.TRI_Mean","sc.sqrt.DistancetoSea",
                           "sc.sqrt.Edgedensity", "sc.log1p.sumArea", "sc.log1p.IcefreePolygon_Count",
                           "sc.sqrt.IcefreepolygonMeanSize","sc.log1p.Feb_Seaice_median_km",
                           "sc.log1p.Sept_Seaice_median_km","sc.log.Travelspeedkmhour",
                           "sc.log.GNI_Claim","sc.log.PPP_Claim", "sc.sqrt.Dist_Claimline_km",
                           "sc.sqrt.Dist_air_km", "sc.sqrt.Dist_port_km", "sc.sqrt.Dis_traverseskm",
                           "sc.sqrt.Dist_station_km","sc.log.GNI_station", "sc.log.PPP_station",
                           "sc.sqrt.Peak_Popul")])

# mat : is a matrix of data
# ... : further arguments to pass to the native R cor.test function
cor.mtest <- function(mat, ...) {
  mat <- as.matrix(mat)
  n <- ncol(mat)
  p.mat<- matrix(NA, n, n)
  diag(p.mat) <- 0
  for (i in 1:(n - 1)) {
    for (j in (i + 1):n) {
      tmp <- cor.test(mat[, i], mat[, j], ...)
      p.mat[i, j] <- p.mat[j, i] <- tmp$p.value
    }
  }
  colnames(p.mat) <- rownames(p.mat) <- colnames(mat)
  p.mat
}

# matrix of the p-value of the correlation
p.mat <- cor.mtest(M)
pdf(file="corrplot_vairables.pdf")
corrplot(M, type="upper", order="hclust", 
         p.mat = p.mat, sig.level = 0.05, insig = "blank", method = 'number', number.cex = 0.25, tl.cex=0.5)
dev.off()
## png 
##   2
VIF_test <- glm(bioact_PA ~ sc.Windspeed  +  sc.Temp  +  sc.logPrecip  + sc.Lon  + sc.Lat  +
                            sc.log1p.Nonbioactcount  +  sc.DEM.100  + 
                            sc.SlopeMeanpercent  + sc.sqrt.TRI_Mean  + sc.sqrt.DistancetoSea  +
                            sc.sqrt.Edgedensity  +  sc.log1p.sumArea  +  sc.log1p.IcefreePolygon_Count+
                            sc.sqrt.IcefreepolygonMeanSize  + sc.log1p.Feb_Seaice_median_km  +
                            sc.log1p.Sept_Seaice_median_km  + sc.log.Travelspeedkmhour  +
                            sc.log.GNI_Claim  + sc.log.PPP_Claim  +  sc.sqrt.Dist_Claimline_km  +
                            sc.sqrt.Dist_air_km  +  sc.sqrt.Dist_port_km  +  sc.sqrt.Dis_traverseskm  +
                            sc.sqrt.Dist_station_km  + sc.log.GNI_station  +  
                            sc.log.PPP_station + sc.sqrt.Peak_Popul, data = bioactivity.60s, family = binomial(link = "logit"))

summary(VIF_test)
## 
## Call:
## glm(formula = bioact_PA ~ sc.Windspeed + sc.Temp + sc.logPrecip + 
##     sc.Lon + sc.Lat + sc.log1p.Nonbioactcount + sc.DEM.100 + 
##     sc.SlopeMeanpercent + sc.sqrt.TRI_Mean + sc.sqrt.DistancetoSea + 
##     sc.sqrt.Edgedensity + sc.log1p.sumArea + sc.log1p.IcefreePolygon_Count + 
##     sc.sqrt.IcefreepolygonMeanSize + sc.log1p.Feb_Seaice_median_km + 
##     sc.log1p.Sept_Seaice_median_km + sc.log.Travelspeedkmhour + 
##     sc.log.GNI_Claim + sc.log.PPP_Claim + sc.sqrt.Dist_Claimline_km + 
##     sc.sqrt.Dist_air_km + sc.sqrt.Dist_port_km + sc.sqrt.Dis_traverseskm + 
##     sc.sqrt.Dist_station_km + sc.log.GNI_station + sc.log.PPP_station + 
##     sc.sqrt.Peak_Popul, family = binomial(link = "logit"), data = bioactivity.60s)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.6677  -0.3552  -0.2092  -0.1147   4.0550  
## 
## Coefficients:
##                                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                    -3.41779    0.04683 -72.982  < 2e-16 ***
## sc.Windspeed                    0.07381    0.04340   1.701 0.088969 .  
## sc.Temp                         0.74618    0.11695   6.380 1.77e-10 ***
## sc.logPrecip                   -0.56419    0.06774  -8.328  < 2e-16 ***
## sc.Lon                         -0.37267    0.08117  -4.591 4.40e-06 ***
## sc.Lat                          0.16657    0.12840   1.297 0.194562    
## sc.log1p.Nonbioactcount         0.63711    0.02582  24.679  < 2e-16 ***
## sc.DEM.100                     -0.33688    0.07378  -4.566 4.97e-06 ***
## sc.SlopeMeanpercent            -0.50700    0.10427  -4.862 1.16e-06 ***
## sc.sqrt.TRI_Mean                0.44241    0.10290   4.299 1.71e-05 ***
## sc.sqrt.DistancetoSea          -0.69931    0.09580  -7.300 2.89e-13 ***
## sc.sqrt.Edgedensity            -0.26273    0.05464  -4.809 1.52e-06 ***
## sc.log1p.sumArea                0.35206    0.06527   5.394 6.90e-08 ***
## sc.log1p.IcefreePolygon_Count   0.37936    0.04784   7.930 2.20e-15 ***
## sc.sqrt.IcefreepolygonMeanSize  0.03251    0.04371   0.744 0.456932    
## sc.log1p.Feb_Seaice_median_km   0.13281    0.04436   2.994 0.002755 ** 
## sc.log1p.Sept_Seaice_median_km -0.01520    0.03841  -0.396 0.692229    
## sc.log.Travelspeedkmhour        0.04805    0.03708   1.296 0.195038    
## sc.log.GNI_Claim               -0.10379    0.05777  -1.797 0.072415 .  
## sc.log.PPP_Claim               -0.05471    0.07792  -0.702 0.482611    
## sc.sqrt.Dist_Claimline_km       0.06803    0.04532   1.501 0.133346    
## sc.sqrt.Dist_air_km            -0.41699    0.04774  -8.735  < 2e-16 ***
## sc.sqrt.Dist_port_km            0.04842    0.08054   0.601 0.547708    
## sc.sqrt.Dis_traverseskm        -0.51492    0.08316  -6.192 5.94e-10 ***
## sc.sqrt.Dist_station_km         0.05281    0.06469   0.816 0.414284    
## sc.log.GNI_station              0.10581    0.04948   2.138 0.032487 *  
## sc.log.PPP_station              0.09273    0.02666   3.478 0.000504 ***
## sc.sqrt.Peak_Popul             -0.33065    0.05621  -5.882 4.05e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 13184.7  on 22879  degrees of freedom
## Residual deviance:  9198.2  on 22852  degrees of freedom
## AIC: 9254.2
## 
## Number of Fisher Scoring iterations: 7
vif(VIF_test)
##                   sc.Windspeed                        sc.Temp 
##                       1.869023                      15.689961 
##                   sc.logPrecip                         sc.Lon 
##                       5.740865                       6.970826 
##                         sc.Lat        sc.log1p.Nonbioactcount 
##                      17.101085                       1.319437 
##                     sc.DEM.100            sc.SlopeMeanpercent 
##                       4.077732                      11.954405 
##               sc.sqrt.TRI_Mean          sc.sqrt.DistancetoSea 
##                      14.075598                       7.683720 
##            sc.sqrt.Edgedensity               sc.log1p.sumArea 
##                       4.645284                       7.462924 
##  sc.log1p.IcefreePolygon_Count sc.sqrt.IcefreepolygonMeanSize 
##                       2.688768                       3.304032 
##  sc.log1p.Feb_Seaice_median_km sc.log1p.Sept_Seaice_median_km 
##                       1.986716                       3.456269 
##       sc.log.Travelspeedkmhour               sc.log.GNI_Claim 
##                       3.170756                       3.719829 
##               sc.log.PPP_Claim      sc.sqrt.Dist_Claimline_km 
##                       7.967706                       2.539591 
##            sc.sqrt.Dist_air_km           sc.sqrt.Dist_port_km 
##                       3.101619                       7.345968 
##        sc.sqrt.Dis_traverseskm        sc.sqrt.Dist_station_km 
##                      11.013952                       5.300229 
##             sc.log.GNI_station             sc.log.PPP_station 
##                       2.696944                       1.216097 
##             sc.sqrt.Peak_Popul 
##                       3.410411

From the VIF, we can see

Group 1 sc.SlopeMeanpercent, sc.sqrt.TRI_Mean. Group 2. sc.sqrt.Edgedensity, sc.log1p.sumArea, sc.log1p.IcefreePolygon_Count, sc.sqrt.IcefreepolygonMeanSize Group 3. sc.Lat, sc.Temp, sc.logPrecip,

Combing with the corrplot, I decided to delete “sc.sqrt.TRI_Mean” and keep “sc.SlopeMeanpercent”

VIF_test_1 <- glm(bioact_PA ~ sc.Windspeed  +  sc.Temp  +  sc.logPrecip  + sc.Lon  + sc.Lat  +
                            sc.log1p.Nonbioactcount  +  sc.DEM.100  + 
                            sc.SlopeMeanpercent  + sc.sqrt.DistancetoSea  +
                            sc.sqrt.Edgedensity  +  sc.log1p.sumArea  +  sc.log1p.IcefreePolygon_Count+
                            sc.sqrt.IcefreepolygonMeanSize  + sc.log1p.Feb_Seaice_median_km  +
                            sc.log1p.Sept_Seaice_median_km  + sc.log.Travelspeedkmhour  +
                            sc.log.GNI_Claim  + sc.log.PPP_Claim  +  sc.sqrt.Dist_Claimline_km  +
                            sc.sqrt.Dist_air_km  +  sc.sqrt.Dist_port_km  +  sc.sqrt.Dis_traverseskm  +
                            sc.sqrt.Dist_station_km  + sc.log.GNI_station  +  sc.log.PPP_station +                                            sc.sqrt.Peak_Popul, data = bioactivity.60s, family = binomial(link = "logit"))

summary(VIF_test_1)
## 
## Call:
## glm(formula = bioact_PA ~ sc.Windspeed + sc.Temp + sc.logPrecip + 
##     sc.Lon + sc.Lat + sc.log1p.Nonbioactcount + sc.DEM.100 + 
##     sc.SlopeMeanpercent + sc.sqrt.DistancetoSea + sc.sqrt.Edgedensity + 
##     sc.log1p.sumArea + sc.log1p.IcefreePolygon_Count + sc.sqrt.IcefreepolygonMeanSize + 
##     sc.log1p.Feb_Seaice_median_km + sc.log1p.Sept_Seaice_median_km + 
##     sc.log.Travelspeedkmhour + sc.log.GNI_Claim + sc.log.PPP_Claim + 
##     sc.sqrt.Dist_Claimline_km + sc.sqrt.Dist_air_km + sc.sqrt.Dist_port_km + 
##     sc.sqrt.Dis_traverseskm + sc.sqrt.Dist_station_km + sc.log.GNI_station + 
##     sc.log.PPP_station + sc.sqrt.Peak_Popul, family = binomial(link = "logit"), 
##     data = bioactivity.60s)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.6738  -0.3563  -0.2091  -0.1145   4.0927  
## 
## Coefficients:
##                                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                    -3.42094    0.04696 -72.845  < 2e-16 ***
## sc.Windspeed                    0.06741    0.04333   1.556 0.119717    
## sc.Temp                         0.69315    0.11591   5.980 2.23e-09 ***
## sc.logPrecip                   -0.53020    0.06720  -7.890 3.03e-15 ***
## sc.Lon                         -0.37599    0.08124  -4.628 3.69e-06 ***
## sc.Lat                          0.14200    0.12787   1.110 0.266788    
## sc.log1p.Nonbioactcount         0.64000    0.02575  24.853  < 2e-16 ***
## sc.DEM.100                     -0.37295    0.07307  -5.104 3.33e-07 ***
## sc.SlopeMeanpercent            -0.12053    0.04934  -2.443 0.014583 *  
## sc.sqrt.DistancetoSea          -0.70287    0.09573  -7.342 2.10e-13 ***
## sc.sqrt.Edgedensity            -0.27555    0.05443  -5.063 4.14e-07 ***
## sc.log1p.sumArea                0.37888    0.06477   5.850 4.92e-09 ***
## sc.log1p.IcefreePolygon_Count   0.43039    0.04630   9.296  < 2e-16 ***
## sc.sqrt.IcefreepolygonMeanSize  0.04901    0.04335   1.131 0.258225    
## sc.log1p.Feb_Seaice_median_km   0.13159    0.04442   2.963 0.003051 ** 
## sc.log1p.Sept_Seaice_median_km -0.01739    0.03837  -0.453 0.650305    
## sc.log.Travelspeedkmhour       -0.00374    0.03511  -0.107 0.915161    
## sc.log.GNI_Claim               -0.11088    0.05771  -1.921 0.054686 .  
## sc.log.PPP_Claim               -0.06134    0.07764  -0.790 0.429501    
## sc.sqrt.Dist_Claimline_km       0.06994    0.04538   1.541 0.123262    
## sc.sqrt.Dist_air_km            -0.41874    0.04761  -8.795  < 2e-16 ***
## sc.sqrt.Dist_port_km            0.04669    0.08035   0.581 0.561200    
## sc.sqrt.Dis_traverseskm        -0.48995    0.08306  -5.899 3.66e-09 ***
## sc.sqrt.Dist_station_km         0.05195    0.06454   0.805 0.420871    
## sc.log.GNI_station              0.09976    0.04938   2.020 0.043361 *  
## sc.log.PPP_station              0.09494    0.02658   3.571 0.000355 ***
## sc.sqrt.Peak_Popul             -0.33899    0.05618  -6.034 1.60e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 13185  on 22879  degrees of freedom
## Residual deviance:  9217  on 22853  degrees of freedom
## AIC: 9271
## 
## Number of Fisher Scoring iterations: 7
vif(VIF_test_1)
##                   sc.Windspeed                        sc.Temp 
##                       1.855741                      15.491499 
##                   sc.logPrecip                         sc.Lon 
##                       5.640990                       6.978735 
##                         sc.Lat        sc.log1p.Nonbioactcount 
##                      17.016577                       1.320738 
##                     sc.DEM.100            sc.SlopeMeanpercent 
##                       4.006395                       2.884414 
##          sc.sqrt.DistancetoSea            sc.sqrt.Edgedensity 
##                       7.672212                       4.668789 
##               sc.log1p.sumArea  sc.log1p.IcefreePolygon_Count 
##                       7.407011                       2.557321 
## sc.sqrt.IcefreepolygonMeanSize  sc.log1p.Feb_Seaice_median_km 
##                       3.273668                       1.993267 
## sc.log1p.Sept_Seaice_median_km       sc.log.Travelspeedkmhour 
##                       3.470327                       2.895737 
##               sc.log.GNI_Claim               sc.log.PPP_Claim 
##                       3.712740                       7.940639 
##      sc.sqrt.Dist_Claimline_km            sc.sqrt.Dist_air_km 
##                       2.553885                       3.090237 
##           sc.sqrt.Dist_port_km        sc.sqrt.Dis_traverseskm 
##                       7.334166                      10.997808 
##        sc.sqrt.Dist_station_km             sc.log.GNI_station 
##                       5.301867                       2.687403 
##             sc.log.PPP_station             sc.sqrt.Peak_Popul 
##                       1.214267                       3.390606

Group 2. sc.sqrt.Edgedensity, sc.log1p.sumArea, sc.log1p.IcefreePolygon_Count, sc.sqrt.IcefreepolygonMeanSize I decided to keep sc.log1p.IcefreePolygon_Count, sc.sqrt.IcefreepolygonMeanSize

VIF_test_2 <- glm(bioact_PA ~ sc.Windspeed  +  sc.Temp  +  sc.logPrecip  + sc.Lon  + sc.Lat  +
                            sc.log1p.Nonbioactcount  +  sc.DEM.100  + 
                            sc.SlopeMeanpercent  + sc.sqrt.DistancetoSea  +
                            sc.log1p.IcefreePolygon_Count+ 
                            sc.sqrt.IcefreepolygonMeanSize  + sc.log1p.Feb_Seaice_median_km  +
                            sc.log1p.Sept_Seaice_median_km  + sc.log.Travelspeedkmhour  +
                            sc.log.GNI_Claim  + sc.log.PPP_Claim  +  sc.sqrt.Dist_Claimline_km  +
                            sc.sqrt.Dist_air_km  +  sc.sqrt.Dist_port_km  +  sc.sqrt.Dis_traverseskm  +
                            sc.sqrt.Dist_station_km  + sc.log.GNI_station  +  sc.log.PPP_station +                                          sc.sqrt.Peak_Popul, data = bioactivity.60s, family = binomial(link = "logit"))

summary(VIF_test_2)
## 
## Call:
## glm(formula = bioact_PA ~ sc.Windspeed + sc.Temp + sc.logPrecip + 
##     sc.Lon + sc.Lat + sc.log1p.Nonbioactcount + sc.DEM.100 + 
##     sc.SlopeMeanpercent + sc.sqrt.DistancetoSea + sc.log1p.IcefreePolygon_Count + 
##     sc.sqrt.IcefreepolygonMeanSize + sc.log1p.Feb_Seaice_median_km + 
##     sc.log1p.Sept_Seaice_median_km + sc.log.Travelspeedkmhour + 
##     sc.log.GNI_Claim + sc.log.PPP_Claim + sc.sqrt.Dist_Claimline_km + 
##     sc.sqrt.Dist_air_km + sc.sqrt.Dist_port_km + sc.sqrt.Dis_traverseskm + 
##     sc.sqrt.Dist_station_km + sc.log.GNI_station + sc.log.PPP_station + 
##     sc.sqrt.Peak_Popul, family = binomial(link = "logit"), data = bioactivity.60s)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.8146  -0.3566  -0.2098  -0.1157   4.0962  
## 
## Coefficients:
##                                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                    -3.410342   0.046789 -72.887  < 2e-16 ***
## sc.Windspeed                    0.081062   0.042366   1.913 0.055697 .  
## sc.Temp                         0.636199   0.115255   5.520 3.39e-08 ***
## sc.logPrecip                   -0.563909   0.064136  -8.792  < 2e-16 ***
## sc.Lon                         -0.427171   0.081031  -5.272 1.35e-07 ***
## sc.Lat                          0.219903   0.126771   1.735 0.082803 .  
## sc.log1p.Nonbioactcount         0.659994   0.025319  26.067  < 2e-16 ***
## sc.DEM.100                     -0.424911   0.071942  -5.906 3.50e-09 ***
## sc.SlopeMeanpercent            -0.063545   0.046148  -1.377 0.168517    
## sc.sqrt.DistancetoSea          -0.688864   0.095080  -7.245 4.32e-13 ***
## sc.log1p.IcefreePolygon_Count   0.401800   0.037274  10.780  < 2e-16 ***
## sc.sqrt.IcefreepolygonMeanSize  0.203609   0.032631   6.240 4.39e-10 ***
## sc.log1p.Feb_Seaice_median_km   0.128800   0.044418   2.900 0.003735 ** 
## sc.log1p.Sept_Seaice_median_km -0.007459   0.038245  -0.195 0.845362    
## sc.log.Travelspeedkmhour        0.018255   0.034820   0.524 0.600100    
## sc.log.GNI_Claim               -0.109698   0.057482  -1.908 0.056340 .  
## sc.log.PPP_Claim               -0.074780   0.077387  -0.966 0.333890    
## sc.sqrt.Dist_Claimline_km       0.053961   0.045365   1.189 0.234253    
## sc.sqrt.Dist_air_km            -0.401303   0.047331  -8.479  < 2e-16 ***
## sc.sqrt.Dist_port_km            0.056637   0.080359   0.705 0.480937    
## sc.sqrt.Dis_traverseskm        -0.521172   0.082850  -6.291 3.16e-10 ***
## sc.sqrt.Dist_station_km         0.067723   0.064271   1.054 0.292016    
## sc.log.GNI_station              0.082937   0.049249   1.684 0.092176 .  
## sc.log.PPP_station              0.093942   0.026506   3.544 0.000394 ***
## sc.sqrt.Peak_Popul             -0.295146   0.054592  -5.406 6.43e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 13184.7  on 22879  degrees of freedom
## Residual deviance:  9254.5  on 22855  degrees of freedom
## AIC: 9304.5
## 
## Number of Fisher Scoring iterations: 7
vif(VIF_test_2)
##                   sc.Windspeed                        sc.Temp 
##                       1.784341                      15.384325 
##                   sc.logPrecip                         sc.Lon 
##                       5.155983                       7.001984 
##                         sc.Lat        sc.log1p.Nonbioactcount 
##                      16.788551                       1.282594 
##                     sc.DEM.100            sc.SlopeMeanpercent 
##                       3.886623                       2.610004 
##          sc.sqrt.DistancetoSea  sc.log1p.IcefreePolygon_Count 
##                       7.575980                       1.677038 
## sc.sqrt.IcefreepolygonMeanSize  sc.log1p.Feb_Seaice_median_km 
##                       1.838560                       1.994886 
## sc.log1p.Sept_Seaice_median_km       sc.log.Travelspeedkmhour 
##                       3.471388                       2.861025 
##               sc.log.GNI_Claim               sc.log.PPP_Claim 
##                       3.718894                       7.950074 
##      sc.sqrt.Dist_Claimline_km            sc.sqrt.Dist_air_km 
##                       2.560744                       3.065347 
##           sc.sqrt.Dist_port_km        sc.sqrt.Dis_traverseskm 
##                       7.350097                      10.994678 
##        sc.sqrt.Dist_station_km             sc.log.GNI_station 
##                       5.265342                       2.687516 
##             sc.log.PPP_station             sc.sqrt.Peak_Popul 
##                       1.212616                       3.277778

