##Deepfake EDA with All type of videos - Pilitical and Entertainment

#Clean Political data frame to explore the effect of measured other variables
data_raw_pol <- read_csv("C:/Users/Dell/OneDrive/Documents/CREST Postdoc/Deepfakes Experiment/Analysis/Study_1aPolitical/DeepF_Study1a_Politics.csv")
## New names:
## Rows: 130 Columns: 261
## ── Column specification
## ──────────────────────────────────────────────────────── Delimiter: "," chr
## (261): StartDate, EndDate, Status, Progress, Duration (in seconds), Fini...
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `1P_R_IMPT` -> `1P_R_IMPT...27`
## • `1P_R_INTEREST` -> `1P_R_INTEREST...28`
## • `1P_R_FAMILIAR` -> `1P_R_FAMILIAR...29`
## • `1P_R_NOVEL` -> `1P_R_NOVEL...30`
## • `1P_R_SHARE` -> `1P_R_SHARE...31`
## • `1P_R_SHARE_REASONS` -> `1P_R_SHARE_REASONS...32`
## • `1P_R_SHARE_OTHER` -> `1P_R_SHARE_OTHER...33`
## • `1P_R_DNSHARE_REASONS` -> `1P_R_DNSHARE_REASONS...34`
## • `1P_R_DNSHARE_OTHER` -> `1P_R_DNSHARE_OTHER...35`
## • `2P_DF_IMPT` -> `2P_DF_IMPT...37`
## • `2P_DF_INTEREST` -> `2P_DF_INTEREST...38`
## • `2P_DF_FAMILIAR` -> `2P_DF_FAMILIAR...39`
## • `2P_DF_NOVEL` -> `2P_DF_NOVEL...40`
## • `2P_DF_SHARE` -> `2P_DF_SHARE...41`
## • `2P_DF_SHARE_REASONS` -> `2P_DF_SHARE_REASONS...42`
## • `2P_DF_SHARE_OTHER` -> `2P_DF_SHARE_OTHER...43`
## • `2P_DF_DNSHARE_REASON` -> `2P_DF_DNSHARE_REASON...44`
## • `2P_DF_DNSHARE_OTHER` -> `2P_DF_DNSHARE_OTHER...45`
## • `4P_DF_IMPT` -> `4P_DF_IMPT...47`
## • `4P_DF_INTEREST` -> `4P_DF_INTEREST...48`
## • `4P_DF_FAMILIAR` -> `4P_DF_FAMILIAR...49`
## • `4P_DF_NOVEL` -> `4P_DF_NOVEL...50`
## • `4P_DF_SHARE` -> `4P_DF_SHARE...51`
## • `4P_DF_SHARE_REASONS` -> `4P_DF_SHARE_REASONS...52`
## • `4P_DF_SHARE_OTHER` -> `4P_DF_SHARE_OTHER...53`
## • `4P_DF_DNSHARE_REASON` -> `4P_DF_DNSHARE_REASON...54`
## • `4P_DF_DNSHARE_OTHER` -> `4P_DF_DNSHARE_OTHER...55`
## • `5P_R_IMPT` -> `5P_R_IMPT...57`
## • `5P_R_INTEREST` -> `5P_R_INTEREST...58`
## • `5P_R_FAMILIAR` -> `5P_R_FAMILIAR...59`
## • `5P_R_NOVEL` -> `5P_R_NOVEL...60`
## • `5P_R_SHARE` -> `5P_R_SHARE...61`
## • `5P_R_SHARE_REASONS` -> `5P_R_SHARE_REASONS...62`
## • `5P_R_SHARE_OTHER` -> `5P_R_SHARE_OTHER...63`
## • `5P_R_DNSHARE_REASONS` -> `5P_R_DNSHARE_REASONS...64`
## • `5P_R_DNSHARE_OTHER` -> `5P_R_DNSHARE_OTHER...65`