Group 3. I decided to move sc.Lat, because this is coorelated with many other factors such as distance to the sea/port/north pole

VIF_test_3 <- glm(bioact_PA ~ sc.Windspeed  +  sc.Temp  +  sc.logPrecip  + sc.Lon  +
                            sc.log1p.Nonbioactcount  +  sc.DEM.100  + 
                            sc.SlopeMeanpercent  + sc.sqrt.DistancetoSea  +
                            sc.log1p.IcefreePolygon_Count+ 
                            sc.sqrt.IcefreepolygonMeanSize  + sc.log1p.Feb_Seaice_median_km  +
                            sc.log1p.Sept_Seaice_median_km  + sc.log.Travelspeedkmhour  +
                            sc.log.GNI_Claim  + sc.log.PPP_Claim  +  sc.sqrt.Dist_Claimline_km  +
                            sc.sqrt.Dist_air_km  +  sc.sqrt.Dist_port_km  +  sc.sqrt.Dis_traverseskm  +
                            sc.sqrt.Dist_station_km  + sc.log.GNI_station  +  sc.log.PPP_station +                                            sc.sqrt.Peak_Popul, data = bioactivity.60s, family = binomial(link = "logit"))

summary(VIF_test_3)
## 
## Call:
## glm(formula = bioact_PA ~ sc.Windspeed + sc.Temp + sc.logPrecip + 
##     sc.Lon + sc.log1p.Nonbioactcount + sc.DEM.100 + sc.SlopeMeanpercent + 
##     sc.sqrt.DistancetoSea + sc.log1p.IcefreePolygon_Count + sc.sqrt.IcefreepolygonMeanSize + 
##     sc.log1p.Feb_Seaice_median_km + sc.log1p.Sept_Seaice_median_km + 
##     sc.log.Travelspeedkmhour + sc.log.GNI_Claim + sc.log.PPP_Claim + 
##     sc.sqrt.Dist_Claimline_km + sc.sqrt.Dist_air_km + sc.sqrt.Dist_port_km + 
##     sc.sqrt.Dis_traverseskm + sc.sqrt.Dist_station_km + sc.log.GNI_station + 
##     sc.log.PPP_station + sc.sqrt.Peak_Popul, family = binomial(link = "logit"), 
##     data = bioactivity.60s)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.8194  -0.3572  -0.2097  -0.1159   4.0671  
## 
## Coefficients:
##                                Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                    -3.40239    0.04631 -73.477  < 2e-16 ***
## sc.Windspeed                    0.10297    0.04046   2.545 0.010925 *  
## sc.Temp                         0.70142    0.10888   6.442 1.18e-10 ***
## sc.logPrecip                   -0.55696    0.06389  -8.718  < 2e-16 ***
## sc.Lon                         -0.37540    0.07471  -5.025 5.04e-07 ***
## sc.log1p.Nonbioactcount         0.65714    0.02524  26.038  < 2e-16 ***
## sc.DEM.100                     -0.39431    0.06962  -5.663 1.48e-08 ***
## sc.SlopeMeanpercent            -0.07543    0.04571  -1.650 0.098912 .  
## sc.sqrt.DistancetoSea          -0.73846    0.09008  -8.198 2.45e-16 ***
## sc.log1p.IcefreePolygon_Count   0.40303    0.03725  10.819  < 2e-16 ***
## sc.sqrt.IcefreepolygonMeanSize  0.20305    0.03248   6.252 4.04e-10 ***
## sc.log1p.Feb_Seaice_median_km   0.13927    0.04402   3.164 0.001558 ** 
## sc.log1p.Sept_Seaice_median_km -0.04276    0.03242  -1.319 0.187186    
## sc.log.Travelspeedkmhour        0.01006    0.03448   0.292 0.770354    
## sc.log.GNI_Claim               -0.08435    0.05531  -1.525 0.127261    
## sc.log.PPP_Claim               -0.11361    0.07399  -1.536 0.124652    
## sc.sqrt.Dist_Claimline_km       0.09430    0.03914   2.410 0.015973 *  
## sc.sqrt.Dist_air_km            -0.42218    0.04582  -9.215  < 2e-16 ***
## sc.sqrt.Dist_port_km            0.04820    0.07993   0.603 0.546556    
## sc.sqrt.Dis_traverseskm        -0.45156    0.07261  -6.219 5.01e-10 ***
## sc.sqrt.Dist_station_km         0.07228    0.06404   1.129 0.259073    
## sc.log.GNI_station              0.07184    0.04882   1.472 0.141132    
## sc.log.PPP_station              0.09643    0.02651   3.638 0.000275 ***
## sc.sqrt.Peak_Popul             -0.31290    0.05340  -5.859 4.64e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 13184.7  on 22879  degrees of freedom
## Residual deviance:  9257.6  on 22856  degrees of freedom
## AIC: 9305.6
## 
## Number of Fisher Scoring iterations: 7
vif(VIF_test_3)
##                   sc.Windspeed                        sc.Temp 
##                       1.627876                      13.728471 
##                   sc.logPrecip                         sc.Lon 
##                       5.150518                       5.978725 
##        sc.log1p.Nonbioactcount                     sc.DEM.100 
##                       1.276835                       3.638588 
##            sc.SlopeMeanpercent          sc.sqrt.DistancetoSea 
##                       2.555602                       6.859961 
##  sc.log1p.IcefreePolygon_Count sc.sqrt.IcefreepolygonMeanSize 
##                       1.675640                       1.842583 
##  sc.log1p.Feb_Seaice_median_km sc.log1p.Sept_Seaice_median_km 
##                       1.962779                       2.500349 
##       sc.log.Travelspeedkmhour               sc.log.GNI_Claim 
##                       2.804239                       3.456081 
##               sc.log.PPP_Claim      sc.sqrt.Dist_Claimline_km 
##                       7.259886                       1.898248 
##            sc.sqrt.Dist_air_km           sc.sqrt.Dist_port_km 
##                       2.890921                       7.328950 
##        sc.sqrt.Dis_traverseskm        sc.sqrt.Dist_station_km 
##                       8.438584                       5.275240 
##             sc.log.GNI_station             sc.log.PPP_station 
##                       2.648946                       1.210408 
##             sc.sqrt.Peak_Popul 
##                       3.150969

Group 4. I decided to move sc.sqrt.DistancetoSea, because this is correlated with distance to the ports, and I think even some places they are close to sea, they are still very inaccessible.

VIF_test_4 <- glm(bioact_PA ~ sc.Windspeed  +  sc.Temp  +  sc.logPrecip  + sc.Lon  +
                            sc.log1p.Nonbioactcount  +  sc.DEM.100  + 
                            sc.SlopeMeanpercent  +
                            sc.log1p.IcefreePolygon_Count+ 
                            sc.sqrt.IcefreepolygonMeanSize  + sc.log1p.Feb_Seaice_median_km  +
                            sc.log1p.Sept_Seaice_median_km  + sc.log.Travelspeedkmhour  +
                            sc.log.GNI_Claim  + sc.log.PPP_Claim  +  sc.sqrt.Dist_Claimline_km  +
                            sc.sqrt.Dist_air_km  +  sc.sqrt.Dist_port_km  +  sc.sqrt.Dis_traverseskm  +
                            sc.sqrt.Dist_station_km  + sc.log.GNI_station  +  sc.log.PPP_station +                                            sc.sqrt.Peak_Popul, data = bioactivity.60s, family = binomial(link = "logit"))

summary(VIF_test_4)
## 
## Call:
## glm(formula = bioact_PA ~ sc.Windspeed + sc.Temp + sc.logPrecip + 
##     sc.Lon + sc.log1p.Nonbioactcount + sc.DEM.100 + sc.SlopeMeanpercent + 
##     sc.log1p.IcefreePolygon_Count + sc.sqrt.IcefreepolygonMeanSize + 
##     sc.log1p.Feb_Seaice_median_km + sc.log1p.Sept_Seaice_median_km + 
##     sc.log.Travelspeedkmhour + sc.log.GNI_Claim + sc.log.PPP_Claim + 
##     sc.sqrt.Dist_Claimline_km + sc.sqrt.Dist_air_km + sc.sqrt.Dist_port_km + 
##     sc.sqrt.Dis_traverseskm + sc.sqrt.Dist_station_km + sc.log.GNI_station + 
##     sc.log.PPP_station + sc.sqrt.Peak_Popul, family = binomial(link = "logit"), 
##     data = bioactivity.60s)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.7135  -0.3601  -0.2106  -0.1248   3.9641  
## 
## Coefficients:
##                                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                    -3.344780   0.044341 -75.434  < 2e-16 ***
## sc.Windspeed                    0.052722   0.040247   1.310 0.190204    
## sc.Temp                         0.795579   0.105834   7.517 5.59e-14 ***
## sc.logPrecip                   -0.499057   0.062342  -8.005 1.19e-15 ***
## sc.Lon                         -0.144034   0.067511  -2.133 0.032884 *  
## sc.log1p.Nonbioactcount         0.648650   0.025078  25.865  < 2e-16 ***
## sc.DEM.100                     -0.485916   0.068011  -7.145 9.02e-13 ***
## sc.SlopeMeanpercent            -0.057783   0.045470  -1.271 0.203800    
## sc.log1p.IcefreePolygon_Count   0.391603   0.037067  10.565  < 2e-16 ***
## sc.sqrt.IcefreepolygonMeanSize  0.176936   0.031503   5.616 1.95e-08 ***
## sc.log1p.Feb_Seaice_median_km   0.224462   0.042327   5.303 1.14e-07 ***
## sc.log1p.Sept_Seaice_median_km  0.022227   0.031364   0.709 0.478533    
## sc.log.Travelspeedkmhour        0.069538   0.033856   2.054 0.039981 *  
## sc.log.GNI_Claim               -0.038045   0.053212  -0.715 0.474624    
## sc.log.PPP_Claim               -0.110820   0.071852  -1.542 0.122990    
## sc.sqrt.Dist_Claimline_km       0.096735   0.039139   2.472 0.013453 *  
## sc.sqrt.Dist_air_km            -0.391284   0.046552  -8.405  < 2e-16 ***
## sc.sqrt.Dist_port_km           -0.286912   0.070769  -4.054 5.03e-05 ***
## sc.sqrt.Dis_traverseskm        -0.304214   0.068338  -4.452 8.52e-06 ***
## sc.sqrt.Dist_station_km         0.027238   0.066909   0.407 0.683946    
## sc.log.GNI_station              0.003293   0.047319   0.070 0.944520    
## sc.log.PPP_station              0.092481   0.026639   3.472 0.000517 ***
## sc.sqrt.Peak_Popul             -0.238355   0.051105  -4.664 3.10e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 13184.7  on 22879  degrees of freedom
## Residual deviance:  9326.3  on 22857  degrees of freedom
## AIC: 9372.3
## 
## Number of Fisher Scoring iterations: 7
vif(VIF_test_4)
##                   sc.Windspeed                        sc.Temp 
##                       1.600405                      13.543477 
##                   sc.logPrecip                         sc.Lon 
##                       5.099791                       4.913435 
##        sc.log1p.Nonbioactcount                     sc.DEM.100 
##                       1.273142                       3.470305 
##            sc.SlopeMeanpercent  sc.log1p.IcefreePolygon_Count 
##                       2.534587                       1.676404 
## sc.sqrt.IcefreepolygonMeanSize  sc.log1p.Feb_Seaice_median_km 
##                       1.823059                       1.827966 
## sc.log1p.Sept_Seaice_median_km       sc.log.Travelspeedkmhour 
##                       2.337945                       2.699609 
##               sc.log.GNI_Claim               sc.log.PPP_Claim 
##                       3.242042                       6.937203 
##      sc.sqrt.Dist_Claimline_km            sc.sqrt.Dist_air_km 
##                       1.967607                       2.972189 
##           sc.sqrt.Dist_port_km        sc.sqrt.Dis_traverseskm 
##                       5.948737                       7.662423 
##        sc.sqrt.Dist_station_km             sc.log.GNI_station 
##                       5.817417                       2.602498 
##             sc.log.PPP_station             sc.sqrt.Peak_Popul 
##                       1.206469                       3.004187

Group 5. I decided to move sc.Temp, because many factors they determine temperatures, such as dem, distance to the port.

VIF_test_5 <- glm(bioact_PA ~ sc.Windspeed  + sc.logPrecip  + sc.Lon  +
                            sc.log1p.Nonbioactcount  +  sc.DEM.100  + 
                            sc.SlopeMeanpercent  +
                            sc.log1p.IcefreePolygon_Count+ 
                            sc.sqrt.IcefreepolygonMeanSize  + sc.log1p.Feb_Seaice_median_km  +
                            sc.log1p.Sept_Seaice_median_km  + sc.log.Travelspeedkmhour  +
                            sc.log.GNI_Claim  + sc.log.PPP_Claim  +  sc.sqrt.Dist_Claimline_km  +
                            sc.sqrt.Dist_air_km  +  sc.sqrt.Dist_port_km  +  sc.sqrt.Dis_traverseskm  +
                            sc.sqrt.Dist_station_km  + sc.log.GNI_station  +  sc.log.PPP_station +                                            sc.sqrt.Peak_Popul, data = bioactivity.60s, family = binomial(link = "logit"))

summary(VIF_test_5)
## 
## Call:
## glm(formula = bioact_PA ~ sc.Windspeed + sc.logPrecip + sc.Lon + 
##     sc.log1p.Nonbioactcount + sc.DEM.100 + sc.SlopeMeanpercent + 
##     sc.log1p.IcefreePolygon_Count + sc.sqrt.IcefreepolygonMeanSize + 
##     sc.log1p.Feb_Seaice_median_km + sc.log1p.Sept_Seaice_median_km + 
##     sc.log.Travelspeedkmhour + sc.log.GNI_Claim + sc.log.PPP_Claim + 
##     sc.sqrt.Dist_Claimline_km + sc.sqrt.Dist_air_km + sc.sqrt.Dist_port_km + 
##     sc.sqrt.Dis_traverseskm + sc.sqrt.Dist_station_km + sc.log.GNI_station + 
##     sc.log.PPP_station + sc.sqrt.Peak_Popul, family = binomial(link = "logit"), 
##     data = bioactivity.60s)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -2.7052  -0.3626  -0.2108  -0.1284   4.1076  
## 
## Coefficients:
##                                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                    -3.328759   0.043886 -75.851  < 2e-16 ***
## sc.Windspeed                    0.010039   0.039250   0.256 0.798128    
## sc.logPrecip                   -0.324723   0.057538  -5.644 1.67e-08 ***
## sc.Lon                         -0.286435   0.065568  -4.369 1.25e-05 ***
## sc.log1p.Nonbioactcount         0.647666   0.024917  25.993  < 2e-16 ***
## sc.DEM.100                     -0.823371   0.051393 -16.021  < 2e-16 ***
## sc.SlopeMeanpercent            -0.002308   0.044467  -0.052 0.958599    
## sc.log1p.IcefreePolygon_Count   0.394063   0.036985  10.655  < 2e-16 ***
## sc.sqrt.IcefreepolygonMeanSize  0.190132   0.031511   6.034 1.60e-09 ***
## sc.log1p.Feb_Seaice_median_km   0.164637   0.041410   3.976 7.01e-05 ***
## sc.log1p.Sept_Seaice_median_km -0.006042   0.030863  -0.196 0.844787    
## sc.log.Travelspeedkmhour        0.138216   0.032335   4.275 1.92e-05 ***
## sc.log.GNI_Claim               -0.038093   0.052576  -0.725 0.468740    
## sc.log.PPP_Claim               -0.150258   0.071217  -2.110 0.034871 *  
## sc.sqrt.Dist_Claimline_km       0.142998   0.038593   3.705 0.000211 ***
## sc.sqrt.Dist_air_km            -0.344768   0.045845  -7.520 5.47e-14 ***
## sc.sqrt.Dist_port_km           -0.353686   0.070212  -5.037 4.72e-07 ***
## sc.sqrt.Dis_traverseskm        -0.072060   0.062717  -1.149 0.250567    
## sc.sqrt.Dist_station_km        -0.078216   0.065075  -1.202 0.229383    
## sc.log.GNI_station              0.006581   0.047428   0.139 0.889648    
## sc.log.PPP_station              0.099985   0.026709   3.743 0.000182 ***
## sc.sqrt.Peak_Popul             -0.194779   0.050594  -3.850 0.000118 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 13184.7  on 22879  degrees of freedom
## Residual deviance:  9383.9  on 22858  degrees of freedom
## AIC: 9427.9
## 
## Number of Fisher Scoring iterations: 7
vif(VIF_test_5)
##                   sc.Windspeed                   sc.logPrecip 
##                       1.557376                       4.310429 
##                         sc.Lon        sc.log1p.Nonbioactcount 
##                       4.591899                       1.273024 
##                     sc.DEM.100            sc.SlopeMeanpercent 
##                       2.016380                       2.441677 
##  sc.log1p.IcefreePolygon_Count sc.sqrt.IcefreepolygonMeanSize 
##                       1.676701                       1.814235 
##  sc.log1p.Feb_Seaice_median_km sc.log1p.Sept_Seaice_median_km 
##                       1.748078                       2.291320 
##       sc.log.Travelspeedkmhour               sc.log.GNI_Claim 
##                       2.467570                       3.147719 
##               sc.log.PPP_Claim      sc.sqrt.Dist_Claimline_km 
##                       6.876311                       1.925803 
##            sc.sqrt.Dist_air_km           sc.sqrt.Dist_port_km 
##                       2.880225                       5.849822 
##        sc.sqrt.Dis_traverseskm        sc.sqrt.Dist_station_km 
##                       6.375155                       5.523365 
##             sc.log.GNI_station             sc.log.PPP_station 
##                       2.616868                       1.208849 
##             sc.sqrt.Peak_Popul 
##                       2.946629
### correlation test
M = cor(bioactivity.60s[,c("sc.Windspeed", "sc.logPrecip","sc.Lon",
                           "sc.log1p.Nonbioactcount", "sc.DEM.100", 
                           "sc.SlopeMeanpercent",
                           "sc.log1p.IcefreePolygon_Count",
                           "sc.sqrt.IcefreepolygonMeanSize","sc.log1p.Feb_Seaice_median_km",
                           "sc.log1p.Sept_Seaice_median_km","sc.log.Travelspeedkmhour",
                           "sc.log.GNI_Claim","sc.log.PPP_Claim", "sc.sqrt.Dist_Claimline_km",
                           "sc.sqrt.Dist_air_km", "sc.sqrt.Dist_port_km", "sc.sqrt.Dis_traverseskm",
                           "sc.sqrt.Dist_station_km","sc.log.GNI_station", "sc.log.PPP_station",
                           "sc.sqrt.Peak_Popul")])

# mat : is a matrix of data
# ... : further arguments to pass to the native R cor.test function
cor.mtest <- function(mat, ...) {
  mat <- as.matrix(mat)
  n <- ncol(mat)
  p.mat<- matrix(NA, n, n)
  diag(p.mat) <- 0
  for (i in 1:(n - 1)) {
    for (j in (i + 1):n) {
      tmp <- cor.test(mat[, i], mat[, j], ...)
      p.mat[i, j] <- p.mat[j, i] <- tmp$p.value
    }
  }
  colnames(p.mat) <- rownames(p.mat) <- colnames(mat)
  p.mat
}

# matrix of the p-value of the correlation
p.mat <- cor.mtest(M)
pdf(file="corrplot_vairables_cleaned.pdf")
corrplot(M, type="upper", order="hclust", 
         p.mat = p.mat, sig.level = 0.05, insig = "blank", method = 'number', number.cex = 0.25, tl.cex=0.5)
dev.off()
## png 
##   2

#Random split into 80-20 without considering spatial autocorrelation

#Random split into 80-20 without considering spatial autocorrelation
mydata <- bioactivity.60s
smp_size <- floor(0.8*nrow(mydata)) #80% for training
set.seed(8792) # to make this random spliting reproducible
train_ind <- sample(seq_len(nrow(mydata)), size = smp_size)
train80 <- mydata[train_ind, ]
test20 <- mydata[-train_ind, ]
#Undersample the zeros in train80 to make the training dataset balancing
train80.under0 <- ovun.sample(bioact_PA ~ ID + Longtitude_WGS84 + Latitude_WGS84 + POINT_X_SSP +
                            POINT_Y_SSP + sc.Windspeed  +  sc.Temp  +  sc.logPrecip  + sc.Lon  + 
                            sc.Lat  + sc.log1p.Nonbioactcount  +  sc.DEM.100  + 
                            sc.SlopeMeanpercent  + sc.sqrt.TRI_Mean  + sc.sqrt.DistancetoSea  +
                            sc.sqrt.Edgedensity  +  sc.log1p.sumArea  +  sc.log1p.IcefreePolygon_Count+
                            sc.sqrt.IcefreepolygonMeanSize  + sc.log1p.Feb_Seaice_median_km  +
                            sc.log1p.Sept_Seaice_median_km  + sc.log.Travelspeedkmhour  +
                            sc.log.GNI_Claim  + sc.log.PPP_Claim  +  sc.sqrt.Dist_Claimline_km  +
                            sc.sqrt.Dist_air_km  +  sc.sqrt.Dist_port_km  +  sc.sqrt.Dis_traverseskm  +
                            sc.sqrt.Dist_station_km  + sc.log.GNI_station  +  sc.log.PPP_station  +
                            sc.sqrt.Peak_Popul + Nonbioact_PA + Countlandscapetype + 
                            sloperecl + ClaimCountry_Count + Mainshippiingzone + Shiptrafficintensity +
                            Penornot + Dist_Claim_recl + Dist_air_recl + Dist_travese_recl + 
                            Dist_port_recl + Dist_station_recl + Peak_Popul_recl, 
                            p=0.5, data=train80, method = "under",
                            na.action=options("na.action")$na.action, seed = 8470, )$data

model (no spatial, no structure 0)

# fit.bern_train80under0_all
trainingdata <- train80.under0 # change here when change data for training
testdata <- test20
y_obs <- trainingdata$bioact_PA

intercept_only <- glm(bioact_PA ~ 1, data = trainingdata, family = binomial(link = "logit"))

all_variables <- glm(bioact_PA ~  sc.Windspeed + sc.logPrecip + sc.Lon + sc.log1p.Nonbioactcount +
                       sc.DEM.100 + sc.SlopeMeanpercent + sc.log1p.IcefreePolygon_Count +
                       sc.sqrt.IcefreepolygonMeanSize + sc.log1p.Feb_Seaice_median_km +
                       sc.log1p.Sept_Seaice_median_km + sc.log.Travelspeedkmhour + sc.log.GNI_Claim + 
                       sc.log.PPP_Claim + sc.sqrt.Dist_Claimline_km + sc.sqrt.Dist_air_km + 
                       sc.sqrt.Dist_port_km + sc.sqrt.Dis_traverseskm + sc.sqrt.Dist_station_km + 
                       sc.log.GNI_station + sc.log.PPP_station + Nonbioact_PA + Countlandscapetype + 
                       sloperecl + ClaimCountry_Count + Mainshippiingzone + Shiptrafficintensity + 
                       Penornot + Dist_Claim_recl + Dist_air_recl + Dist_travese_recl + 
                       Dist_port_recl + Dist_station_recl + Peak_Popul_recl, 
                       data = trainingdata, family = binomial(link = "logit"))

with(summary(all_variables), 1 - deviance/null.deviance)
## [1] 0.3558881
car::vif(all_variables)
##                                      GVIF Df GVIF^(1/(2*Df))
## sc.Windspeed                     2.555535  1        1.598604
## sc.logPrecip                     4.277408  1        2.068189
## sc.Lon                           9.138189  1        3.022944
## sc.log1p.Nonbioactcount          3.066218  1        1.751062
## sc.DEM.100                       2.282741  1        1.510874
## sc.SlopeMeanpercent             15.201268  1        3.898880
## sc.log1p.IcefreePolygon_Count    1.886280  1        1.373419
## sc.sqrt.IcefreepolygonMeanSize   2.026678  1        1.423615
## sc.log1p.Feb_Seaice_median_km    3.039806  1        1.743504
## sc.log1p.Sept_Seaice_median_km   3.982995  1        1.995744
## sc.log.Travelspeedkmhour         3.089417  1        1.757674
## sc.log.GNI_Claim                 8.609049  1        2.934118
## sc.log.PPP_Claim                19.091169  1        4.369344
## sc.sqrt.Dist_Claimline_km        5.037704  1        2.244483
## sc.sqrt.Dist_air_km              6.221762  1        2.494346
## sc.sqrt.Dist_port_km            13.856489  1        3.722431
## sc.sqrt.Dis_traverseskm         17.538348  1        4.187881
## sc.sqrt.Dist_station_km         11.299433  1        3.361463
## sc.log.GNI_station               3.126174  1        1.768099
## sc.log.PPP_station               1.610178  1        1.268928
## Nonbioact_PA                     2.892811  1        1.700827
## Countlandscapetype               1.731287  4        1.071016
## sloperecl                       25.328871  5        1.381534
## ClaimCountry_Count             355.010167  3        2.660971
## Mainshippiingzone                3.598621  1        1.897003
## Shiptrafficintensity            72.305275  3        2.041088
## Penornot                        31.875949  1        5.645879
## Dist_Claim_recl                  4.576297  2        1.462610
## Dist_air_recl                    8.693814  2        1.717128
## Dist_travese_recl                3.647794  2        1.381999
## Dist_port_recl                  15.829775  2        1.994659
## Dist_station_recl               11.345838  2        1.835309
## Peak_Popul_recl                 29.091550  4        1.523950
both <- step(intercept_only, direction='both', scope=formula(all_variables), trace=0)

summary(both)
## 
## Call:
## glm(formula = bioact_PA ~ sc.log1p.Nonbioactcount + sc.DEM.100 + 
##     sc.sqrt.Dist_station_km + sc.log1p.IcefreePolygon_Count + 
##     Shiptrafficintensity + sc.Lon + sc.log.Travelspeedkmhour + 
##     sc.sqrt.IcefreepolygonMeanSize + Nonbioact_PA + Peak_Popul_recl + 
##     Countlandscapetype + sc.logPrecip + sc.sqrt.Dist_port_km + 
##     Dist_station_recl + Dist_air_recl + sc.log1p.Feb_Seaice_median_km, 
##     family = binomial(link = "logit"), data = trainingdata)
## 
## Deviance Residuals: 
##     Min       1Q   Median       3Q      Max  
## -3.1114  -0.6880   0.0982   0.7186   3.3178  
## 
## Coefficients:
##                                 Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                     -0.14801    0.33449  -0.443 0.658127    
## sc.log1p.Nonbioactcount          0.43877    0.07472   5.872 4.31e-09 ***
## sc.DEM.100                      -0.60190    0.07207  -8.351  < 2e-16 ***
## sc.sqrt.Dist_station_km         -0.18165    0.12783  -1.421 0.155307    
## sc.log1p.IcefreePolygon_Count    0.33142    0.05507   6.019 1.76e-09 ***
## Shiptrafficintensity7            0.67555    0.18840   3.586 0.000336 ***
## Shiptrafficintensity75           0.46679    0.20257   2.304 0.021200 *  
## Shiptrafficintensity150         -0.85165    0.19384  -4.394 1.11e-05 ***
## sc.Lon                          -0.48284    0.09433  -5.118 3.08e-07 ***
## sc.log.Travelspeedkmhour         0.24032    0.05593   4.297 1.73e-05 ***
## sc.sqrt.IcefreepolygonMeanSize   0.27683    0.06396   4.328 1.51e-05 ***
## Nonbioact_PA1                    0.57452    0.15934   3.606 0.000311 ***
## Peak_Popul_recl2                -0.64689    0.20066  -3.224 0.001265 ** 
## Peak_Popul_recl3                -0.27561    0.20709  -1.331 0.183238    
## Peak_Popul_recl4                -0.40070    0.21531  -1.861 0.062740 .  
## Peak_Popul_recl5                -1.15962    0.26697  -4.344 1.40e-05 ***
## Countlandscapetype2              0.34934    0.15202   2.298 0.021565 *  
## Countlandscapetype3              0.56603    0.16804   3.369 0.000756 ***
## Countlandscapetype4              0.79217    0.31496   2.515 0.011900 *  
## Countlandscapetype5             12.74340  277.45392   0.046 0.963366    
## sc.logPrecip                    -0.34668    0.08541  -4.059 4.93e-05 ***
## sc.sqrt.Dist_port_km            -0.30477    0.11145  -2.735 0.006247 ** 
## Dist_station_recl2              -0.63784    0.17604  -3.623 0.000291 ***
## Dist_station_recl3              -0.54409    0.25417  -2.141 0.032299 *  
## Dist_air_recl2                  -0.69698    0.16118  -4.324 1.53e-05 ***
## Dist_air_recl3                  -0.75965    0.24137  -3.147 0.001648 ** 
## sc.log1p.Feb_Seaice_median_km   -0.16755    0.06949  -2.411 0.015901 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 4208.7  on 3035  degrees of freedom
## Residual deviance: 2746.1  on 3009  degrees of freedom
## AIC: 2800.1
## 
## Number of Fisher Scoring iterations: 12

performance of the model (no spatial, no structure 0)

best_model <- glm(bioact_PA ~ sc.log1p.Nonbioactcount + sc.DEM.100 + 
    sc.sqrt.Dist_station_km + sc.log1p.IcefreePolygon_Count + 
    Shiptrafficintensity + sc.Lon + sc.log.Travelspeedkmhour + 
    sc.sqrt.IcefreepolygonMeanSize + Nonbioact_PA + Peak_Popul_recl + 
    Countlandscapetype + sc.logPrecip + sc.sqrt.Dist_port_km + 
    Dist_station_recl + Dist_air_recl + sc.log1p.Feb_Seaice_median_km, 
    family = binomial(link = "logit"), data = trainingdata)
  
Dev_res_best_model <- residuals(best_model) # Deviance residuals

##### Prediction
predict_20  <- predict(best_model, newdata = test20, type = "response") 

predicted_20 <- ifelse(predict_20 > 0.5, 1, 0)
  
tab <- table(Predicted = predicted_20, Reference = test20$bioact_PA)
  
aucs.test <- as.data.frame(evalmod(scores = predicted_20, labels = test20$bioact_PA, mode = 'aucroc'))

### Moran's I

trainingdata_Dev <- cbind(trainingdata, Dev_res_best_model)
  
coordinates(trainingdata_Dev) = ~POINT_X_SSP+POINT_Y_SSP
  
W <- 1/as.matrix(dist(coordinates(trainingdata_Dev)))
diag(W) <- 0
moran.i <- Moran.I(trainingdata_Dev$Dev_res_best_model, W) # this one much quicker

moran.i
## $observed
## [1] 0.04367041
## 
## $expected
## [1] -0.0003294893
## 
## $sd
## [1] 0.001874366
## 
## $p.value
## [1] 0
#Random split into 80-20 without considering spatial autocorrelation for 50 times and store them
train_ind <- c()
train80 <- list()
test20 <- list()
train80.under0 <- list()
smp_size <- floor(0.8*nrow(mydata)) #80% for training

  
for (i in 1:50) {

train_ind <- sample(seq_len(nrow(mydata)), size = smp_size)
train80[[i]] <- mydata[train_ind, ]
test20[[i]] <- mydata[-train_ind, ]
train80.under0[[i]] <- ovun.sample(bioact_PA ~ ID + Longtitude_WGS84 + Latitude_WGS84 + 
                            POINT_X_SSP + POINT_Y_SSP +
                            sc.Windspeed  +  sc.Temp  +  sc.logPrecip  + sc.Lon  + sc.Lat  +
                            sc.log1p.Nonbioactcount  +  sc.DEM.100  + 
                            sc.SlopeMeanpercent  + sc.sqrt.TRI_Mean  + sc.sqrt.DistancetoSea  +
                            sc.sqrt.Edgedensity  +  sc.log1p.sumArea  +  sc.log1p.IcefreePolygon_Count+ 
                            sc.sqrt.IcefreepolygonMeanSize  + sc.log1p.Feb_Seaice_median_km  +
                            sc.log1p.Sept_Seaice_median_km  + sc.log.Travelspeedkmhour  +
                            sc.log.GNI_Claim  + sc.log.PPP_Claim  +  sc.sqrt.Dist_Claimline_km  +
                            sc.sqrt.Dist_air_km  +  sc.sqrt.Dist_port_km  +  sc.sqrt.Dis_traverseskm  +
                            sc.sqrt.Dist_station_km  + sc.log.GNI_station  +  sc.log.PPP_station  +
                            sc.sqrt.Peak_Popul + Nonbioact_PA + Countlandscapetype + 
                            sloperecl + ClaimCountry_Count + Mainshippiingzone + Shiptrafficintensity + 
                            Penornot + Dist_Claim_recl + Dist_air_recl + Dist_travese_recl + Dist_port_recl +
                            Dist_station_recl + Peak_Popul_recl, p=0.5, data= train80[[i]], method = "under",
                            na.action=options("na.action")$na.action, seed = 8472,)$data

}

model_glm_8020 <- list()

pseduoR2_glm_8020 <- c()

mymodel_glm_8020 <- list()

moran.i_8020 <- list()
moran.i_8020.ob <- c()
moran.i_8020.p <- c()

predict_8020 <- list()
predicted_8020 <- list()

tab_8020 <- list()
aucs.df_8020 <- list()
AUC_8020 <- c()


for(i in 1: 50){
  
#fit the traning data with a glm model to get the p_hat
model_glm_8020[[i]] <- glm(bioact_PA ~ sc.log1p.Nonbioactcount + sc.DEM.100 + 
    sc.sqrt.Dist_station_km + sc.log1p.IcefreePolygon_Count + 
    Shiptrafficintensity + sc.Lon + sc.log.Travelspeedkmhour + 
    sc.sqrt.IcefreepolygonMeanSize + Nonbioact_PA + Peak_Popul_recl + 
    Countlandscapetype + sc.logPrecip + sc.sqrt.Dist_port_km + 
    Dist_station_recl + Dist_air_recl + sc.log1p.Feb_Seaice_median_km, 
    family = binomial(link = "logit"), data = train80.under0[[i]])
  
  
pseduoR2_glm_8020[i] <- (model_glm_8020[[i]]$null.deviance - model_glm_8020[[i]]$deviance) / model_glm_8020[[i]]$null.deviance

p_hat_glm_8020 <- predict(model_glm_8020[[i]], type = "response")
  
Dev_res_glm_8020 <- residuals(model_glm_8020[[i]]) # Deviance residuals. Deviance Residuals measure how much probabilities estimated from our model differ from the observed prostationions of successes.
  
mymodel_glm_8020[[i]] <- cbind(train80.under0[[i]], p_hat_glm_8020, Dev_res_glm_8020)
  
coordinates(mymodel_glm_8020[[i]]) = ~POINT_X_SSP+POINT_Y_SSP
  
w_8020 <- 1/as.matrix(dist(coordinates(mymodel_glm_8020[[i]])))
diag(w_8020) <- 0
moran.i_8020[[i]] <- Moran.I(mymodel_glm_8020[[i]]$Dev_res_glm_8020, w_8020) # this one much quicker
moran.i_8020.ob[i] <- moran.i_8020[[i]]$observed
moran.i_8020.p[i] <- moran.i_8020[[i]]$p.value
  

###### Prediction
predict_8020[[i]]  <- predict(model_glm_8020[[i]], newdata = test20[[i]], type = "response") # type = "response" is equal to inv.logit
  
predicted_8020[[i]] <- ifelse(predict_8020[[i]] > 0.5,1,0)
  
tab_8020[[i]] <- table(Predicted = predict_8020[[i]], Reference = test20[[i]]$bioact_PA)
  
aucs.df_8020[[i]] <- as.data.frame(evalmod(scores = predict_8020[[i]], labels = test20[[i]]$bioact_PA, mode = 'aucroc'))
AUC_8020[i] <- aucs.df_8020[[i]]$aucs
  
}

mean(AUC_8020)
## [1] 0.8774526
mean(pseduoR2_glm_8020)
## [1] 0.3488343
mean(moran.i_8020.ob)
## [1] 0.04543055
mean(moran.i_8020.p)
## [1] 0
##### prediction accuracy test on all unused data (test data and data deleted by undersampling)


mydata_notusedinmodel <- list()
predict_notusedinmodel <- list()
predicted_notusedinmodel <- list()

tab_notusedinmodel <- list()
aucs.df_notusedinmodel <- list()
AUC_notusedinmodel <- c()

for(i in 1: 50){

mydata_notusedinmodel[[i]] <- subset(mydata, !(ID %in% train80.under0[[i]]$ID)) 

predict_notusedinmodel[[i]]  <- predict(model_glm_8020[[i]], newdata = mydata_notusedinmodel[[i]], type = "response") # type = "response" is equal to inv.logit

predicted_notusedinmodel[[i]] <- ifelse(predict_notusedinmodel[[i]] > 0.5, 1, 0)

tab_notusedinmodel[[i]] <- table(Predicted = predict_notusedinmodel[[i]], Reference = mydata_notusedinmodel[[i]]$bioact_PA)

aucs.df_notusedinmodel[[i]] <- as.data.frame(evalmod(scores = predict_notusedinmodel[[i]], labels = mydata_notusedinmodel[[i]]$bioact_PA, mode = 'aucroc'))
AUC_notusedinmodel[i] <- aucs.df_notusedinmodel[[i]]$aucs

}

mean(AUC_notusedinmodel)
## [1] 0.8758157

the result of 22880 without taking sturctured zero is better than the models that taking out sturctured zero

let’s prove this by using subset 1

#Random split into 80-20 without considering spatial autocorrelation for 50 times and store them
smp_size <- floor(0.8*nrow(subset1)) #80% for training

train_ind <- c()
train80 <- list()
test20 <- list()
train80.under0 <- list()

for (i in 1:50) {

train_ind <- sample(seq_len(nrow(subset1)), size = smp_size)
train80[[i]] <- subset1[train_ind, ]
test20[[i]] <- subset1[-train_ind, ]
train80.under0[[i]] <- ovun.sample(bioact_PA ~ ID + Longtitude_WGS84 + Latitude_WGS84 + 
                            POINT_X_SSP + POINT_Y_SSP + sc.Windspeed  +  
                            sc.Temp  +  sc.logPrecip  + sc.Lon  + sc.Lat  +
                            sc.log1p.Nonbioactcount  +  sc.DEM.100  + sc.SlopeMeanpercent  +
                            sc.sqrt.TRI_Mean  + sc.sqrt.DistancetoSea  + sc.sqrt.Edgedensity  +
                            sc.log1p.sumArea  + sc.log1p.IcefreePolygon_Count+ 
                            sc.sqrt.IcefreepolygonMeanSize  + sc.log1p.Feb_Seaice_median_km  +
                            sc.log1p.Sept_Seaice_median_km  + sc.log.Travelspeedkmhour  +
                            sc.log.GNI_Claim  + sc.log.PPP_Claim  +  sc.sqrt.Dist_Claimline_km  +
                            sc.sqrt.Dist_air_km  +  sc.sqrt.Dist_port_km  +
                            sc.sqrt.Dis_traverseskm  +  sc.sqrt.Dist_station_km  +
                            sc.log.GNI_station  +  sc.log.PPP_station  + sc.sqrt.Peak_Popul +
                            Nonbioact_PA + Countlandscapetype + sloperecl + 
                            ClaimCountry_Count + Mainshippiingzone + Shiptrafficintensity + 
                            Penornot + Dist_Claim_recl + Dist_air_recl + Dist_travese_recl +
                            Dist_port_recl + Dist_station_recl + Peak_Popul_recl, 
                            p=0.5, data= train80[[i]], method = "under",
                            na.action=options("na.action")$na.action, seed = 8472,)$data

}

###### modells building glm 8020 randomly select

# test20[[i]]
# train80.under0[[i]]

model_glm_8020 <- list()

pseduoR2_glm_8020 <- c()

mymodel_glm_8020 <- list()

moran.i_8020 <- list()
moran.i_8020.ob <- c()
moran.i_8020.p <- c()

predict_8020 <- list()
predicted_8020 <- list()

tab_8020 <- list()
aucs.df_8020 <- list()
AUC_8020 <- c()


for(i in 1: 50){
  
  #fit the traning data with a glm model to get the p_hat
  model_glm_8020[[i]] <- glm(bioact_PA ~ sc.log1p.Nonbioactcount + sc.DEM.100 + 
    sc.sqrt.Dist_station_km + sc.log1p.IcefreePolygon_Count + 
    Shiptrafficintensity + sc.Lon + sc.log.Travelspeedkmhour + 
    sc.sqrt.IcefreepolygonMeanSize + Nonbioact_PA + Peak_Popul_recl + 
    Countlandscapetype + sc.logPrecip + sc.sqrt.Dist_port_km + 
    Dist_station_recl + Dist_air_recl + sc.log1p.Feb_Seaice_median_km, 
    family = binomial(link = "logit"), data = train80.under0[[i]])
  
  pseduoR2_glm_8020[i] <- (model_glm_8020[[i]]$null.deviance - model_glm_8020[[i]]$deviance) / model_glm_8020[[i]]$null.deviance

  p_hat_glm_8020 <- predict(model_glm_8020[[i]], type = "response")
  