## • `6P_DF_IMPT` -> `6P_DF_IMPT...67`
## • `6P_DF_INTEREST` -> `6P_DF_INTEREST...68`
## • `6P_DF_FAMILIAR` -> `6P_DF_FAMILIAR...69`
## • `6P_DF_NOVEL` -> `6P_DF_NOVEL...70`
## • `6P_DF_SHARE` -> `6P_DF_SHARE...71`
## • `6P_DF_SHARE_REASONS` -> `6P_DF_SHARE_REASONS...72`
## • `6P_DF_SHARE_OTHER` -> `6P_DF_SHARE_OTHER...73`
## • `6P_DF_DNSHARE_REASON` -> `6P_DF_DNSHARE_REASON...74`
## • `6P_DF_DNSHARE_OTHER` -> `6P_DF_DNSHARE_OTHER...75`
## • `7P_R_IMPT` -> `7P_R_IMPT...77`
## • `7P_R_INTEREST` -> `7P_R_INTEREST...78`
## • `7P_R_FAMILIAR` -> `7P_R_FAMILIAR...79`
## • `7P_R_NOVEL` -> `7P_R_NOVEL...80`
## • `7P_R_SHARE` -> `7P_R_SHARE...81`
## • `7P_R_SHARE_REASONS` -> `7P_R_SHARE_REASONS...82`
## • `7P_R_SHARE_OTHER` -> `7P_R_SHARE_OTHER...83`
## • `7P_R_DNSHARE_REASONS` -> `7P_R_DNSHARE_REASONS...84`
## • `7P_R_DNSHARE_OTHER` -> `7P_R_DNSHARE_OTHER...85`
## • `13P_DF_IMPT` -> `13P_DF_IMPT...87`
## • `13P_DF_INTEREST` -> `13P_DF_INTEREST...88`
## • `13P_DF_FAMILIAR` -> `13P_DF_FAMILIAR...89`
## • `13P_DF_NOVEL` -> `13P_DF_NOVEL...90`
## • `13P_DF_SHARE` -> `13P_DF_SHARE...91`
## • `13P_DF_SHARE_REASONS` -> `13P_DF_SHARE_REASONS...92`
## • `13P_DF_SHARE_OTHER` -> `13P_DF_SHARE_OTHER...93`
## • `13P_DF_DNSHARE_REASO` -> `13P_DF_DNSHARE_REASO...94`
## • `13P_DF_DNSHARE_OTHER` -> `13P_DF_DNSHARE_OTHER...95`
## • `15P_DF_IMPT` -> `15P_DF_IMPT...97`
## • `15P_DF_INTEREST` -> `15P_DF_INTEREST...98`
## • `15P_DF_FAMILIAR` -> `15P_DF_FAMILIAR...99`
## • `15P_DF_NOVEL` -> `15P_DF_NOVEL...100`
## • `15P_DF_SHARE` -> `15P_DF_SHARE...101`
## • `15P_DF_SHARE_REASONS` -> `15P_DF_SHARE_REASONS...102`
## • `15P_DF_SHARE_OTHER` -> `15P_DF_SHARE_OTHER...103`
## • `15P_DF_DNSHARE_REASO` -> `15P_DF_DNSHARE_REASO...104`
## • `15P_DF_DNSHARE_OTHER` -> `15P_DF_DNSHARE_OTHER...105`
## • `17P_R_IMPT` -> `17P_R_IMPT...107`
## • `17P_R_INTEREST` -> `17P_R_INTEREST...108`
## • `17P_R_FAMILIAR` -> `17P_R_FAMILIAR...109`
## • `17P_R_NOVEL` -> `17P_R_NOVEL...110`
## • `17P_R_SHARE` -> `17P_R_SHARE...111`
## • `17P_R_SHARE_REASONS` -> `17P_R_SHARE_REASONS...112`
## • `17P_R_SHARE_OTHER` -> `17P_R_SHARE_OTHER...113`
## • `17P_R_DNSHARE_REASON` -> `17P_R_DNSHARE_REASON...114`
## • `17P_R_DNSHARE_OTHER` -> `17P_R_DNSHARE_OTHER...115`
## • `19P_DF_IMPT` -> `19P_DF_IMPT...117`
## • `19P_DF_INTEREST` -> `19P_DF_INTEREST...118`