  Dev_res_glm_8020 <- residuals(model_glm_8020[[i]]) # Deviance residuals. Deviance Residuals measure how much probabilities estimated from our model differ from the observed prostationions of successes.
  
  mymodel_glm_8020[[i]] <- cbind(train80.under0[[i]], p_hat_glm_8020, Dev_res_glm_8020)
  
  coordinates(mymodel_glm_8020[[i]]) = ~POINT_X_SSP+POINT_Y_SSP
  
  w_8020 <- 1/as.matrix(dist(coordinates(mymodel_glm_8020[[i]])))
  diag(w_8020) <- 0
  moran.i_8020[[i]] <- Moran.I(mymodel_glm_8020[[i]]$Dev_res_glm_8020, w_8020) # this one much quicker
  moran.i_8020.ob[i] <- moran.i_8020[[i]]$observed
  moran.i_8020.p[i] <- moran.i_8020[[i]]$p.value
  

###### Prediction
predict_8020[[i]]  <- predict(model_glm_8020[[i]], newdata = test20[[i]], type = "response") # type = "response" is equal to inv.logit
  
predicted_8020[[i]] <- ifelse(predict_8020[[i]] > 0.5,1,0)
  
tab_8020[[i]] <- table(Predicted = predict_8020[[i]], Reference = test20[[i]]$bioact_PA)
  
aucs.df_8020[[i]] <- as.data.frame(evalmod(scores = predict_8020[[i]], labels = test20[[i]]$bioact_PA, mode = 'aucroc'))

AUC_8020[i] <- aucs.df_8020[[i]]$aucs
  
}
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
mean(AUC_8020)
## [1] 0.8824448
mean(pseduoR2_glm_8020)
## [1] 0.3593347
mean(moran.i_8020.ob)
## [1] 0.03424289
mean(moran.i_8020.p)
## [1] 0
##### prediction accuracy test on all unused data (test data and data deleted by undersampling)


mydata_notusedinmodel <- list()
predict_notusedinmodel <- list()
predicted_notusedinmodel <- list()

tab_notusedinmodel <- list()
aucs.df_notusedinmodel <- list()
AUC_notusedinmodel <- c()

for(i in 1: 50){

mydata_notusedinmodel[[i]] <- subset(mydata, !(ID %in% train80.under0[[i]]$ID)) 

predict_notusedinmodel[[i]]  <- predict(model_glm_8020[[i]], newdata = mydata_notusedinmodel[[i]], type = "response") # type = "response" is equal to inv.logit

predicted_notusedinmodel[[i]] <- ifelse(predict_notusedinmodel[[i]] > 0.5, 1, 0)

tab_notusedinmodel[[i]] <- table(Predicted = predict_notusedinmodel[[i]], Reference = mydata_notusedinmodel[[i]]$bioact_PA)

aucs.df_notusedinmodel[[i]] <- as.data.frame(evalmod(scores = predict_notusedinmodel[[i]], labels = mydata_notusedinmodel[[i]]$bioact_PA, mode = 'aucroc'))
AUC_notusedinmodel[i] <- aucs.df_notusedinmodel[[i]]$aucs

}


mean(AUC_notusedinmodel)
## [1] 0.3936575

Alternatively, to support a first choice of block size, prior to any model fitting, package blockCV allows the user to look at the existing autocorrelation in the predictors, as an indication of landscape spatial structure. The function works by automatically fitting variogram models to each continuous raster and finding the effective range of spatial autocorrelation.

The purpose of blockcv, is to find an indication of landscape spatial structure

##### test the spatial autocorrelation of each varibale
# Very plain plot using the spline.correlog function
bioactivity.60s.forSAC <- bioactivity.60s

coordinates(bioactivity.60s.forSAC) = ~ POINT_X_SSP + POINT_Y_SSP

crs(bioactivity.60s.forSAC) <- CRS("+proj=stere +lat_0=-90 +lon_0=0 +k=1 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs +type=crs")
bioactivity.60s.forSAC <- st_as_sf(bioactivity.60s.forSAC)

spa_test <- cv_spatial_autocor(x=bioactivity.60s.forSAC, column=
                            c("bioact_PA","sc.log1p.Nonbioactcount","sc.DEM.100",
                            "sc.sqrt.Dist_station_km","sc.log1p.IcefreePolygon_Count",
                            "Shiptrafficintensity","sc.Lon","sc.log.Travelspeedkmhour",
                            "sc.sqrt.IcefreepolygonMeanSize","Nonbioact_PA","Peak_Popul_recl",
                            "Countlandscapetype","sc.logPrecip","sc.sqrt.Dist_port_km",
                            "Dist_station_recl","Dist_air_recl","sc.log1p.Feb_Seaice_median_km"))
## 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |====                                                                  |   6%
  |                                                                            
  |========                                                              |  12%
  |                                                                            
  |============                                                          |  18%
  |                                                                            
  |================                                                      |  24%
  |                                                                            
  |=====================                                                 |  29%
  |                                                                            
  |=========================                                             |  35%
  |                                                                            
  |=============================                                         |  41%
  |                                                                            
  |=================================                                     |  47%
  |                                                                            
  |=====================================                                 |  53%
  |                                                                            
  |=========================================                             |  59%
  |                                                                            
  |=============================================                         |  65%
  |                                                                            
  |=================================================                     |  71%
  |                                                                            
  |======================================================                |  76%
  |                                                                            
  |==========================================================            |  82%
  |                                                                            
  |==============================================================        |  88%
  |                                                                            
  |==================================================================    |  94%
  |                                                                            
  |======================================================================| 100%

#mydata
#spatial mappping and blocking
### import data
Antarctica <- st_read("ADD_Coastline_high_res_line_Sliced.shp")
## Reading layer `ADD_Coastline_high_res_line_Sliced' from data source 
##   `C:\Users\N11094427\OneDrive - Queensland University of Technology\Documents\ArcGIS\Projects\MaxENT\Data\OutputforR\ADD_Coastline_high_res_line_Sliced.shp' 
##   using driver `ESRI Shapefile'
## Simple feature collection with 29563 features and 10 fields
## Geometry type: MULTILINESTRING
## Dimension:     XY
## Bounding box:  xmin: -2661818 ymin: -2491520 xmax: 2746700 ymax: 2322031
## Projected CRS: WGS 84 / Antarctic Polar Stereographic
###data a preparation for spatial block
proj4string <-("+proj=stere +lat_0=-90 +lon_0=0 +k=1 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs +type=crs") # the code of WGS84 Stereographic South Pole
my.projection <- st_crs(proj4string) # get the crs of WGS 1984 Stereographic South Pole

dem <- raster("ADD_Coastline_high_res_Me.tif") # get the dem raster
dem_WG84SSP <- projectRaster(dem, crs = crs(proj4string)) # reproject the dem raster to let it have the same crs code with our target data

sb_bioactivity.60s <- sf::st_as_sf(bioactivity.60s, coords = c("POINT_X_SSP", "POINT_Y_SSP"), crs = my.projection) # turn csv to sf with the crs

sb_bioactivity.60s_bioact <- sb_bioactivity.60s [, c("ID","bioact_PA","Bioactivititycount","Nonbioact_PA")]

#spatial block
sb_mydata <- spatialBlock(
  speciesData = sb_bioactivity.60s,
  species = "bioact_PA",
  rasterLayer = dem_WG84SSP,
  theRange = 300000, # block range is 300km
  k = 96,
  iteration = 100,
  numLimit = 0L,
  border = NULL,
  biomod2Format = TRUE,
  xOffset = 0,
  yOffset = 0,
  seed = 9897
)
## This function is deprecated! Please use 'cv_spatial' instead.
## 
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |=                                                                     |   1%
  |                                                                            
  |=                                                                     |   2%
  |                                                                            
  |==                                                                    |   3%
  |                                                                            
  |===                                                                   |   4%
  |                                                                            
  |====                                                                  |   5%
  |                                                                            
  |====                                                                  |   6%
  |                                                                            
  |=====                                                                 |   7%
  |                                                                            
  |======                                                                |   8%
  |                                                                            
  |======                                                                |   9%
  |                                                                            
  |=======                                                               |  10%
  |                                                                            
  |========                                                              |  11%
  |                                                                            
  |========                                                              |  12%
  |                                                                            
  |=========                                                             |  13%
  |                                                                            
  |==========                                                            |  14%
  |                                                                            
  |==========                                                            |  15%
  |                                                                            
  |===========                                                           |  16%
  |                                                                            
  |============                                                          |  17%
  |                                                                            
  |=============                                                         |  18%
  |                                                                            
  |=============                                                         |  19%
  |                                                                            
  |==============                                                        |  20%
  |                                                                            
  |===============                                                       |  21%
  |                                                                            
  |===============                                                       |  22%
  |                                                                            
  |================                                                      |  23%
  |                                                                            
  |=================                                                     |  24%
  |                                                                            
  |==================                                                    |  25%
  |                                                                            
  |==================                                                    |  26%
  |                                                                            
  |===================                                                   |  27%
  |                                                                            
  |====================                                                  |  28%
  |                                                                            
  |====================                                                  |  29%
  |                                                                            
  |=====================                                                 |  30%
  |                                                                            
  |======================                                                |  31%
  |                                                                            
  |======================                                                |  32%
  |                                                                            
  |=======================                                               |  33%
  |                                                                            
  |========================                                              |  34%
  |                                                                            
  |========================                                              |  35%
  |                                                                            
  |=========================                                             |  36%
  |                                                                            
  |==========================                                            |  37%
  |                                                                            
  |===========================                                           |  38%
  |                                                                            
  |===========================                                           |  39%
  |                                                                            
  |============================                                          |  40%
  |                                                                            
  |=============================                                         |  41%
  |                                                                            
  |=============================                                         |  42%
  |                                                                            
  |==============================                                        |  43%
  |                                                                            
  |===============================                                       |  44%
  |                                                                            
  |================================                                      |  45%
  |                                                                            
  |================================                                      |  46%
  |                                                                            
  |=================================                                     |  47%
  |                                                                            
  |==================================                                    |  48%
  |                                                                            
  |==================================                                    |  49%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |====================================                                  |  51%
  |                                                                            
  |====================================                                  |  52%
  |                                                                            
  |=====================================                                 |  53%
  |                                                                            
  |======================================                                |  54%
  |                                                                            
  |======================================                                |  55%
  |                                                                            
  |=======================================                               |  56%
  |                                                                            
  |========================================                              |  57%
  |                                                                            
  |=========================================                             |  58%
  |                                                                            
  |=========================================                             |  59%
  |                                                                            
  |==========================================                            |  60%
  |                                                                            
  |===========================================                           |  61%
  |                                                                            
  |===========================================                           |  62%
  |                                                                            
  |============================================                          |  63%
  |                                                                            
  |=============================================                         |  64%
  |                                                                            
  |==============================================                        |  65%
  |                                                                            
  |==============================================                        |  66%
  |                                                                            
  |===============================================                       |  67%
  |                                                                            
  |================================================                      |  68%
  |                                                                            
  |================================================                      |  69%
  |                                                                            
  |=================================================                     |  70%
  |                                                                            
  |==================================================                    |  71%
  |                                                                            
  |==================================================                    |  72%
  |                                                                            
  |===================================================                   |  73%
  |                                                                            
  |====================================================                  |  74%
  |                                                                            
  |====================================================                  |  75%
  |                                                                            
  |=====================================================                 |  76%
  |                                                                            
  |======================================================                |  77%
  |                                                                            
  |=======================================================               |  78%
  |                                                                            
  |=======================================================               |  79%
  |                                                                            
  |========================================================              |  80%
  |                                                                            
  |=========================================================             |  81%
  |                                                                            
  |=========================================================             |  82%
  |                                                                            
  |==========================================================            |  83%
  |                                                                            
  |===========================================================           |  84%
  |                                                                            
  |============================================================          |  85%
  |                                                                            
  |============================================================          |  86%
  |                                                                            
  |=============================================================         |  87%
  |                                                                            
  |==============================================================        |  88%
  |                                                                            
  |==============================================================        |  89%
  |                                                                            
  |===============================================================       |  90%
  |                                                                            
  |================================================================      |  91%
  |                                                                            
  |================================================================      |  92%
  |                                                                            
  |=================================================================     |  93%
  |                                                                            
  |==================================================================    |  94%
  |                                                                            
  |==================================================================    |  95%
  |                                                                            
  |===================================================================   |  96%
  |                                                                            
  |====================================================================  |  97%
  |                                                                            
  |===================================================================== |  98%
  |                                                                            
  |===================================================================== |  99%
  |                                                                            
  |======================================================================| 100%
##    train_0 train_1 test_0 test_1
## 1    20944    1916     17      3
## 2    20948    1918     13      1
## 3    20779    1879    182     40
## 4    20849    1913    112      6
## 5    20949    1898     12     21
## 6    20895    1919     66      0
## 7    20861    1919    100      0
## 8    20863    1918     98      1
## 9    20916    1914     45      5
## 10   20602    1910    359      9
## 11   20958    1919      3      0
## 12   20943    1917     18      2
## 13   20955    1919      6      0
## 14   20922    1918     39      1
## 15   20021    1721    940    198
## 16   20880    1916     81      3
## 17   20959    1917      2      2
## 18   20885    1912     76      7
## 19   20594    1910    367      9
## 20   20961    1918      0      1
## 21   20961    1915      0      4
## 22   20851    1919    110      0
## 23   20213    1916    748      3
## 24   20947    1918     14      1
## 25   20943    1919     18      0
## 26   20787    1918    174      1
## 27   20953    1888      8     31
## 28   20861    1874    100     45
## 29   20904    1909     57     10
## 30   20789    1842    172     77
## 31   20634    1844    327     75
## 32   20932    1919     29      0
## 33   19612    1851   1349     68
## 34   20511    1899    450     20
## 35   20942    1917     19      2
## 36   20959    1919      2      0
## 37   20169    1911    792      8
## 38   20659    1801    302    118
## 39   20910    1874     51     45
## 40   20477    1918    484      1
## 41   20797    1909    164     10
## 42   20952    1919      9      0
## 43   20813    1859    148     60
## 44   20890    1916     71      3
## 45   20951    1914     10      5
## 46   20676    1904    285     15
## 47   20505    1897    456     22
## 48   20926    1917     35      2
## 49   20325    1895    636     24
## 50   20836    1906    125     13
## 51   20916    1917     45      2
## 52   20793    1864    168     55
## 53   19816    1754   1145    165
## 54   20876    1847     85     72
## 55   20960    1919      1      0
## 56   20877    1870     84     49
## 57   20530    1889    431     30
## 58   20939    1914     22      5
## 59   20110    1773    851    146
## 60   20829    1878    132     41
## 61   20890    1919     71      0
## 62   20496    1907    465     12
## 63   20959    1919      2      0
## 64   20892    1919     69      0
## 65   20954    1917      7      2
## 66   20906    1914     55      5
## 67   20960    1919      1      0
## 68   19777    1834   1184     85
## 69   20774    1877    187     42
## 70   20951    1913     10      6
## 71   20013    1860    948     59
## 72   20891    1913     70      6
## 73   20959    1919      2      0
## 74   20580    1919    381      0
## 75   20930    1904     31     15
## 76   20928    1906     33     13
## 77   20943    1917     18      2
## 78   20959    1919      2      0
## 79   20950    1919     11      0
## 80   20759    1918    202      1
## 81   20038    1903    923     16
## 82   20889    1899     72     20
## 83   19787    1912   1174      7
## 84   20940    1919     21      0
## 85   20862    1912     99      7
## 86   20780    1908    181     11
## 87   20630    1907    331     12
## 88   20923    1919     38      0
## 89   20679    1911    282      8
## 90   20938    1919     23      0
## 91   20912    1917     49      2
## 92   20961    1917      0      2
## 93   20949    1909     12     10
## 94   20956    1919      5      0
## 95   19918    1902   1043     17
## 96   20647    1897    314     22
## Warning in cv_spatial(x = speciesData, column = species, r = rasterLayer, :
## Folds 6, 7, 11, 13, 20, 21, 22, 25, 32, 36, 42, 55, 61, 63, 64, 67, 73, 74, 78,
## 79, 84, 88, 90, 92, 94 have class(es) with zero records

sb_mydata$blocks_sf <- st_as_sf(sb_mydata$blocks)
mydata.blocked <- st_join(sb_bioactivity.60s, sb_mydata$blocks_sf, join = st_intersects)

mydata.blocked$folds <- factor(mydata.blocked$folds)

sb_mydata$plots

###adding points on spatialBlock Plot
sb_mydata$plots + geom_sf(data = sb_bioactivity.60s, alpha = 0.1, col = "blue")

# drop the geometry to make data as dataframe for resampling purpose 
mydata.blocked.dropgeo <- st_drop_geometry(mydata.blocked)

# Add geometry back to data, but the data is still dataframe class
geometry <- bioactivity.60s[c("ID", "POINT_X_SSP", "POINT_Y_SSP")]
mydata.blocked <- merge(mydata.blocked.dropgeo, geometry, by=c("ID"))

mydata.blocked.copy <- mydata.blocked

mydata.blocked$folds
##     [1] 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68
##    [25] 68 68 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46
##    [49] 46 46 71 71 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 71 71 46 46
##    [73] 46 46 46 46 46 46 46 46 46 46 46 46 46 46 71 46 46 46 46 46 46 46 46 46
##    [97] 46 46 46 46 46 46 46 46 46 71 46 46 46 46 46 46 46 46 46 46 46 46 71 71
##   [121] 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 71 71 71 71 71 71 46 46 46
##   [145] 46 46 46 46 46 46 46 46 46 46 46 71 71 71 71 71 71 46 46 46 46 46 46 46
##   [169] 46 46 46 46 46 46 46 46 71 71 71 71 71 71 71 71 46 46 46 46 46 46 46 46
##   [193] 46 46 46 46 46 46 46 66 66 66 66 71 71 71 71 71 46 46 46 46 46 46 46 46
##   [217] 46 46 46 46 46 46 46 66 66 66 66 66 66 66 71 71 71 71 71 71 71 71 46 46
##   [241] 46 46 46 46 46 46 46 66 66 66 66 66 66 66 66 66 71 71 71 71 71 71 71 71
##   [265] 71 71 71 71 46 46 46 46 46 46 46 49 49 49 49 66 66 66 66 66 66 66 66 66
##   [289] 66 66 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 46 46 48 48 48
##   [313] 49 49 49 49 49 49 66 66 66 66 66 66 66 66 66 66 71 71 71 71 71 71 71 71
##   [337] 71 71 71 71 71 71 71 71 46 46 48 48 48 49 49 49 49 49 49 49 49 66 66 66
##   [361] 66 66 66 66 66 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71
##   [385] 71 71 71 71 71 46 46 48 48 48 48 48 48 48 48 48 49 49 49 49 33 33 33 33
##   [409] 33 33 33 33 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83
##   [433] 83 83 83 83 83 83 83 78 78 77 77 77 77 77 77 76 33 33 33 33 33 33 33 33
##   [457] 33 33 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83
##   [481] 83 83 83 83 83 77 77 77 77 77 76 33 33 33 33 33 33 33 33 33 33 83 83 83
##   [505] 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83
##   [529] 83 83 83 83 83 83 77 77 77 77 77 77 76 33 33 33 33 33 33 33 33 33 33 33
##   [553] 33 33 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83
##   [577] 83 83 83 83 83 83 83 83 83 83 77 77 76 33 33 33 33 33 33 33 33 33 33 33
##   [601] 33 33 33 33 33 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83
##   [625] 83 83 83 83 83 83 83 83 83 83 83 83 83 83 77 76 76 76 33 33 33 33 33 33
##   [649] 33 33 33 33 33 33 33 33 33 33 33 83 83 83 83 83 83 83 83 83 83 83 83 83
##   [673] 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 76 76 76 76 33 33 33 33 33
##   [697] 33 33 33 33 33 33 33 33 33 33 33 33 33 33 83 83 83 83 83 83 83 83 83 83
##   [721] 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 76 76 76 33 33 33
##   [745] 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 83 83 83 83 83 83 83 83
##   [769] 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 76 76 76 33 33 33 33 33 33
##   [793] 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 83 83 83 83 83 83 83 83
##   [817] 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 76 76 33 33
##   [841] 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 83
##   [865] 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83
##   [889] 83 83 76 76 76 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33
##   [913] 33 33 33 33 33 33 33 33 33 33 33 83 83 83 83 83 83 83 83 83 83 83 83 83
##   [937] 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 76 76 76 76 33
##   [961] 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33
##   [985] 33 33 33 33 33 33 33 33 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83
##  [1009] 83 83 83 83 83 83 83 83 83 83 83 83 76 33 33 33 33 33 33 33 33 33 33 33
##  [1033] 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 83 83 83
##  [1057] 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 76 33
##  [1081] 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33
##  [1105] 33 33 33 33 33 33 33 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83
##  [1129] 83 83 83 83 83 83 83 83 76 76 33 33 33 33 33 33 33 33 33 33 33 33 33 33
##  [1153] 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 83 83 83 83 83 83
##  [1177] 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 76 76 76
##  [1201] 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33
##  [1225] 33 33 33 33 33 33 33 33 33 33 33 83 83 83 83 83 83 83 83 83 83 83 83 83
##  [1249] 83 83 83 83 83 83 83 83 83 83 83 83 83 76 76 76 33 33 33 33 33 33 33 33
##  [1273] 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33
##  [1297] 33 33 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83
##  [1321] 83 83 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33
##  [1345] 33 33 33 33 33 33 33 33 33 33 33 33 33 83 83 83 83 83 83 83 83 83 83 83
##  [1369] 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 76 76 33 33 33 33 33 33
##  [1393] 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33
##  [1417] 33 33 33 33 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83
##  [1441] 83 83 83 83 83 83 83 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33
##  [1465] 33 33 33 33 33 33 33 33 33 33 33 33 33 83 83 83 83 83 83 83 83 83 83 83
##  [1489] 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 33 33 33 33 33 33 33 33 33
##  [1513] 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 83 83 83
##  [1537] 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83
##  [1561] 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 83 83
##  [1585] 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 33
##  [1609] 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33
##  [1633] 33 33 33 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83
##  [1657] 83 83 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33
##  [1681] 33 33 33 33 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83
##  [1705] 83 83 83 83 83 83 83 83 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33
##  [1729] 33 33 33 33 33 33 33 33 33 33 33 33 33 83 83 83 83 83 83 83 83 83 83 83
##  [1753] 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 33 33 33 33 33 33
##  [1777] 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 83 83
##  [1801] 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83
##  [1825] 83 83 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33
##  [1849] 33 33 33 33 33 33 33 33 33 33 33 83 83 83 83 83 83 83 83 83 83 83 83 83
##  [1873] 83 83 83 83 83 83 83 83 83 83 83 83 83 33 33 33 33 33 33 33 33 33 33 33
##  [1897] 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 83 83 83 83
##  [1921] 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 33 33 33 33
##  [1945] 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33
##  [1969] 33 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83
##  [1993] 83 83 60 60 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33
##  [2017] 33 33 33 33 33 33 33 33 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83
##  [2041] 83 83 83 83 83 83 83 83 83 83 83 83 83 33 33 33 33 33 33 33 33 33 33 33
##  [2065] 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 83 83 83 83
##  [2089] 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 60 33 33 33
##  [2113] 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33
##  [2137] 33 33 33 33 33 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83
##  [2161] 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33
##  [2185] 33 33 33 33 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83
##  [2209] 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33
##  [2233] 33 33 33 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83
##  [2257] 83 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33
##  [2281] 33 33 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 33 33
##  [2305] 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33
##  [2329] 33 33 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 33 33 33 33 33
##  [2353] 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 83
##  [2377] 83 83 83 83 83 83 83 83 83 83 83 83 83 83 33 33 33 33 33 33 33 33 33 33
##  [2401] 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 83 83 83 83 83 83 83
##  [2425] 83 83 83 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33
##  [2449] 33 33 33 33 33 83 83 83 83 83 83 60 33 33 33 33 33 33 33 33 33 33 33 33
##  [2473] 33 33 33 33 33 33 33 33 33 33 83 83 83 83 83 83 83 83 60 60 33 33 33 33
##  [2497] 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 83 83 83 83 83 60 60
##  [2521] 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 83 83 83 83 83
##  [2545] 83 83 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 83
##  [2569] 83 83 83 83 83 83 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33
##  [2593] 33 33 33 83 83 83 83 83 83 83 83 33 33 33 33 33 33 33 33 33 33 33 33 33
##  [2617] 33 33 33 33 33 33 83 83 83 83 33 33 33 33 33 33 33 33 33 33 33 33 33 33
##  [2641] 33 33 33 33 33 33 33 33 83 83 83 83 83 60 33 33 33 33 33 33 33 33 33 33
##  [2665] 33 33 33 33 33 33 33 33 33 33 33 83 83 83 83 83 83 83 83 83 83 33 33 33
##  [2689] 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 83 83 83 83 83 83
##  [2713] 83 83 83 83 83 83 83 83 83 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33
##  [2737] 33 33 33 83 83 83 83 83 83 83 83 33 33 33 33 33 33 33 33 33 33 33 83 83
##  [2761] 83 83 83 83 83 83 83 83 83 83 83 33 33 33 33 33 33 33 33 33 33 33 83 83
##  [2785] 83 83 83 83 83 83 83 83 83 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33
##  [2809] 33 83 83 83 83 83 83 83 83 83 83 83 83 83 33 33 33 33 33 33 33 33 33 33
##  [2833] 33 33 33 33 33 33 33 33 33 33 33 33 33 83 83 83 83 83 83 83 83 83 83 83
##  [2857] 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 83 83 83 83
##  [2881] 83 83 83 83 83 83 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33
##  [2905] 83 83 83 83 83 83 83 83 83 83 83 33 33 33 33 33 33 33 33 33 33 33 33 33
##  [2929] 33 33 33 33 33 33 33 33 83 83 83 83 83 83 83 83 83 33 33 33 33 33 33 33
##  [2953] 33 33 33 33 33 33 33 33 33 33 33 33 33 83 83 83 83 83 83 83 83 83 83 83
##  [2977] 83 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 83 83 83 83 83 83
##  [3001] 83 83 83 83 83 83 83 83 83 83 33 33 33 33 33 33 33 33 33 33 33 33 33 33
##  [3025] 33 33 33 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 83 33 33 33 33 33
##  [3049] 33 33 33 33 33 33 33 33 33 33 33 83 83 83 83 83 83 83 83 83 83 83 83 31
##  [3073] 31 31 31 31 31 31 31 31 31 31 31 31 19 19 19 19 19 19 19 19 19 19 19 19
##  [3097] 19 19 19 19 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 19 19 19 19 19
##  [3121] 19 19 19 19 19 19 19 19 19 31 31 31 31 31 31 31 31 31 31 31 19 19 19 19
##  [3145] 19 19 19 19 19 31 31 31 31 31 31 31 31 31 31 19 19 19 19 19 19 19 19 19
##  [3169] 19 31 31 31 31 31 31 31 31 31 19 19 19 19 19 19 31 31 31 31 31 31 31 31
##  [3193] 31 31 31 19 19 19 19 19 19 19 19 19 31 31 31 31 31 31 31 31 31 31 31 31
##  [3217] 19 19 19 19 19 19 19 19 31 31 31 31 31 31 31 31 31 31 31 19 19 19 19 19
##  [3241] 19 31 31 31 31 31 31 31 19 19 19 19 19 19 19 31 31 31 31 31 31 31 31 31
##  [3265] 31 31 19 19 19 19 19 19 19 19 31 31 31 31 31 31 31 31 31 31 31 19 19 19
##  [3289] 19 19 19 19 19 19 31 31 31 31 31 31 31 31 31 31 31 31 19 19 19 19 19 19
##  [3313] 19 19 19 19 19 31 31 31 31 31 31 31 31 31 19 19 19 19 19 19 19 19 19 31
##  [3337] 31 31 31 31 31 31 19 19 19 19 19 19 19 19 19 19 19 19 31 31 31 31 31 31
##  [3361] 31 31 31 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 31 31 31 31 31 31
##  [3385] 31 31 31 31 19 19 19 19 19 19 19 19 19 19 19 31 31 31 31 31 31 31 31 19
##  [3409] 19 19 19 19 19 19 19 19 19 19 31 31 31 31 31 31 31 31 31 31 19 19 19 19
##  [3433] 19 19 19 19 19 19 31 31 31 31 31 31 31 31 31 31 31 19 19 19 19 19 19 31
##  [3457] 31 31 31 31 31 31 31 31 31 19 19 19 19 19 19 19 19 19 31 31 31 31 31 31
##  [3481] 31 31 31 31 31 31 31 19 19 19 19 19 19 19 19 31 31 31 31 31 31 31 31 31
##  [3505] 31 31 31 31 19 19 19 19 19 19 19 31 31 31 31 31 31 31 31 31 31 31 31 31
##  [3529] 31 19 19 19 19 19 19 19 19 19 31 31 31 31 31 31 31 31 31 31 31 31 31 19
##  [3553] 19 19 19 19 19 31 31 31 31 31 31 31 31 19 19 19 19 19 19 19 19 31 31 31
##  [3577] 31 31 31 31 19 19 19 19 31 31 31 31 31 31 19 19 19 19 19 19 19 31 31 31
##  [3601] 31 31 31 31 31 19 19 19 19 19 19 31 31 31 31 31 31 31 19 19 19 19 19 19
##  [3625] 31 31 31 31 31 19 19 19 19 31 31 31 31 19 31 31 31 31 31 19 19 31 31 31
##  [3649] 19 19 19 19 31 19 19 19 19 31 31 31 19 19 19 31 31 31 19 19 31 31 31 19
##  [3673] 19 19 19 31 31 31 19 19 19 31 31 31 19 19 19 19 31 31 31 19 19 19 19 19
##  [3697] 31 19 19 19 19 31 31 19 19 19 19 19 31 31 31 31 19 31 31 31 31 31 31 31
##  [3721] 31 31 31 31 31 31 31 31 31 19 19 31 31 31 31 31 19 19 19 19 19 19 31 31
##  [3745] 31 31 31 19 19 19 19 19 19 19 19 31 31 31 31 31 19 19 19 19 19 19 31 31
##  [3769] 19 19 19 19 19 19 19 19 19 19 31 31 31 31 19 19 19 19 19 19 19 19 19 19
##  [3793] 31 31 31 31 31 19 19 19 19 19 19 19 19 31 31 31 19 19 19 19 31 31 31 31
##  [3817] 31 19 19 19 19 19 19 31 31 31 31 31 19 19 19 19 31 31 31 31 31 31 31 31
##  [3841] 19 19 19 19 19 19 19 19 19 15 15 15 15 15 15 15 15 64 64 64 64 64 64 64
##  [3865] 64 64 64 64 15 15 15 15 15 15 15 15 15 64 64 64 64 64 64 64 64 64 64 64
##  [3889] 64 15 15 15 15 15 15 15 15 64 64 64 64 64 64 64 64 15 15 15 15 15 15 15
##  [3913] 15 64 64 64 64 64 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
##  [3937] 15 15 64 64 64 15 15 15 15 15 15 15 15 15 15 64 64 64 64 15 15 15 15 15
##  [3961] 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
##  [3985] 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
##  [4009] 15 15 64 64 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 64 64 64 64 15
##  [4033] 15 15 15 15 15 15 15 15 15 15 15 15 15 64 64 64 64 64 15 15 15 15 15 15
##  [4057] 15 15 15 15 15 15 15 15 15 64 64 64 15 15 15 15 15 15 15 15 15 15 15 15
##  [4081] 15 15 15 15 15 64 64 64 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
##  [4105] 15 15 15 15 64 64 64 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
##  [4129] 15 15 15 15 15 15 15 15 15 64 64 64 15 15 15 15 15 15 15 15 15 15 15 15
##  [4153] 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
##  [4177] 15 15 15 15 15 15 15 15 15 15 15 15 15 64 64 15 15 15 15 15 15 15 15 15
##  [4201] 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 64 15 15 15
##  [4225] 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
##  [4249] 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
##  [4273] 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
##  [4297] 15 15 15 15 17 3  15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
##  [4321] 15 15 15 15 15 15 15 15 15 17 3  93 15 15 15 15 15 15 15 15 15 15 15 15
##  [4345] 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 93 93 15 15 15 15 15 15
##  [4369] 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
##  [4393] 15 15 15 15 15 15 15 15 15 15 17 93 15 15 15 15 15 15 15 15 15 15 15 15
##  [4417] 15 15 15 15 15 15 15 15 17 93 15 15 15 15 15 15 15 15 15 15 15 15 15 15
##  [4441] 15 15 15 15 15 15 15 15 15 15 44 44 15 15 15 15 15 15 15 15 15 15 15 15
##  [4465] 15 15 15 15 15 15 15 15 15 15 44 3  15 15 15 15 15 15 15 15 15 15 15 15
##  [4489] 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
##  [4513] 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
##  [4537] 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
##  [4561] 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
##  [4585] 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
##  [4609] 15 15 15 15 15 15 15 3  3  15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
##  [4633] 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 3  3  15 15 15 15
##  [4657] 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
##  [4681] 15 3  3  3  3  15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
##  [4705] 15 15 15 15 15 15 15 15 15 15 15 15 3  3  3  3  3  15 15 15 15 15 15 15
##  [4729] 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 3  3  3 
##  [4753] 3  3  3  3  15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
##  [4777] 15 15 15 15 15 3  3  3  3  3  3  3  3  3  15 15 15 15 15 15 15 15 15 15
##  [4801] 15 15 15 15 15 15 15 15 15 15 15 15 15 44 3  3  3  3  3  3  3  3  93 15
##  [4825] 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
##  [4849] 15 3  3  3  3  3  3  3  3  3  3  3  15 15 15 15 15 15 15 15 15 15 15 15
##  [4873] 15 15 15 15 15 15 15 15 15 15 15 15 15 15 44 44 44 44 44 44 44 44 3  3 
##  [4897] 3  3  3  3  3  3  3  3  3  3  15 15 15 15 15 15 15 15 15 15 15 15 15 15
##  [4921] 15 15 15 15 15 15 15 15 15 15 15 15 15 15 44 44 44 44 44 44 44 44 44 44
##  [4945] 3  3  3  3  3  3  3  3  3  3  15 15 15 15 15 15 15 15 15 15 15 15 15 15
##  [4969] 15 15 15 15 15 15 44 44 44 44 44 44 44 44 3  3  3  3  3  3  3  3  3  3 
##  [4993] 3  3  3  3  3  15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 44
##  [5017] 44 44 44 44 3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  3  93 93 15 15
##  [5041] 15 15 15 15 15 15 15 15 15 15 15 15 44 44 44 44 3  3  3  3  3  3  3  3 
##  [5065] 3  3  3  3  3  3  3  3  93 93 15 15 15 15 15 15 15 15 15 15 15 15 15 44
##  [5089] 44 44 44 3  3  3  3  3  3  3  3  3  3  3  93 93 15 15 15 15 15 15 15 15
##  [5113] 15 15 44 44 44 44 44 3  3  3  3  3  3  3  93 93 93 15 15 15 15 15 15 15
##  [5137] 15 15 44 44 44 3  3  3  3  3  3  93 93 93 93 93 15 15 15 15 15 15 15 15
##  [5161] 15 15 15 15 15 15 15 44 44 3  3  3  3  3  3  3  93 93 15 15 15 15 15 15
##  [5185] 15 15 15 15 15 15 15 15 15 15 3  3  3  3  3  3  3  3  3  15 15 15 15 15
##  [5209] 15 15 15 15 15 15 15 15 15 15 15 15 3  3  3  3  3  3  3  3  3  3  3  3 
##  [5233] 3  15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 44 44 44 44
##  [5257] 44 44 44 3  3  3  3  3  3  3  3  3  3  3  3  3  3  15 15 15 15 15 15 15
##  [5281] 15 15 15 15 15 15 15 15 15 15 15 44 44 44 44 44 44 44 44 3  3  3  3  3 
##  [5305] 3  3  3  3  3  3  15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 44 44
##  [5329] 44 3  3  3  3  3  3  3  3  3  3  3  3  3  15 15 15 15 15 15 15 15 15 15
##  [5353] 15 15 44 44 44 3  3  3  3  3  3  3  3  3  3  3  15 15 15 15 15 15 15 15
##  [5377] 15 15 61 61 61 18 18 18 18 18 18 18 18 18 18 18 18 18 37 37 37 37 37 37
##  [5401] 37 37 37 37 61 61 61 61 18 18 18 18 18 18 18 18 18 18 18 37 37 37 37 37
##  [5425] 37 37 61 61 61 18 18 18 18 18 18 18 18 18 18 37 37 37 37 37 61 18 18 18
##  [5449] 18 92 92 61 61 18 18 18 18 18 18 18 18 37 37 37 61 61 61 18 18 18 18 18
##  [5473] 18 18 18 37 37 37 37 37 37 1  1  61 61 18 18 18 18 18 18 18 37 37 37 37
##  [5497] 37 37 37 61 61 61 61 18 18 37 37 37 37 37 37 37 1  61 61 18 18 18 18 37
##  [5521] 37 37 37 37 37 37 37 37 37 37 1  1  1  1  61 61 18 18 18 18 18 37 37 37
##  [5545] 37 37 37 37 37 37 37 37 37 37 1  1  1  1  1  1  18 18 37 37 37 37 37 37
##  [5569] 37 37 37 37 37 1  1  1  18 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37
##  [5593] 37 37 37 37 1  37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 1  18 37
##  [5617] 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37
##  [5641] 37 61 61 18 18 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 61
##  [5665] 61 18 18 18 18 37 37 37 37 37 37 37 37 37 61 61 61 61 18 37 37 37 37 37
##  [5689] 37 37 37 37 37 37 37 37 37 61 61 61 37 37 37 37 37 37 37 37 37 37 37 37
##  [5713] 37 37 37 61 61 61 61 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 61 61
##  [5737] 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37
##  [5761] 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37
##  [5785] 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37
##  [5809] 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37
##  [5833] 37 37 37 37 37 37 37 37 37 1  37 37 37 37 37 37 37 37 37 37 37 37 37 37
##  [5857] 37 37 37 37 37 37 37 1  37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37
##  [5881] 37 37 37 37 37 37 37 61 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37
##  [5905] 37 37 37 37 61 61 37 37 37 37 37 37 37 37 37 37 37 37 37 37 61 61 37 37
##  [5929] 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37
##  [5953] 37 37 37 37 37 37 37 37 37 37 37 37 37 61 61 61 37 37 37 37 37 37 37 37
##  [5977] 37 37 37 37 61 61 61 37 37 37 37 37 37 37 37 37 37 37 61 37 37 37 37 37
##  [6001] 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37
##  [6025] 37 5  5  37 37 37 37 37 37 37 37 37 37 37 37 5  5  37 37 37 37 37 37 37
##  [6049] 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37
##  [6073] 37 37 37 37 37 37 37 37 5  37 37 37 37 37 37 37 37 37 37 37 37 37 5  5 
##  [6097] 5  37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 5  5  5  5  5  5  5  37
##  [6121] 37 37 37 37 37 37 37 37 37 37 37 37 37 37 5  5  5  5  5  5  5  5  37 37
##  [6145] 37 37 37 37 37 37 37 37 37 37 37 37 5  5  5  5  5  37 37 37 37 37 37 37
##  [6169] 37 37 37 37 37 37 37 5  5  5  37 37 37 37 37 37 37 37 37 37 37 37 37 37
##  [6193] 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37
##  [6217] 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37
##  [6241] 37 37 37 37 61 37 37 37 37 37 37 37 37 37 37 37 37 37 37 61 61 37 37 37
##  [6265] 37 37 37 37 37 37 37 37 37 37 37 37 37 61 61 37 37 37 37 37 37 37 37 37
##  [6289] 37 37 37 37 37 37 37 61 61 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37
##  [6313] 37 5  61 61 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37
##  [6337] 61 61 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 61 61
##  [6361] 61 61 61 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37
##  [6385] 37 37 5  90 90 90 90 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23
##  [6409] 23 23 23 23 23 45 90 90 90 90 23 23 23 23 23 23 23 23 23 23 23 23 23 23
##  [6433] 23 23 23 23 23 23 23 45 90 90 90 23 23 23 23 23 23 23 23 23 23 23 23 23
##  [6457] 23 23 23 23 23 90 90 90 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23
##  [6481] 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23
##  [6505] 23 23 23 23 23 23 23 23 23 23 23 23 23 23 45 45 45 45 45 23 23 23 23 23
##  [6529] 23 23 23 23 23 23 23 23 23 23 23 23 23 45 45 45 45 23 23 23 23 23 23 23
##  [6553] 23 23 23 23 23 23 23 23 23 45 23 23 23 23 23 23 23 23 23 23 23 23 23 23
##  [6577] 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23
##  [6601] 23 23 23 23 23 23 23 23 23 23 23 45 23 23 23 23 23 23 23 23 23 23 23 23
##  [6625] 23 23 23 23 23 23 23 23 23 81 23 23 23 23 23 23 23 23 23 23 23 23 23 23
##  [6649] 23 23 23 23 23 23 23 81 81 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23
##  [6673] 23 23 23 23 23 45 81 81 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23
##  [6697] 23 81 81 81 81 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23
##  [6721] 23 23 23 23 23 23 45 81 81 81 81 23 23 23 23 23 23 23 23 23 23 23 23 23
##  [6745] 23 23 23 23 23 23 23 23 23 81 81 81 81 81 23 23 23 23 23 23 23 23 23 23
##  [6769] 23 23 23 23 23 23 23 23 23 81 81 81 81 81 81 81 23 23 23 23 23 23 23 23
##  [6793] 23 23 23 23 23 23 23 23 23 23 23 81 81 81 81 81 81 81 81 23 23 23 23 23
##  [6817] 23 23 23 23 23 23 23 23 23 23 23 23 23 23 8  81 81 81 81 81 81 81 81 23
##  [6841] 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 8  81 81 81 81 81
##  [6865] 81 81 81 81 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 81 81
##  [6889] 81 81 81 81 81 81 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23
##  [6913] 23 81 81 81 81 81 81 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23
##  [6937] 81 81 81 81 81 81 81 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23
##  [6961] 23 23 23 23 81 81 81 81 81 81 81 81 81 23 23 23 23 23 23 23 23 23 23 23
##  [6985] 23 23 23 23 23 23 23 23 23 23 23 81 81 81 81 81 81 81 81 81 81 81 81 81
##  [7009] 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 81 81 81 81 81
##  [7033] 81 81 81 81 81 81 81 81 81 81 23 23 23 23 23 23 23 23 23 23 23 23 23 23
##  [7057] 23 23 23 23 23 23 23 23 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81
##  [7081] 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 81 81 81 81
##  [7105] 81 81 81 81 81 81 81 81 81 81 81 23 23 23 23 23 23 23 23 23 23 23 23 23
##  [7129] 23 23 23 23 81 81 81 81 81 81 81 81 81 81 23 23 23 23 23 23 23 23 23 23
##  [7153] 23 23 23 23 23 23 23 8  8  90 90 81 81 81 81 81 81 81 81 81 81 23 23 23
##  [7177] 23 23 23 23 23 23 23 23 23 23 23 23 23 23 8  8  8  8  8  90 81 81 81 81
##  [7201] 81 81 81 81 81 81 81 23 23 23 23 23 23 23 23 23 23 23 23 23 23 8  8  8 
##  [7225] 8  8  8  8  90 90 90 81 81 81 81 81 81 81 81 81 81 81 81 23 23 23 23 23
##  [7249] 23 23 23 23 23 23 23 23 8  8  8  8  90 90 81 81 81 81 81 81 81 81 81 81
##  [7273] 81 81 81 81 23 23 23 23 23 23 23 23 23 23 23 23 8  90 81 81 81 81 81 81
##  [7297] 81 81 81 81 23 23 23 23 23 23 23 23 23 23 8  8  8  8  8  8  8  81 81 81
##  [7321] 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 23 23 23 23 23 23 23 23 23
##  [7345] 23 23 8  8  8  8  8  81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81
##  [7369] 81 81 81 81 23 23 23 23 23 23 23 23 23 23 23 8  8  8  8  81 81 81 81 81
##  [7393] 81 81 81 81 81 81 81 81 81 81 81 81 81 81 23 23 23 23 23 23 81 81 81 81
##  [7417] 81 81 81 81 81 81 81 81 81 81 81 81 81 81 23 23 23 23 23 23 23 8  81 81
##  [7441] 81 81 81 81 81 81 81 81 81 81 81 81 81 23 23 23 23 23 23 23 8  81 81 81
##  [7465] 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 23 23 23 23 23 23
##  [7489] 8  8  8  81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81
##  [7513] 81 81 23 23 23 23 23 8  81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81
##  [7537] 81 81 81 81 81 81 23 23 23 23 23 8  8  8  81 81 81 81 81 81 81 81 81 81
##  [7561] 81 81 81 81 81 81 81 81 81 81 81 81 81 23 23 23 23 23 81 81 81 81 81 81
##  [7585] 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 23 23 23 23
##  [7609] 23 23 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81
##  [7633] 81 81 81 81 81 23 23 23 23 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81
##  [7657] 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 23 23 23 81 81
##  [7681] 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81
##  [7705] 81 81 81 81 81 81 81 81 23 23 23 67 81 81 81 81 81 81 81 81 81 81 81 81
##  [7729] 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81
##  [7753] 23 23 23 23 8  81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81
##  [7777] 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 23 23 23 23 8 
##  [7801] 8  8  8  81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81
##  [7825] 81 81 81 81 81 81 81 81 81 81 81 81 81 23 23 23 23 8  8  8  8  8  8  8 
##  [7849] 8  8  8  8  8  8  81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81
##  [7873] 81 81 81 81 81 81 81 81 81 81 81 81 81 81 23 23 8  8  8  8  8  8  8  8 
##  [7897] 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81
##  [7921] 81 81 81 81 81 81 81 81 81 81 81 81 81 8  8  8  8  8  8  8  79 81 81 81
##  [7945] 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81
##  [7969] 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 8  8  8  8  8  8  8  8  8 
##  [7993] 8  79 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81
##  [8017] 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 8 
##  [8041] 8  8  8  79 79 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81
##  [8065] 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 8  8 
##  [8089] 8  8  79 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81
##  [8113] 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 8  8  79 79 79
##  [8137] 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81
##  [8161] 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 11 11 79
##  [8185] 79 79 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81
##  [8209] 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81 11 95 95 95
##  [8233] 95 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74
##  [8257] 74 74 74 74 74 74 74 74 74 74 74 28 2  95 95 95 95 95 95 74 74 74 74 74
##  [8281] 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74
##  [8305] 74 74 74 74 74 28 2  2  95 95 95 95 95 95 95 74 74 74 74 74 74 74 74 74
##  [8329] 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 28 2  2  2  95 95
##  [8353] 95 95 95 95 95 95 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74
##  [8377] 74 74 74 74 74 74 74 74 74 74 74 28 28 2  95 95 95 95 95 95 95 74 74 74
##  [8401] 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74
##  [8425] 74 74 74 74 28 28 28 28 95 95 95 95 95 95 95 74 74 74 74 74 74 74 74 74
##  [8449] 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 28 28 28 28 28 2  95 95 95
##  [8473] 95 95 95 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74
##  [8497] 74 28 28 28 28 28 28 2  95 95 95 95 95 74 74 74 74 74 74 74 74 74 74 74
##  [8521] 74 74 74 74 74 74 74 74 74 74 74 74 28 28 28 28 28 28 28 2  95 95 95 95
##  [8545] 95 95 95 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74
##  [8569] 74 74 74 28 28 28 28 28 28 28 28 2  95 95 95 95 95 95 95 95 95 74 74 74
##  [8593] 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 28 28 28 28
##  [8617] 28 28 28 28 2  2  85 95 95 95 95 95 95 95 95 95 74 74 74 74 74 74 74 74
##  [8641] 74 74 74 74 74 74 74 74 74 74 74 74 74 28 28 28 28 28 28 28 28 2  85 85
##  [8665] 85 95 95 95 95 95 95 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74 74
##  [8689] 74 28 28 28 28 28 28 28 28 28 85 85 95 74 74 74 74 74 74 74 74 74 74 74
##  [8713] 74 28 28 28 28 28 28 28 28 85 85 95 95 74 74 74 74 74 74 28 28 28 28 28
##  [8737] 28 28 85 85 95 95 74 74 74 74 74 74 74 74 74 28 28 28 85 85 95 95 95 95
##  [8761] 95 95 95 95 95 74 74 74 74 74 74 74 74 74 74 85 85 95 95 95 95 95 95 95
##  [8785] 95 74 74 74 74 74 74 85 85 95 95 95 95 95 95 95 95 95 95 95 95 95 74 74
##  [8809] 74 74 74 74 28 28 28 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95
##  [8833] 74 74 74 74 28 28 28 28 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95
##  [8857] 95 95 95 95 74 74 74 28 28 28 28 95 95 95 95 95 95 95 95 95 95 95 95 95
##  [8881] 95 95 95 95 74 74 74 28 28 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95
##  [8905] 95 95 74 74 28 28 28 85 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95
##  [8929] 95 28 28 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 28 28 95
##  [8953] 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95
##  [8977] 28 28 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95
##  [9001] 95 95 95 95 42 85 85 85 85 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95
##  [9025] 95 95 95 95 95 95 95 95 95 95 95 95 95 95 85 85 85 85 85 85 95 95 95 95
##  [9049] 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95
##  [9073] 95 28 28 28 28 28 28 85 85 85 85 95 95 95 95 95 95 95 95 95 95 95 95 95
##  [9097] 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 28 28 28 28 28 28 28
##  [9121] 28 28 85 85 85 85 85 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95
##  [9145] 95 95 95 95 95 95 95 95 28 28 28 28 28 28 95 95 95 95 95 95 95 95 95 95
##  [9169] 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 28 28 28 28 28 42
##  [9193] 85 85 85 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95
##  [9217] 95 95 95 95 95 95 95 28 28 28 28 28 42 85 85 95 95 95 95 95 95 95 95 95
##  [9241] 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 28 28 28
##  [9265] 28 85 85 85 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95
##  [9289] 95 95 95 95 95 95 95 95 74 74 28 28 85 85 85 95 95 95 95 95 95 95 95 95
##  [9313] 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 74
##  [9337] 74 28 28 42 85 85 85 85 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95
##  [9361] 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 74 74 74 42 85 85 36 95
##  [9385] 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95
##  [9409] 95 95 95 95 95 95 95 74 74 74 28 36 95 95 95 95 95 95 95 95 95 95 95 95
##  [9433] 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 28 28 42 95 95 95
##  [9457] 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95
##  [9481] 28 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95
##  [9505] 95 95 28 85 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95
##  [9529] 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95
##  [9553] 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95
##  [9577] 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 85 95
##  [9601] 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95
##  [9625] 95 95 85 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95
##  [9649] 95 95 95 95 95 95 95 85 85 85 95 95 95 95 95 95 95 95 95 95 95 95 95 95
##  [9673] 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 85 85 85 85 85 85 85 14
##  [9697] 14 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95
##  [9721] 95 95 95 85 14 14 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95
##  [9745] 95 95 95 95 95 95 95 95 95 95 95 85 85 14 14 14 95 95 95 95 95 95 95 95
##  [9769] 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 28 85 85 85 85 85 14 14
##  [9793] 14 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95
##  [9817] 95 95 95 42 42 85 85 14 14 14 95 95 95 95 95 95 95 95 95 95 95 95 95 95
##  [9841] 95 95 95 95 95 95 95 95 85 85 85 85 85 85 14 14 14 14 95 95 95 95 95 95
##  [9865] 95 95 95 95 95 95 95 95 95 85 85 85 85 85 85 14 14 95 95 95 95 95 95 95
##  [9889] 95 95 95 95 95 95 95 85 85 14 95 95 95 95 95 95 95 95 95 95 95 95 95 85
##  [9913] 85 85 85 95 95 95 95 95 95 95 95 95 95 95 95 95 85 85 85 85 85 85 14 14
##  [9937] 14 14 14 14 95 95 95 95 95 95 95 95 95 95 95 42 85 85 85 85 14 14 14 14
##  [9961] 14 14 14 14 95 95 95 95 95 95 95 95 95 85 85 14 14 14 14 14 14 95 95 95
##  [9985] 95 95 58 72 72 72 72 25 25 25 25 25 25 58 72 72 72 72 25 25 25 58 72 72
## [10009] 72 72 25 25 25 58 24 72 72 72 72 25 76 76 24 72 72 72 25 25 76 76 72 25
## [10033] 25 76 76 25 24 24 76 76 24 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58
## [10057] 21 21 58 58 58 58 58 58 21 58 58 72 72 72 72 72 72 65 65 65 65 65 65 65
## [10081] 72 72 65 65 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 72 24
## [10105] 72 72 72 72 24 24 72 72 72 72 72 24 24 24 72 72 72 72 72 72 72 72 72 72
## [10129] 24 24 72 72 72 72 72 24 24 72 72 21 72 72 72 63 63 22 22 22 22 62 22 22
## [10153] 62 62 62 66 66 22 22 22 22 62 62 62 62 66 66 66 22 22 22 22 22 22 22 22
## [10177] 22 62 62 62 62 62 62 62 62 62 62 62 66 66 66 66 22 22 22 22 22 22 22 22
## [10201] 22 22 22 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62
## [10225] 62 62 66 66 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 62 62 62 62
## [10249] 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62
## [10273] 62 62 62 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 62 62 62 62 62 62
## [10297] 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62
## [10321] 62 62 62 22 22 22 22 22 22 22 22 22 22 22 22 22 22 62 62 62 62 62 62 62
## [10345] 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 22
## [10369] 22 22 22 22 22 22 22 22 22 22 62 62 62 62 62 62 62 62 62 62 62 62 62 62
## [10393] 62 62 62 62 62 62 62 62 62 62 62 62 22 22 22 22 22 22 22 22 22 22 22 22
## [10417] 22 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62
## [10441] 62 62 62 62 62 62 62 62 62 62 62 22 22 22 22 22 22 22 62 62 62 62 62 62
## [10465] 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62
## [10489] 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62
## [10513] 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62
## [10537] 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62
## [10561] 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62
## [10585] 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62
## [10609] 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62
## [10633] 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62
## [10657] 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62
## [10681] 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62
## [10705] 62 62 62 62 62 62 62 62 62 62 62 26 26 26 62 62 62 62 62 62 62 62 62 62
## [10729] 26 26 62 62 62 62 62 62 62 62 62 62 62 62 26 26 62 20 62 26 26 26 26 26
## [10753] 26 26 94 94 26 26 26 26 26 94 94 26 26 26 26 26 26 26 26 26 26 26 26 26
## [10777] 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26
## [10801] 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26
## [10825] 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26
## [10849] 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26
## [10873] 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 94 26 26 26 26
## [10897] 22 22 26 26 26 26 26 26 26 26 26 26 26 26 22 22 26 26 26 26 26 26 26 26
## [10921] 26 26 26 26 51 51 89 89 89 89 89 89 89 89 89 89 51 51 89 89 89 89 89 89
## [10945] 89 89 89 51 89 89 89 89 89 89 89 89 89 51 51 51 51 89 89 89 89 89 89 89
## [10969] 89 89 89 89 51 51 51 51 89 89 89 89 89 89 89 89 89 89 89 89 89 89 51 51
## [10993] 51 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89
## [11017] 89 89 89 89 51 51 51 69 69 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89
## [11041] 89 51 51 51 51 69 69 89 89 89 89 89 89 89 89 89 51 51 51 89 89 89 89 89
## [11065] 89 89 89 89 89 51 51 51 51 51 89 89 89 89 89 89 89 89 89 89 89 89 89 89
## [11089] 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89 89
## [11113] 89 89 89 69 89 89 89 89 89 89 69 69 89 89 89 89 89 89 69 69 69 69 69 89
## [11137] 89 89 89 89 89 89 69 69 69 69 69 69 69 69 89 89 89 89 89 89 89 89 89 89
## [11161] 89 69 69 69 69 69 69 69 69 89 89 89 89 89 89 89 89 89 89 89 27 27 27 27
## [11185] 69 69 69 69 69 89 89 89 89 89 89 89 6  6  6  6  27 27 27 27 27 27 27 27
## [11209] 27 69 69 69 69 69 69 89 89 6  6  6  6  6  6  60 27 27 27 27 27 27 27 69
## [11233] 69 69 69 69 69 69 69 69 89 89 89 89 89 6  6  6  6  6  6  60 60 60 60 60
## [11257] 60 60 60 60 27 27 27 27 27 27 27 69 69 69 69 69 69 69 69 69 69 89 89 89
## [11281] 89 89 89 6  6  6  6  6  6  6  60 60 60 60 60 60 60 60 27 27 27 27 27 69
## [11305] 69 69 69 69 69 69 89 89 89 89 89 89 89 6  6  6  60 60 60 60 60 60 60 27
## [11329] 27 27 27 69 69 69 69 69 69 69 89 89 89 89 6  6  6  6  6  6  60 60 60 60
## [11353] 60 60 27 27 27 69 69 69 69 69 69 69 89 89 89 89 6  6  6  60 60 60 60 60
## [11377] 51 69 69 69 69 69 69 69 89 89 89 89 6  6  6  60 60 60 51 69 69 69 69 69
## [11401] 89 89 89 89 89 89 6  6  6  6  6  6  6  60 60 51 51 69 69 69 69 69 69 69
## [11425] 69 69 89 89 89 89 89 89 6  6  6  60 60 60 60 51 69 69 69 69 69 89 89 89
## [11449] 89 6  60 60 60 60 60 60 60 60 69 69 69 69 69 89 89 89 89 60 60 60 60 60
## [11473] 60 60 60 60 60 69 69 69 69 69 69 89 89 6  60 60 60 69 69 89 6  60 60 60
## [11497] 60 69 69 69 69 89 60 60 60 60 60 69 69 69 69 89 60 60 60 60 60 60 60 60
## [11521] 35 35 69 69 69 69 69 69 69 69 60 60 60 60 60 60 60 60 60 35 69 69 69 69
## [11545] 69 69 69 69 60 60 60 60 60 60 60 69 69 69 69 69 69 69 69 69 60 60 60 60
## [11569] 60 60 60 35 51 69 69 69 69 69 69 69 60 60 60 60 51 69 69 69 69 69 69 60
## [11593] 60 69 69 69 69 69 69 69 