## • `19P_DF_FAMILIAR` -> `19P_DF_FAMILIAR...119`
## • `19P_DF_NOVEL` -> `19P_DF_NOVEL...120`
## • `19P_DF_SHARE` -> `19P_DF_SHARE...121`
## • `19P_DF_SHARE_REASONS` -> `19P_DF_SHARE_REASONS...122`
## • `19P_DF_SHARE_OTHER` -> `19P_DF_SHARE_OTHER...123`
## • `19P_DF_DNSHARE_REASO` -> `19P_DF_DNSHARE_REASO...124`
## • `19P_DF_DNSHARE_OTHER` -> `19P_DF_DNSHARE_OTHER...125`
## • `21P_R_IMPT` -> `21P_R_IMPT...127`
## • `21P_R_INTEREST` -> `21P_R_INTEREST...128`
## • `21P_R_FAMILIAR` -> `21P_R_FAMILIAR...129`
## • `21P_R_NOVEL` -> `21P_R_NOVEL...130`
## • `21P_R_SHARE` -> `21P_R_SHARE...131`
## • `21P_R_SHARE_REASONS` -> `21P_R_SHARE_REASONS...132`
## • `21P_R_SHARE_OTHER` -> `21P_R_SHARE_OTHER...133`
## • `21P_R_DNSHARE_REASON` -> `21P_R_DNSHARE_REASON...134`
## • `21P_R_DNSHARE_OTHER` -> `21P_R_DNSHARE_OTHER...135`
## • `23P_R_IMPT` -> `23P_R_IMPT...137`
## • `23P_R_INTEREST` -> `23P_R_INTEREST...138`
## • `23P_R_FAMILIAR` -> `23P_R_FAMILIAR...139`
## • `23P_R_NOVEL` -> `23P_R_NOVEL...140`
## • `23P_R_SHARE` -> `23P_R_SHARE...141`
## • `23P_R_SHARE_REASONS` -> `23P_R_SHARE_REASONS...142`
## • `23P_R_SHARE_OTHER` -> `23P_R_SHARE_OTHER...143`
## • `23P_R_DNSHARE_REASON` -> `23P_R_DNSHARE_REASON...144`
## • `23P_R_DNSHARE_OTHER` -> `23P_R_DNSHARE_OTHER...145`
## • `CTRL_SHARING_PERSP` -> `CTRL_SHARING_PERSP...147`
## • `CTRL_SHARING_PERSP` -> `CTRL_SHARING_PERSP...148`
## • `1P_R_IMPT` -> `1P_R_IMPT...150`
## • `1P_R_INTEREST` -> `1P_R_INTEREST...151`
## • `1P_R_FAMILIAR` -> `1P_R_FAMILIAR...152`
## • `1P_R_NOVEL` -> `1P_R_NOVEL...153`
## • `1P_R_SHARE` -> `1P_R_SHARE...154`
## • `1P_R_SHARE_REASONS` -> `1P_R_SHARE_REASONS...155`
## • `1P_R_SHARE_OTHER` -> `1P_R_SHARE_OTHER...156`
## • `1P_R_DNSHARE_REASONS` -> `1P_R_DNSHARE_REASONS...157`
## • `1P_R_DNSHARE_OTHER` -> `1P_R_DNSHARE_OTHER...158`
## • `2P_DF_IMPT` -> `2P_DF_IMPT...159`
## • `2P_DF_INTEREST` -> `2P_DF_INTEREST...160`
## • `2P_DF_FAMILIAR` -> `2P_DF_FAMILIAR...161`
## • `2P_DF_NOVEL` -> `2P_DF_NOVEL...162`
## • `2P_DF_SHARE` -> `2P_DF_SHARE...163`
## • `2P_DF_SHARE_REASONS` -> `2P_DF_SHARE_REASONS...164`
## • `2P_DF_SHARE_OTHER` -> `2P_DF_SHARE_OTHER...165`
## • `2P_DF_DNSHARE_REASON` -> `2P_DF_DNSHARE_REASON...166`
## • `2P_DF_DNSHARE_OTHER` -> `2P_DF_DNSHARE_OTHER...167`
## • `4P_DF_IMPT` -> `4P_DF_IMPT...168`