69 35 35 35 35 35 35 35 35 69 69 69 69 69 69 69
## [11617] 69 89 89 89 35 35 69 69 69 69 69 69 89 89 60 60 69 69 69 89 89 89 60 60
## [11641] 60 60 35 35 69 69 69 69 89 89 89 60 60 35 35 69 89 89 89 60 60 69 60 60
## [11665] 35 35 69 69 69 60 60 35 69 69 69 69 60 60 69 69 69 69 69 60 60 51 51 69
## [11689] 69 69 69 89 89 89 60 60 60 51 51 69 69 69 69 89 89 89 60 69 69 69 89 89
## [11713] 60 60 60 60 60 60 51 69 69 69 89 89 6  60 60 60 60 60 60 60 69 69 89 89
## [11737] 89 48 48 48 48 48 6  6  6  6  60 60 60 60 60 60 60 60 60 69 69 69 89 89
## [11761] 48 48 48 48 48 48 48 48 6  6  6  6  60 60 60 60 51 51 51 51 69 69 69 48
## [11785] 48 48 48 48 48 48 48 48 6  6  6  6  6  6  60 60 60 60 68 68 71 71 71 71
## [11809] 71 71 71 71 71 40 40 40 80 80 80 80 80 80 49 49 49 49 49 49 91 91 91 91
## [11833] 91 68 68 71 71 71 71 71 71 71 40 40 40 40 40 40 80 80 80 80 80 80 49 49
## [11857] 49 49 49 49 91 91 91 91 68 68 71 71 71 40 40 40 40 40 40 40 40 40 40 40
## [11881] 80 80 80 80 80 80 49 49 49 49 49 49 49 49 91 91 91 91 68 68 68 68 68 71
## [11905] 71 40 40 40 40 40 40 40 40 40 40 40 40 80 80 80 80 80 49 49 49 49 49 49
## [11929] 49 49 49 49 49 49 91 91 91 91 91 68 68 68 68 68 68 68 68 68 71 71 71 71
## [11953] 71 71 40 40 40 40 40 40 40 40 40 40 80 80 80 80 80 80 49 49 49 49 49 49
## [11977] 49 49 49 49 49 49 49 49 49 91 91 91 68 68 68 68 68 68 68 68 68 68 71 71
## [12001] 71 71 40 40 40 40 40 40 40 40 40 80 80 80 80 80 80 49 49 49 49 49 49 49
## [12025] 49 49 49 49 49 49 49 68 68 68 68 68 68 68 68 68 68 68 68 68 71 71 71 71
## [12049] 71 71 40 40 40 40 40 40 40 40 40 40 40 40 80 80 80 80 80 80 80 80 49 49
## [12073] 49 49 49 49 49 49 49 49 49 49 49 49 49 68 68 68 68 68 68 68 68 68 68 71
## [12097] 71 71 71 71 71 71 71 71 40 40 40 40 40 40 40 40 40 40 80 80 80 80 49 49
## [12121] 49 49 49 49 49 49 49 49 49 49 49 49 49 68 68 68 68 68 68 68 68 68 68 68
## [12145] 68 68 68 68 68 68 68 68 68 68 68 71 71 71 71 71 71 71 71 71 40 40 40 40
## [12169] 40 40 40 40 80 80 80 80 49 49 49 49 49 49 49 49 49 68 68 68 68 68 68 68
## [12193] 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 71
## [12217] 71 71 71 71 71 71 71 71 71 71 40 40 40 40 40 40 40 40 40 40 40 40 40 40
## [12241] 80 80 80 80 80 49 49 49 49 49 49 49 49 68 68 68 68 68 68 68 68 68 68 68
## [12265] 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 71 71 71 71 71 71 71
## [12289] 71 71 40 40 40 40 40 40 40 40 40 40 80 80 80 80 80 49 49 49 49 68 68 68
## [12313] 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68
## [12337] 68 68 68 68 68 68 71 71 71 71 71 71 71 71 71 71 71 71 71 40 40 40 40 40
## [12361] 40 40 40 40 40 40 40 40 40 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68
## [12385] 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68
## [12409] 68 68 68 71 71 71 71 71 71 71 71 71 71 71 71 71 40 40 40 40 40 40 40 40
## [12433] 40 40 40 40 40 40 40 40 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68
## [12457] 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 71 71 71 71 71
## [12481] 71 71 71 71 71 71 71 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40
## [12505] 30 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68
## [12529] 68 68 68 68 68 68 68 68 68 68 68 71 71 71 71 71 71 71 71 71 71 71 71 40
## [12553] 40 40 40 40 40 40 40 40 40 40 40 40 40 40 80 80 80 80 80 80 49 49 49 49
## [12577] 49 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68
## [12601] 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 71 71 71 71 71 71 71 71
## [12625] 71 71 71 71 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 86 86 80 80
## [12649] 80 80 80 80 80 49 49 49 49 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68
## [12673] 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68
## [12697] 68 68 71 71 71 71 71 71 71 71 71 71 71 71 71 40 40 40 40 40 40 40 40 40
## [12721] 40 40 40 40 40 40 40 86 86 86 80 80 80 80 80 80 80 80 49 49 49 68 68 68
## [12745] 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68
## [12769] 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 71 71 71 71 71
## [12793] 71 71 71 40 40 40 40 40 40 40 40 40 40 40 40 40 40 86 80 80 80 80 80 80
## [12817] 80 80 80 49 49 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68
## [12841] 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68
## [12865] 68 68 68 68 68 68 68 68 68 68 68 68 68 68 71 71 71 71 71 71 71 71 71 71
## [12889] 40 40 40 40 40 40 40 40 40 40 86 80 80 80 80 80 80 49 49 68 68 68 68 68
## [12913] 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68
## [12937] 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 71 71 71 71 40
## [12961] 40 40 40 40 40 40 40 80 80 80 80 80 80 80 80 49 49 49 49 49 49 49 49 49
## [12985] 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68
## [13009] 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68
## [13033] 68 68 68 68 68 68 71 71 40 40 40 40 40 40 40 40 40 80 80 80 80 80 80 80
## [13057] 80 49 49 49 49 49 49 49 49 49 49 49 49 68 68 68 68 68 68 68 68 68 68 68
## [13081] 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68
## [13105] 68 68 68 68 68 68 68 68 68 68 68 68 68 71 40 40 40 40 40 40 40 40 40 40
## [13129] 40 40 40 40 40 80 80 80 80 80 80 80 80 49 49 49 49 49 49 49 49 49 49 49
## [13153] 49 49 49 49 49 49 49 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68
## [13177] 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 71 71
## [13201] 71 71 71 71 71 71 40 40 40 40 40 40 40 40 40 40 40 40 40 80 80 80 80 80
## [13225] 80 80 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49
## [13249] 91 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68
## [13273] 68 68 68 68 68 68 68 68 68 68 68 68 71 71 71 71 71 71 71 71 71 71 71 40
## [13297] 40 40 40 40 40 40 40 40 40 40 40 40 40 40 86 80 80 80 80 49 49 49 49 49
## [13321] 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 91 91 91 91 68 68 68 68
## [13345] 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 71 71 71 71 71 71 71 71 71
## [13369] 71 71 71 40 40 40 40 40 40 40 40 40 40 86 80 80 80 80 49 49 49 49 49 49
## [13393] 49 49 49 49 49 49 49 49 49 49 49 49 49 49 91 91 91 91 68 68 68 68 68 71
## [13417] 71 71 71 71 71 71 71 71 71 71 71 71 40 40 40 40 40 40 40 40 40 40 40 40
## [13441] 40 40 80 80 80 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 91 68
## [13465] 71 71 71 71 71 71 71 71 71 71 71 71 71 40 40 40 40 40 40 40 40 40 40 40
## [13489] 40 80 80 80 80 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 68
## [13513] 71 71 71 71 71 71 71 71 71 71 71 71 71 40 40 40 40 40 40 40 40 40 40 40
## [13537] 40 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 91 91 68 68 68
## [13561] 68 71 71 71 71 71 71 71 71 71 40 40 40 40 40 40 40 40 40 40 40 49 49 49
## [13585] 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 68 68 68 68 68 68
## [13609] 68 68 68 68 68 68 68 71 71 71 71 71 71 71 71 71 71 40 40 40 40 40 40 40
## [13633] 40 40 40 40 40 40 40 86 86 86 80 49 49 49 49 49 49 49 49 49 49 49 49 49
## [13657] 49 49 49 49 49 49 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68
## [13681] 71 71 71 71 71 71 71 71 71 71 40 40 40 40 40 40 40 40 40 40 40 40 40 86
## [13705] 86 86 80 80 80 49 49 49 49 49 49 49 49 49 49 49 49 49 91 91 68 68 68 68
## [13729] 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 71 71 71 71 71 71 71
## [13753] 71 40 40 40 40 40 40 40 40 40 40 40 86 86 80 80 49 49 49 49 49 49 49 49
## [13777] 49 49 49 49 49 49 49 49 49 49 49 49 49 91 91 68 68 68 68 68 68 68 68 68
## [13801] 68 68 68 68 68 68 68 68 68 68 68 68 68 68 71 71 71 71 71 71 71 71 71 71
## [13825] 71 40 40 40 40 40 40 40 40 40 40 40 80 49 49 49 49 49 49 49 49 49 49 49
## [13849] 49 49 49 49 49 49 49 49 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68
## [13873] 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 71 71 71 71 71 71 71 71 71
## [13897] 71 71 71 40 40 40 40 40 40 40 40 40 80 80 80 80 49 49 49 49 49 49 49 49
## [13921] 49 49 49 49 49 49 49 49 49 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68
## [13945] 68 68 68 68 68 68 68 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71
## [13969] 71 40 40 40 40 40 40 40 40 40 40 40 86 86 80 80 80 80 80 80 49 49 49 49
## [13993] 49 49 49 49 49 49 49 49 49 49 49 91 68 68 68 68 68 68 68 68 68 68 68 68
## [14017] 68 68 68 68 68 68 68 68 68 68 68 68 68 71 71 71 71 71 71 71 71 71 71 71
## [14041] 71 71 71 71 40 40 40 40 40 40 40 40 40 40 40 40 80 80 80 80 80 80 49 49
## [14065] 49 49 49 49 49 49 49 49 49 49 49 49 68 68 68 68 68 68 68 68 68 68 68 68
## [14089] 68 68 68 68 68 68 68 68 68 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71
## [14113] 71 71 71 71 71 71 40 40 40 40 40 40 40 40 40 40 40 40 80 80 80 80 80 49
## [14137] 49 49 49 49 49 49 49 49 49 49 68 68 68 68 68 68 68 68 68 68 68 68 68 68
## [14161] 68 68 68 68 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71
## [14185] 71 40 40 40 40 40 40 40 40 40 40 40 80 80 80 80 49 49 49 49 49 49 49 49
## [14209] 49 49 49 49 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 71 71
## [14233] 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 40 40 40 40
## [14257] 40 40 40 40 40 80 80 80 80 49 49 49 49 49 49 49 49 49 49 68 68 68 68 68
## [14281] 68 68 68 68 68 68 68 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71
## [14305] 71 71 71 71 71 40 40 40 40 40 80 80 80 49 49 49 49 49 49 49 49 49 49 30
## [14329] 30 30 68 68 68 68 68 68 68 68 68 68 68 71 71 71 71 71 71 71 71 71 71 71
## [14353] 71 71 71 71 71 71 71 71 71 71 71 40 40 40 40 40 80 80 80 49 49 49 49 49
## [14377] 49 49 49 49 49 49 49 30 30 30 30 30 30 68 68 68 68 68 68 68 71 71 71 71
## [14401] 71 71 71 71 71 71 71 71 71 71 71 71 40 40 40 40 40 40 80 80 80 80 80 80
## [14425] 80 49 49 49 49 49 49 49 49 49 49 49 49 49 30 30 30 68 68 68 68 68 68 68
## [14449] 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 40 40 40 40 86
## [14473] 86 86 80 80 80 49 49 49 49 49 49 49 49 49 49 30 30 30 30 30 68 68 68 68
## [14497] 68 68 68 68 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 40 40
## [14521] 40 86 86 86 86 86 80 80 80 49 49 49 49 49 49 49 49 49 49 49 49 49 30 30
## [14545] 30 30 30 68 68 68 68 68 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71
## [14569] 71 71 71 71 40 40 40 86 86 86 86 86 49 49 49 49 49 49 49 49 49 49 49 30
## [14593] 30 30 30 68 68 68 68 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71
## [14617] 71 71 71 71 71 71 71 71 40 40 40 86 86 86 86 86 86 86 86 49 49 49 49 49
## [14641] 49 49 49 49 49 49 30 30 30 30 30 68 68 68 68 68 68 71 71 71 71 71 71 71
## [14665] 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 86 86 86 86
## [14689] 86 86 86 86 86 86 86 86 86 80 49 49 49 49 49 49 49 49 49 49 49 30 30 30
## [14713] 30 30 30 30 30 68 68 68 68 68 68 68 68 68 68 68 71 71 71 71 71 71 71 71
## [14737] 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 86 86 86 86 86 86 86 86 86
## [14761] 86 86 86 80 49 49 49 49 49 49 49 49 49 49 49 30 30 30 30 30 30 30 30 30
## [14785] 68 68 68 68 68 68 68 68 68 68 68 68 68 71 71 71 71 71 71 71 71 71 71 71
## [14809] 71 71 71 71 71 71 71 71 86 86 86 86 86 86 86 86 86 86 86 80 80 49 49 49
## [14833] 49 49 49 49 49 49 30 30 30 30 30 30 30 30 30 68 68 68 68 68 68 68 68 68
## [14857] 68 68 68 68 68 68 68 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71
## [14881] 71 71 71 71 71 86 86 86 86 86 86 86 86 86 86 80 49 49 49 49 49 49 49 49
## [14905] 49 49 49 30 30 30 30 30 30 30 30 68 68 68 68 68 68 68 68 68 68 68 68 68
## [14929] 68 68 68 68 68 68 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71
## [14953] 71 71 71 71 71 71 71 71 86 86 86 86 86 86 86 86 86 86 86 86 49 49 49 49
## [14977] 49 49 49 49 49 30 30 30 30 30 30 30 30 68 68 68 68 68 68 68 68 68 68 68
## [15001] 68 68 68 68 68 68 68 68 68 68 68 68 71 71 71 71 71 71 71 71 71 71 71 71
## [15025] 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 86 86 86 86 86 86 86 86
## [15049] 86 86 86 86 49 49 49 49 49 49 49 49 49 49 49 49 30 30 30 30 30 30 68 68
## [15073] 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68
## [15097] 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71
## [15121] 71 71 71 71 71 71 40 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86
## [15145] 84 49 49 49 49 49 49 49 49 49 49 49 49 91 91 30 30 30 30 30 30 30 30 30
## [15169] 30 30 30 30 30 30 30 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68
## [15193] 68 68 68 68 68 68 68 68 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71
## [15217] 71 71 71 71 71 71 71 71 71 71 71 86 86 86 86 86 86 86 86 86 86 86 86 86
## [15241] 86 86 86 84 84 49 49 49 49 49 49 49 49 30 30 30 30 30 30 30 30 30 30 30
## [15265] 30 30 30 30 30 30 30 30 30 30 30 68 68 68 68 68 68 68 68 68 68 68 68 68
## [15289] 68 68 68 68 68 68 68 68 68 68 68 68 71 71 71 71 71 71 71 71 71 71 71 71
## [15313] 71 71 71 71 71 71 71 71 71 71 71 71 71 71 86 86 86 86 86 86 86 86 86 86
## [15337] 86 86 84 84 84 84 49 49 49 49 30 30 30 30 30 30 30 30 30 30 30 30 30 30
## [15361] 30 30 30 30 30 30 30 30 30 30 30 68 68 68 68 68 68 68 68 68 68 68 68 68
## [15385] 68 68 68 68 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71
## [15409] 71 71 71 71 71 71 86 86 86 86 86 86 86 86 86 84 84 84 49 49 49 49 49 91
## [15433] 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 68
## [15457] 68 68 68 68 68 68 68 68 68 68 68 68 71 71 71 71 71 71 71 71 71 71 71 71
## [15481] 71 71 71 71 71 71 71 71 71 71 71 71 71 86 86 86 86 86 86 49 49 49 49 49
## [15505] 91 91 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30
## [15529] 30 30 30 30 30 30 30 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68
## [15553] 68 68 68 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71
## [15577] 71 71 71 86 86 86 86 86 49 49 49 49 91 91 91 30 30 30 30 30 30 30 30 30
## [15601] 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 68 68 68 68 68
## [15625] 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 71 71 71 71 71 71 71 71
## [15649] 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 86 86 86 86 86
## [15673] 86 86 86 86 84 84 84 84 49 91 91 30 30 30 30 30 30 30 30 30 30 30 30 30
## [15697] 30 30 30 30 30 30 30 30 30 30 30 30 30 68 68 68 68 68 68 68 68 68 68 68
## [15721] 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 68 71 71 71 71 71
## [15745] 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 86 86 86 86 86 86
## [15769] 86 86 84 84 84 84 84 84 84 49 91 91 91 53 53 53 53 53 53 53 53 53 53 53
## [15793] 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 57 57 57 57 57 57 57 57
## [15817] 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 41 41 41 41 41 41 41
## [15841] 41 41 41 41 41 41 41 41 41 41 41 41 41 9  9  9  9  9  9  9  12 12 12 12
## [15865] 12 12 43 43 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53
## [15889] 53 53 53 53 53 53 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57
## [15913] 57 57 57 57 57 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
## [15937] 41 41 9  9  9  9  9  12 12 12 12 12 43 43 53 53 53 53 53 53 53 53 53 53
## [15961] 53 53 53 53 53 53 53 53 53 53 53 53 53 53 57 57 57 57 57 57 57 57 57 57
## [15985] 57 57 57 57 57 57 57 57 57 57 57 57 57 41 41 41 41 41 41 41 41 41 41 41
## [16009] 41 41 41 41 41 41 41 41 41 41 41 9  9  12 12 12 12 12 12 12 53 53 53 53
## [16033] 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 57 57
## [16057] 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57
## [16081] 57 57 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
## [16105] 41 41 12 12 43 43 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53
## [16129] 53 53 53 53 53 53 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57
## [16153] 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 41 41 41 41 41 41 41
## [16177] 41 41 41 41 41 41 41 41 41 43 43 43 43 43 43 53 53 53 53 53 53 53 53 53
## [16201] 53 53 53 53 53 53 53 53 53 53 53 57 57 57 57 57 57 57 57 57 57 57 57 57
## [16225] 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57
## [16249] 57 57 57 57 57 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
## [16273] 43 43 43 43 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 57 57 57 57 57
## [16297] 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57
## [16321] 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 41 41 41 41 41 41 41 41 41
## [16345] 41 41 41 41 41 41 41 41 41 41 53 53 53 53 53 53 53 53 53 53 53 53 53 53
## [16369] 53 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57
## [16393] 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 41 41 41 41 41 41 41
## [16417] 41 41 41 41 41 41 41 41 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53
## [16441] 53 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57
## [16465] 57 57 57 57 57 57 57 57 57 57 57 57 57 41 41 41 41 41 41 41 41 41 53 53
## [16489] 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 57 57 57
## [16513] 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 41
## [16537] 41 43 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53
## [16561] 53 53 53 53 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57
## [16585] 57 57 57 57 57 57 57 57 57 41 41 43 53 53 53 53 53 53 53 53 53 53 53 53
## [16609] 53 53 53 53 53 53 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57
## [16633] 57 57 57 57 57 57 57 57 57 41 41 41 53 53 53 53 53 53 53 53 53 53 53 53
## [16657] 53 53 53 53 53 53 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57
## [16681] 57 57 57 57 57 57 57 57 41 41 53 53 53 53 53 53 53 53 53 53 53 53 53 53
## [16705] 53 53 53 53 53 53 53 53 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57
## [16729] 57 57 57 57 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53
## [16753] 53 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 57 9  9  53 53 53 53 53
## [16777] 53 53 53 53 53 53 53 53 53 53 53 53 53 57 57 57 57 57 57 57 57 57 57 9 
## [16801] 9  9  53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 57 57
## [16825] 57 57 57 57 57 9  9  53 53 53 53 53 53 53 53 53 53 53 53 53 53 57 57 57
## [16849] 9  9  9  53 53 53 53 53 53 53 53 53 53 53 9  9  9  53 53 53 53 53 53 53
## [16873] 53 53 53 53 53 53 9  9  9  53 53 53 53 53 53 53 53 53 53 53 53 53 53 53
## [16897] 53 53 9  9  9  53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 9 
## [16921] 9  9  9  53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53
## [16945] 53 53 53 9  9  9  9  9  53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53
## [16969] 53 53 53 53 53 53 53 53 9  9  9  43 43 53 53 53 53 53 53 53 53 53 53 53
## [16993] 53 53 53 53 53 53 53 53 53 53 53 9  9  43 43 53 53 53 53 53 53 53 53 53
## [17017] 53 53 53 53 53 53 53 53 53 53 53 53 53 57 13 9  43 43 53 53 53 53 53 53
## [17041] 53 53 53 53 53 53 53 53 53 53 53 13 9  9  43 43 43 43 53 53 53 53 53 53
## [17065] 53 53 53 53 53 53 53 53 53 53 53 53 53 53 43 43 43 43 43 53 53 53 53 53
## [17089] 53 53 53 53 53 53 53 53 53 53 53 53 53 43 43 43 53 53 53 53 53 53 53 53
## [17113] 53 53 53 53 53 53 53 53 53 53 43 43 43 43 43 43 43 53 53 53 53 53 53 53
## [17137] 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 43 43 43 43 43 43 43 43 43
## [17161] 43 43 43 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53
## [17185] 53 53 53 53 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 53 53 53
## [17209] 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 43 43 43 43 43
## [17233] 43 43 43 43 43 43 43 43 43 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53
## [17257] 53 53 53 53 53 53 53 53 53 53 53 53 53 43 43 43 43 43 43 43 43 43 43 