## • `4P_DF_INTEREST` -> `4P_DF_INTEREST...169`
## • `4P_DF_FAMILIAR` -> `4P_DF_FAMILIAR...170`
## • `4P_DF_NOVEL` -> `4P_DF_NOVEL...171`
## • `4P_DF_SHARE` -> `4P_DF_SHARE...172`
## • `4P_DF_SHARE_REASONS` -> `4P_DF_SHARE_REASONS...173`
## • `4P_DF_SHARE_OTHER` -> `4P_DF_SHARE_OTHER...174`
## • `4P_DF_DNSHARE_REASON` -> `4P_DF_DNSHARE_REASON...175`
## • `4P_DF_DNSHARE_OTHER` -> `4P_DF_DNSHARE_OTHER...176`
## • `5P_R_IMPT` -> `5P_R_IMPT...177`
## • `5P_R_INTEREST` -> `5P_R_INTEREST...178`
## • `5P_R_FAMILIAR` -> `5P_R_FAMILIAR...179`
## • `5P_R_NOVEL` -> `5P_R_NOVEL...180`
## • `5P_R_SHARE` -> `5P_R_SHARE...181`
## • `5P_R_SHARE_REASONS` -> `5P_R_SHARE_REASONS...182`
## • `5P_R_SHARE_OTHER` -> `5P_R_SHARE_OTHER...183`
## • `5P_R_DNSHARE_REASONS` -> `5P_R_DNSHARE_REASONS...184`
## • `5P_R_DNSHARE_OTHER` -> `5P_R_DNSHARE_OTHER...185`
## • `6P_DF_IMPT` -> `6P_DF_IMPT...186`
## • `6P_DF_INTEREST` -> `6P_DF_INTEREST...187`
## • `6P_DF_FAMILIAR` -> `6P_DF_FAMILIAR...188`
## • `6P_DF_NOVEL` -> `6P_DF_NOVEL...189`
## • `6P_DF_SHARE` -> `6P_DF_SHARE...190`
## • `6P_DF_SHARE_REASONS` -> `6P_DF_SHARE_REASONS...191`
## • `6P_DF_SHARE_OTHER` -> `6P_DF_SHARE_OTHER...192`
## • `6P_DF_DNSHARE_REASON` -> `6P_DF_DNSHARE_REASON...193`
## • `6P_DF_DNSHARE_OTHER` -> `6P_DF_DNSHARE_OTHER...194`
## • `7P_R_IMPT` -> `7P_R_IMPT...195`
## • `7P_R_INTEREST` -> `7P_R_INTEREST...196`
## • `7P_R_FAMILIAR` -> `7P_R_FAMILIAR...197`
## • `7P_R_NOVEL` -> `7P_R_NOVEL...198`
## • `7P_R_SHARE` -> `7P_R_SHARE...199`
## • `7P_R_SHARE_REASONS` -> `7P_R_SHARE_REASONS...200`
## • `7P_R_SHARE_OTHER` -> `7P_R_SHARE_OTHER...201`
## • `7P_R_DNSHARE_REASONS` -> `7P_R_DNSHARE_REASONS...202`
## • `7P_R_DNSHARE_OTHER` -> `7P_R_DNSHARE_OTHER...203`
## • `13P_DF_IMPT` -> `13P_DF_IMPT...204`
## • `13P_DF_INTEREST` -> `13P_DF_INTEREST...205`
## • `13P_DF_FAMILIAR` -> `13P_DF_FAMILIAR...206`
## • `13P_DF_NOVEL` -> `13P_DF_NOVEL...207`
## • `13P_DF_SHARE` -> `13P_DF_SHARE...208`
## • `13P_DF_SHARE_REASONS` -> `13P_DF_SHARE_REASONS...209`
## • `13P_DF_SHARE_OTHER` -> `13P_DF_SHARE_OTHER...210`
## • `13P_DF_DNSHARE_REASO` -> `13P_DF_DNSHARE_REASO...211`
## • `13P_DF_DNSHARE_OTHER` -> `13P_DF_DNSHARE_OTHER...212`
## • `15P_DF_IMPT` -> `15P_DF_IMPT...213`
## • `15P_DF_INTEREST` -> `15P_DF_INTEREST...214`
## • `15P_DF_FAMILIAR` -> `15P_DF_FAMILIAR...215`
## • `15P_DF_NOVEL` -> `15P_DF_NOVEL...216`
## • `15P_DF_SHARE` -> `15P_DF_SHARE...217`
## • `15P_DF_SHARE_REASONS` -> `15P_DF_SHARE_REASONS...218`
## • `15P_DF_SHARE_OTHER` -> `15P_DF_SHARE_OTHER...219`
## • `15P_DF_DNSHARE_REASO` -> `15P_DF_DNSHARE_REASO...220`
## • `15P_DF_DNSHARE_OTHER` -> `15P_DF_DNSHARE_OTHER...221`
## • `17P_R_IMPT` -> `17P_R_IMPT...222`
## • `17P_R_INTEREST` -> `17P_R_INTEREST...223`
## • `17P_R_FAMILIAR` -> `17P_R_FAMILIAR...224`
## • `17P_R_NOVEL` -> `17P_R_NOVEL...225`
## • `17P_R_SHARE` -> `17P_R_SHARE...226`
## • `17P_R_SHARE_REASONS` -> `17P_R_SHARE_REASONS...227`
## • `17P_R_SHARE_OTHER` -> `17P_R_SHARE_OTHER...228`
## • `17P_R_DNSHARE_REASON` -> `17P_R_DNSHARE_REASON...229`
## • `17P_R_DNSHARE_OTHER` -> `17P_R_DNSHARE_OTHER...230`
## • `19P_DF_IMPT` -> `19P_DF_IMPT...231`
## • `19P_DF_INTEREST` -> `19P_DF_INTEREST...232`
## • `19P_DF_FAMILIAR` -> `19P_DF_FAMILIAR...233`
## • `19P_DF_NOVEL` -> `19P_DF_NOVEL...234`
## • `19P_DF_SHARE` -> `19P_DF_SHARE...235`
## • `19P_DF_SHARE_REASONS` -> `19P_DF_SHARE_REASONS...236`
## • `19P_DF_SHARE_OTHER` -> `19P_DF_SHARE_OTHER...237`
## • `19P_DF_DNSHARE_REASO` -> `19P_DF_DNSHARE_REASO...238`
## • `19P_DF_DNSHARE_OTHER` -> `19P_DF_DNSHARE_OTHER...239`
## • `21P_R_IMPT` -> `21P_R_IMPT...240`
## • `21P_R_INTEREST` -> `21P_R_INTEREST...241`
## • `21P_R_FAMILIAR` -> `21P_R_FAMILIAR...242`
## • `21P_R_NOVEL` -> `21P_R_NOVEL...243`
## • `21P_R_SHARE` -> `21P_R_SHARE...244`
## • `21P_R_SHARE_REASONS` -> `21P_R_SHARE_REASONS...245`
## • `21P_R_SHARE_OTHER` -> `21P_R_SHARE_OTHER...246`
## • `21P_R_DNSHARE_REASON` -> `21P_R_DNSHARE_REASON...247`
## • `21P_R_DNSHARE_OTHER` -> `21P_R_DNSHARE_OTHER...248`
## • `23P_R_IMPT` -> `23P_R_IMPT...249`
## • `23P_R_INTEREST` -> `23P_R_INTEREST...250`
## • `23P_R_FAMILIAR` -> `23P_R_FAMILIAR...251`
## • `23P_R_NOVEL` -> `23P_R_NOVEL...252`
## • `23P_R_SHARE` -> `23P_R_SHARE...253`
## • `23P_R_SHARE_REASONS` -> `23P_R_SHARE_REASONS...254`
## • `23P_R_SHARE_OTHER` -> `23P_R_SHARE_OTHER...255`
## • `23P_R_DNSHARE_REASON` -> `23P_R_DNSHARE_REASON...256`
## • `23P_R_DNSHARE_OTHER` -> `23P_R_DNSHARE_OTHER...257`
data_raw_ent <- read_csv("C:/Users/Dell/OneDrive/Documents/CREST Postdoc/Deepfakes Experiment/Analysis/Study_1bEntertainment/DeepF_Study1b_Entertainment.csv")