53
## [17281] 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 43 43 43 43 43 43 29 29
## [17305] 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 13 13 43 43 43 43 43 43
## [17329] 43 43 43 29 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 13 13 43 43 43
## [17353] 43 43 43 43 43 43 43 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53
## [17377] 53 53 53 53 53 43 43 43 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53
## [17401] 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53
## [17425] 53 53 53 53 53 53 53 53 43 43 53 53 53 53 53 53 53 53 53 53 53 53 53 43
## [17449] 43 53 53 53 53 53 53 53 53 53 53 53 53 53 43 43 43 53 53 53 53 53 53 53
## [17473] 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 43 43 43 43 43 43 43 43
## [17497] 43 43 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53
## [17521] 53 53 53 53 53 43 43 43 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53
## [17545] 53 53 53 53 53 53 53 53 53 53 53 53 53 53 43 43 43 43 43 29 29 53 53 53
## [17569] 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53
## [17593] 53 53 53 53 53 43 43 43 43 29 29 29 53 53 53 53 53 53 53 53 53 53 53 53
## [17617] 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 43 43 43 29 29 29 53 53
## [17641] 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53
## [17665] 53 53 53 53 43 43 43 43 29 29 29 29 53 53 53 53 53 53 53 53 53 53 53 53
## [17689] 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 43 43 43 43 43 43 43 43 29
## [17713] 29 29 29 29 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53
## [17737] 53 53 53 53 53 53 53 53 53 53 53 43 43 43 43 43 43 43 29 29 29 29 29 29
## [17761] 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53
## [17785] 53 53 43 43 43 43 43 43 43 29 29 29 29 29 29 53 53 53 53 53 53 53 53 53
## [17809] 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 43 43 29 29 29
## [17833] 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53
## [17857] 53 53 53 53 53 53 29 29 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53
## [17881] 53 53 53 53 53 53 53 53 53 53 29 29 29 53 53 53 53 53 53 53 53 53 53 53
## [17905] 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 43 43 29 29 29 29
## [17929] 29 29 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53
## [17953] 53 53 53 53 43 43 43 29 29 29 29 29 53 53 53 53 53 53 53 53 53 53 53 53
## [17977] 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 43 43 43 29 29 29 29 29
## [18001] 29 29 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53
## [18025] 53 53 53 53 43 43 43 43 43 43 43 43 29 29 29 29 29 29 29 29 29 53 53 53
## [18049] 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 53 43 43 43
## [18073] 43 43 43 43 43 38 38 38 38 38 38 38 38 38 59 59 59 59 59 59 59 59 59 59
## [18097] 59 59 59 59 59 59 59 59 59 59 59 10 10 10 10 10 10 10 10 10 10 10 38 38
## [18121] 38 38 38 38 38 38 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59
## [18145] 59 59 10 10 10 10 10 10 38 38 38 38 38 38 38 59 59 59 59 59 59 59 59 59
## [18169] 59 59 59 59 59 59 59 59 59 59 59 59 59 59 10 10 10 10 10 38 38 38 38 38
## [18193] 38 38 38 38 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59
## [18217] 59 59 59 59 59 10 10 10 10 10 38 38 38 38 59 59 59 59 59 59 59 59 59 59
## [18241] 59 59 59 59 59 59 59 59 59 59 59 59 10 10 10 10 10 10 38 38 38 38 38 38
## [18265] 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59
## [18289] 10 10 10 10 10 10 38 38 38 38 38 38 59 59 59 59 59 59 59 59 59 59 59 59
## [18313] 59 59 59 59 59 59 59 59 10 10 38 38 38 38 38 59 59 59 59 59 59 59 59 59
## [18337] 59 59 59 59 59 59 59 59 59 59 59 59 59 10 10 10 38 38 38 59 59 59 59 59
## [18361] 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 10 10 10 10 10 38 38 38
## [18385] 38 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 10 10 10 10 10 38 38
## [18409] 38 38 38 38 38 38 59 59 59 59 59 59 59 59 59 59 59 59 10 10 10 10 10 38
## [18433] 38 38 38 38 38 38 38 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 10
## [18457] 10 10 10 10 10 38 38 38 38 38 38 38 38 38 38 38 59 59 59 59 59 59 59 59
## [18481] 59 59 59 59 59 59 59 59 10 10 10 10 38 38 38 38 38 38 38 38 38 38 38 59
## [18505] 59 59 59 59 59 59 59 59 59 59 59 59 59 10 10 38 38 38 38 38 38 38 38 38
## [18529] 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 10 10 10 10 38 38 38 38 38
## [18553] 38 38 38 59 59 59 59 59 59 59 59 59 59 59 59 59 59 10 10 10 10 10 10 38
## [18577] 38 38 38 59 59 59 59 59 59 59 59 59 59 59 59 59 59 7  10 10 10 10 10 10
## [18601] 10 38 38 38 59 59 59 59 59 59 59 59 59 59 59 59 59 10 10 10 10 10 10 38
## [18625] 38 38 38 38 38 38 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 10 10 38
## [18649] 38 38 38 38 38 59 59 59 59 59 59 59 59 59 59 59 59 59 10 10 38 38 38 38
## [18673] 59 59 59 59 59 59 59 59 59 59 59 59 59 59 7  7  7  7  10 10 10 10 10 10
## [18697] 38 38 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 7  7  7  7  10 10
## [18721] 10 10 10 38 38 38 38 38 38 38 38 38 38 38 38 59 59 59 59 59 59 59 59 59
## [18745] 59 59 59 59 59 59 59 59 59 7  7  10 10 10 10 10 38 38 38 38 38 38 38 38
## [18769] 38 38 38 38 38 38 38 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59
## [18793] 59 59 59 10 10 10 10 10 38 38 38 38 38 38 38 38 38 38 38 38 38 38 59 59
## [18817] 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 7  10 10 10 38 38 38 38 38
## [18841] 38 38 38 38 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 7  10 10
## [18865] 10 10 10 10 38 38 38 38 38 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59
## [18889] 59 59 59 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 38 38 38 38 38
## [18913] 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 10 10 10 10 10 10 10 10
## [18937] 10 10 10 38 38 38 38 38 59 59 59 59 59 59 59 59 59 59 7  10 10 10 10 10
## [18961] 10 10 10 38 38 38 38 38 38 59 59 59 59 59 59 59 59 59 59 59 7  10 10 10
## [18985] 10 10 10 38 38 38 38 38 59 59 59 59 59 59 59 59 59 59 59 7  10 10 10 10
## [19009] 10 10 10 10 10 10 38 38 38 38 38 38 38 59 59 59 59 59 59 59 59 59 59 59
## [19033] 7  10 10 10 10 10 10 10 10 38 38 38 38 38 38 59 59 59 59 59 59 59 59 59
## [19057] 59 59 59 59 59 7  7  10 10 10 10 10 10 10 38 38 38 59 59 59 59 59 59 59
## [19081] 59 59 59 59 59 59 59 59 10 38 38 38 38 38 59 59 59 59 59 59 59 59 59 59
## [19105] 59 10 38 38 38 38 59 59 59 59 59 59 59 59 59 59 59 59 7  7  10 10 10 10
## [19129] 38 38 38 38 59 59 59 59 59 59 59 59 59 59 59 59 59 7  7  7  7  10 10 10
## [19153] 10 10 10 10 38 38 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 7  7  7 
## [19177] 7  7  10 10 10 10 10 10 38 38 38 38 59 59 59 59 59 59 59 59 59 59 59 59
## [19201] 59 59 59 59 59 59 59 59 7  7  10 10 10 10 38 38 38 38 38 38 38 59 59 59
## [19225] 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 10 10 10 10 38 38 38
## [19249] 38 38 38 38 38 38 38 38 38 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59
## [19273] 10 10 10 10 10 38 38 38 38 38 38 38 38 38 38 38 38 38 38 59 59 59 59 59
## [19297] 59 59 59 59 59 59 59 10 10 10 10 38 38 38 38 38 38 38 38 38 38 38 38 59
## [19321] 59 59 59 59 59 59 59 59 59 59 59 7  10 10 38 38 38 38 38 38 38 59 59 59
## [19345] 59 59 59 59 59 59 59 59 59 59 7  10 10 10 10 38 38 38 38 38 38 59 59 59
## [19369] 59 59 59 59 59 10 38 38 38 38 38 38 59 59 59 59 59 59 59 7  7  10 10 38
## [19393] 38 38 38 38 38 38 38 38 38 38 59 59 59 59 59 59 59 59 59 59 59 59 7  10
## [19417] 10 10 38 38 38 38 38 38 38 38 59 59 59 59 59 59 59 59 59 59 59 59 59 59
## [19441] 59 59 59 59 7  7  7  10 10 10 10 10 38 38 38 38 38 38 38 38 59 59 59 59
## [19465] 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 7  7  7  10 10 10 10 10
## [19489] 38 38 38 38 38 38 38 38 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59
## [19513] 59 59 59 10 10 10 10 10 10 38 38 38 38 38 38 38 38 38 59 59 59 59 59 59
## [19537] 59 59 59 59 59 59 59 59 59 59 59 10 10 10 10 10 10 10 10 38 38 38 38 38
## [19561] 38 38 38 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 10 10 10
## [19585] 10 10 10 10 10 38 38 38 38 38 38 38 59 59 59 59 59 59 59 59 59 59 59 59
## [19609] 59 59 59 59 59 59 10 10 10 10 10 10 10 10 10 10 10 10 38 38 38 38 38 38
## [19633] 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 7  7  10 10 10
## [19657] 10 10 10 10 10 10 10 10 10 10 10 10 10 38 38 38 38 38 38 38 59 59 59 59
## [19681] 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 7  7  7  7  10 10 10 10
## [19705] 10 10 10 10 10 10 10 10 10 38 38 38 38 38 38 59 59 59 59 59 59 59 59 59
## [19729] 59 59 59 59 59 59 59 59 59 7  7  7  7  7  10 10 10 10 10 10 10 10 10 38
## [19753] 38 38 38 38 38 38 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59
## [19777] 59 59 59 59 59 59 7  7  7  7  7  7  7  7  10 10 10 10 10 10 10 38 38 38
## [19801] 38 38 38 38 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59
## [19825] 59 59 59 59 7  7  7  7  7  7  7  7  7  7  7  7  7  7  7  7  10 10 10 10
## [19849] 10 10 10 10 10 10 38 38 38 38 38 59 59 59 59 59 59 59 59 59 59 59 59 59
## [19873] 59 59 59 59 59 59 59 59 59 59 59 59 59 7  7  7  7  7  7  7  7  7  7  10
## [19897] 10 10 10 10 10 10 10 10 10 10 10 10 10 38 38 38 38 38 38 59 59 59 59 59
## [19921] 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 59 7  7  7  7  7  7  7 
## [19945] 7  7  7  7  7  10 10 10 10 10 10 10 10 10 10 10 10 10 54 54 52 52 52 52
## [19969] 52 52 52 52 52 52 52 52 52 52 52 52 52 47 47 47 47 47 47 47 47 47 47 47
## [19993] 47 47 47 47 47 47 47 47 47 47 47 47 16 16 16 16 16 16 54 54 52 52 52 52
## [20017] 52 52 52 52 52 52 52 52 52 52 52 47 47 47 47 47 47 47 47 47 47 47 47 47
## [20041] 47 47 47 47 47 47 47 47 47 47 47 47 47 47 16 16 16 16 16 54 54 54 54 54
## [20065] 54 52 52 52 52 52 52 52 52 52 52 47 47 47 47 47 47 47 47 47 47 47 47 47
## [20089] 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 16 16 16 16 16 54 54
## [20113] 54 54 52 52 52 52 52 52 52 52 47 47 47 47 47 47 47 47 47 47 47 47 47 47
## [20137] 47 47 47 47 47 47 47 47 47 47 47 47 47 47 16 16 16 16 16 16 54 54 54 54
## [20161] 52 52 52 52 52 52 52 52 50 50 47 47 47 47 47 47 47 47 47 47 47 47 47 47
## [20185] 47 47 47 47 47 47 47 47 47 47 47 47 47 16 16 16 16 16 16 54 54 54 54 54
## [20209] 54 52 52 52 52 52 52 52 52 50 50 47 47 47 47 47 47 47 47 47 47 47 47 47
## [20233] 47 47 47 47 47 47 47 47 47 47 47 47 16 16 16 16 54 54 54 54 54 52 52 52
## [20257] 52 52 52 52 52 50 50 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47
## [20281] 47 47 47 47 47 47 47 47 47 47 16 16 16 16 16 16 16 54 54 54 54 54 54 54
## [20305] 52 52 52 52 52 52 52 52 50 50 50 50 50 47 47 47 47 47 47 47 47 47 47 47
## [20329] 47 47 47 47 47 47 47 47 47 47 47 47 47 16 16 16 16 16 16 54 54 54 54 54
## [20353] 52 52 52 52 52 52 52 52 52 50 50 50 82 47 47 47 47 47 47 47 47 47 47 47
## [20377] 47 47 47 47 47 47 47 47 47 47 47 47 47 47 16 16 16 16 16 16 16 16 16 16
## [20401] 54 54 54 54 54 52 52 52 52 52 52 52 52 50 50 82 82 47 47 47 47 47 47 47
## [20425] 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 16 16 16 16 16
## [20449] 16 16 54 54 54 54 54 54 54 52 52 52 52 50 50 50 50 50 82 82 47 47 47 47
## [20473] 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 16 16
## [20497] 16 16 16 54 54 54 54 54 54 54 52 50 50 50 47 47 47 47 47 47 47 47 47 47
## [20521] 47 47 47 47 47 47 47 47 47 47 47 47 47 47 47 16 16 54 54 54 54 54 54 54
## [20545] 54 52 52 52 52 52 50 50 50 87 87 82 82 47 47 47 47 47 47 47 47 47 47 47
## [20569] 47 47 47 47 47 47 47 47 47 16 16 54 54 54 54 54 54 54 54 52 52 52 52 52
## [20593] 52 52 75 75 75 50 50 50 87 87 87 87 87 82 82 82 82 47 47 47 47 47 47 47
## [20617] 47 47 47 47 47 47 47 16 54 54 54 54 54 54 54 54 52 52 52 52 52 52 52 52
## [20641] 52 52 52 52 75 75 50 50 50 50 87 87 87 87 87 82 82 82 82 82 47 47 47 47
## [20665] 47 47 47 47 47 47 16 16 54 54 54 54 54 52 52 52 52 52 52 52 75 75 50 50
## [20689] 50 50 50 50 87 87 87 82 82 82 47 47 47 47 47 47 47 47 47 47 47 47 47 16
## [20713] 16 16 16 16 54 54 54 54 54 52 52 52 52 52 52 50 50 50 50 50 82 82 82 82
## [20737] 47 47 47 47 47 47 47 47 47 47 47 47 16 16 16 54 54 54 52 52 52 52 52 52
## [20761] 52 52 50 50 50 82 82 82 82 82 47 47 47 47 47 47 47 47 47 47 47 47 47 16
## [20785] 16 54 54 54 54 54 52 52 52 52 52 52 52 52 52 52 50 50 50 50 50 50 50 87
## [20809] 87 82 82 82 82 47 47 47 47 47 47 47 47 47 54 52 52 52 52 52 52 52 52 52
## [20833] 52 50 50 50 50 50 50 50 50 87 82 82 82 82 82 82 82 47 47 47 47 47 47 54
## [20857] 52 52 52 52 52 52 52 52 50 50 50 82 82 82 82 82 82 47 47 47 47 52 52 52
## [20881] 52 52 52 52 52 52 52 50 50 82 82 82 82 82 47 47 47 47 52 52 52 52 52 52
## [20905] 52 50 50 82 47 47 47 52 52 52 52 50 50 50 50 50 50 47 47 52 52 52 52 52
## [20929] 52 50 50 50 50 50 50 47 47 47 52 52 52 50 50 50 87 47 47 47 52 52 52 52
## [20953] 75 75 75 50 50 50 50 87 87 82 82 47 47 47 54 52 52 52 52 52 52 75 75 75
## [20977] 50 87 87 82 82 82 82 47 47 47 54 52 52 52 52 87 87 87 87 82 82 47 47 47
## [21001] 47 47 47 47 52 52 75 87 87 87 87 87 82 82 47 47 47 47 47 47 47 47 75 75
## [21025] 75 87 87 87 87 82 82 82 82 82 56 47 47 47 47 47 47 47 47 75 75 75 75 50
## [21049] 50 87 87 87 87 87 82 82 82 82 82 56 56 56 47 47 47 47 47 75 75 75 50 50
## [21073] 87 87 87 87 87 87 82 56 56 56 56 56 56 56 47 47 47 47 47 47 47 47 75 75
## [21097] 75 50 50 50 50 87 87 87 87 87 87 56 56 56 56 56 56 56 56 56 47 47 47 47
## [21121] 47 50 50 50 50 50 87 87 87 87 87 87 87 87 56 56 56 56 56 56 56 47 47 50
## [21145] 50 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 56 56 56 56 56 56 50 87
## [21169] 87 87 87 87 87 87 87 87 87 87 87 87 87 87 56 56 56 56 56 56 56 56 56 50
## [21193] 50 50 87 87 87 87 87 87 87 87 87 87 87 87 87 82 56 56 56 56 56 56 56 56
## [21217] 50 50 50 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 82 82 82 82 56
## [21241] 56 56 56 75 50 50 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87
## [21265] 87 82 82 82 56 56 56 56 56 56 56 56 56 56 75 75 75 50 50 50 46 87 87 87
## [21289] 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 82 82 82 56 56 56 56 56
## [21313] 56 56 56 56 56 56 56 56 56 56 56 56 54 54 75 75 75 50 87 87 87 87 87 87
## [21337] 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 82 82 82 82 82 82 56 56 56
## [21361] 56 56 56 56 56 56 56 56 56 56 56 56 54 54 75 75 75 75 75 87 87 87 87 87
## [21385] 87 87 87 87 87 87 87 87 87 87 87 82 82 56 56 56 56 56 56 56 56 56 56 56
## [21409] 56 56 56 56 50 46 46 46 87 87 87 87 87 87 87 87 87 87 87 87 56 56 56 56
## [21433] 56 56 56 56 56 56 56 56 54 54 75 75 46 46 46 46 46 46 87 87 87 87 87 87
## [21457] 87 87 87 87 87 87 87 87 87 87 56 56 56 56 56 56 56 56 54 54 75 75 50 50
## [21481] 46 46 46 46 46 46 46 46 46 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87
## [21505] 87 87 87 87 87 87 82 56 56 54 54 54 50 46 46 46 46 46 46 46 46 46 46 46
## [21529] 46 46 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 50 50 46 46
## [21553] 46 46 46 46 46 46 46 46 46 46 87 87 87 87 87 87 87 87 87 87 87 87 87 87
## [21577] 87 87 87 87 50 50 46 46 46 46 46 46 46 46 46 46 46 46 46 87 87 87 87 87
## [21601] 87 87 87 87 87 87 87 87 87 87 87 87 75 75 50 46 46 46 46 46 46 46 46 46
## [21625] 46 46 46 46 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 54 54 54 75 50
## [21649] 50 32 32 46 46 46 46 46 46 46 46 46 46 46 46 46 87 87 87 87 87 87 87 87
## [21673] 87 87 87 54 54 54 54 54 54 50 50 50 32 32 46 46 46 46 46 46 46 46 87 87
## [21697] 87 87 54 54 54 54 54 50 32 32 32 46 46 46 46 46 46 87 87 87 54 54 54 54
## [21721] 54 32 32 32 46 46 46 46 46 46 46 46 87 87 54 54 54 54 32 32 32 46 46 46
## [21745] 46 46 46 46 87 87 54 54 54 54 50 32 32 32 32 87 87 87 87 54 54 54 54 50
## [21769] 32 32 32 32 32 32 87 87 54 54 54 54 50 32 32 32 32 87 54 54 54 32 32 46
## [21793] 87 54 54 50 50 46 46 46 46 46 87 70 70 70 4  4  4  88 88 70 70 70 70 4 
## [21817] 4  4  88 70 70 70 70 4  4  4  96 88 88 88 70 70 70 4  4  4  4  4  88 88
## [21841] 88 70 70 4  4  4  4  96 96 96 88 4  4  4  4  4  4  4  96 96 96 96 34 34
## [21865] 88 4  4  4  4  4  4  4  4  96 96 96 96 96 34 4  4  4  4  4  4  4  4  4 
## [21889] 4  96 96 96 96 96 96 96 34 88 88 88 4  4  4  4  4  4  4  4  96 96 96 96
## [21913] 96 96 96 96 34 34 88 88 88 88 4  4  4  4  4  4  96 96 96 96 96 96 96 96
## [21937] 96 34 34 88 88 88 4  4  4  4  4  96 96 96 96 96 96 96 34 34 34 34 88 88
## [21961] 4  4  96 96 96 96 96 96 96 96 34 34 34 34 34 34 34 34 34 34 34 88 88 4 
## [21985] 4  96 96 96 96 96 96 96 96 96 96 96 34 34 34 34 34 34 34 34 34 88 4  4 
## [22009] 4  4  96 96 96 96 96 96 96 96 96 34 34 88 4  4  4  4  96 96 96 96 96 96
## [22033] 96 96 96 96 96 34 34 34 34 34 4  4  4  4  4  4  96 96 96 96 96 96 96 96
## [22057] 96 34 34 34 34 34 34 34 34 4  96 96 96 96 96 96 96 96 96 96 96 96 96 96
## [22081] 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 88 4  4  96 96 96 96 96
## [22105] 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 34 34 34 34 34 34 34 34
## [22129] 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 88 88 88 4  4  4 
## [22153] 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96
## [22177] 96 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34
## [22201] 34 34 34 34 34 34 34 34 34 34 34 88 88 88 4  4  4  96 96 96 96 96 96 96
## [22225] 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96
## [22249] 96 96 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34
## [22273] 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 88 88 88 4  4  4  96 96 96
## [22297] 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96
## [22321] 96 96 96 96 96 96 96 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34
## [22345] 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34
## [22369] 34 34 88 4  4  96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96
## [22393] 96 96 96 96 96 96 96 96 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34
## [22417] 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 4 
## [22441] 4  4  96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 34 34
## [22465] 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34
## [22489] 34 34 34 34 34 34 34 34 34 34 4  96 96 96 96 96 96 96 96 96 96 96 96 96
## [22513] 96 96 96 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34
## [22537] 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 4  4  4  4  96 96 96
## [22561] 96 96 96 96 96 96 96 96 96 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34
## [22585] 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 96 96
## [22609] 96 96 96 96 96 96 96 96 96 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34
## [22633] 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 96 96 96 96 34 34 34 34
## [22657] 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 96 96 96 96
## [22681] 96 34 34 34 34 34 34 34 34 34 34 34 34 34 34 96 96 96 34 34 34 34 34 34
## [22705] 34 34 34 34 96 96 96 34 34 34 34 34 34 96 96 96 96 34 34 34 34 96 96 96
## [22729] 96 96 96 96 96 4  4  4  96 96 34 34 4  4  4  96 96 34 4  4  4  34 4  34
## [22753] 34 34 4  4  34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34
## [22777] 34 4  4  4  4  55 73 73 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39
## [22801] 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39
## [22825] 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39
## [22849] 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39
## [22873] 39 39 39 39 39 39 39 39
## 96 Levels: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 ... 96