## New names:
## Rows: 131 Columns: 261
## ── Column specification
## ──────────────────────────────────────────────────────── Delimiter: "," chr
## (261): StartDate, EndDate, Status, Progress, Duration (in seconds), Fini...
## ℹ Use `spec()` to retrieve the full column specification for this data. ℹ
## Specify the column types or set `show_col_types = FALSE` to quiet this message.
## • `3E_R_IMPT` -> `3E_R_IMPT...27`
## • `3E_R_INTEREST` -> `3E_R_INTEREST...28`
## • `3E_R_FAMILIAR` -> `3E_R_FAMILIAR...29`
## • `3E_R_NOVEL` -> `3E_R_NOVEL...30`
## • `3E_R_SHARE` -> `3E_R_SHARE...31`
## • `3E_R_SHARE_REASONS` -> `3E_R_SHARE_REASONS...32`
## • `3E_R_SHARE_OTHER` -> `3E_R_SHARE_OTHER...33`
## • `3E_R_DNSHARE_REASONS` -> `3E_R_DNSHARE_REASONS...34`
## • `3E_R_DNSHARE_OTHER` -> `3E_R_DNSHARE_OTHER...35`
## • `8E_DF_IMPT` -> `8E_DF_IMPT...37`
## • `8E_DF_INTEREST` -> `8E_DF_INTEREST...38`
## • `8E_DF_FAMILIAR` -> `8E_DF_FAMILIAR...39`
## • `8E_DF_NOVEL` -> `8E_DF_NOVEL...40`
## • `8E_DF_SHARE` -> `8E_DF_SHARE...41`
## • `8E_DF_SHARE_REASONS` -> `8E_DF_SHARE_REASONS...42`
## • `8E_DF_SHARE_OTHER` -> `8E_DF_SHARE_OTHER...43`
## • `8E_DF_DNSHARE_REASON` -> `8E_DF_DNSHARE_REASON...44`
## • `8E_DF_DNSHARE_OTHER` -> `8E_DF_DNSHARE_OTHER...45`
## • `9E_R_IMPT` -> `9E_R_IMPT...47`
## • `9E_R_INTEREST` -> `9E_R_INTEREST...48`
## • `9E_R_FAMILIAR` -> `9E_R_FAMILIAR...49`
## • `9E_R_NOVEL` -> `9E_R_NOVEL...50`
## • `9E_R_SHARE` -> `9E_R_SHARE...51`
## • `9E_R_SHARE_REASONS` -> `9E_R_SHARE_REASONS...52`
## • `9E_R_SHARE_OTHER` -> `9E_R_SHARE_OTHER...53`
## • `9E_R_DNSHARE_REASONS` -> `9E_R_DNSHARE_REASONS...54`
## • `9E_R_DNSHARE_OTHER` -> `9E_R_DNSHARE_OTHER...55`
## • `10E_DF_IMPT` -> `10E_DF_IMPT...57`
## • `10E_DF_INTEREST` -> `10E_DF_INTEREST...58`
## • `10E_DF_FAMILIAR` -> `10E_DF_FAMILIAR...59`
## • `10E_DF_NOVEL` -> `10E_DF_NOVEL...60`
## • `10E_DF_SHARE` -> `10E_DF_SHARE...61`
## • `10E_DF_SHARE_REASONS` -> `10E_DF_SHARE_REASONS...62`
## • `10E_DF_SHARE_OTHER` -> `10E_DF_SHARE_OTHER...63`
## • `10E_DF_DNSHARE_REASO` -> `10E_DF_DNSHARE_REASO...64`
## • `10E_DF_DNSHARE_OTHER` -> `10E_DF_DNSHARE_OTHER...65`
## • `11E_R_IMPT` -> `11E_R_IMPT...67`
## • `11E_R_INTEREST` -> `11E_R_INTEREST...68`
## • `11E_R_FAMILIAR` -> `11E_R_FAMILIAR...69`
## • `11E_R_NOVEL` -> `11E_R_NOVEL...70`
## • `11E_R_SHARE` -> `11E_R_SHARE...71`
## • `11E_R_SHARE_REASONS` -> `11E_R_SHARE_REASONS...72`
## • `11E_R_SHARE_OTHER` -> `11E_R_SHARE_OTHER...73`
## • `11E_R_DNSHARE_REASON` -> `11E_R_DNSHARE_REASON...74`
## • `11E_R_DNSHARE_OTHER` -> `11E_R_DNSHARE_OTHER...75`
## • `12E_DF_IMPT` -> `12E_DF_IMPT...77`
## • `12E_DF_INTEREST` -> `12E_DF_INTEREST...78`
## • `12E_DF_FAMILIAR` -> `12E_DF_FAMILIAR...79`
## • `12E_DF_NOVEL` -> `12E_DF_NOVEL...80`
## • `12E_DF_SHARE` -> `12E_DF_SHARE...81`
## • `12E_DF_SHARE_REASONS` -> `12E_DF_SHARE_REASONS...82`
## • `12E_DF_SHARE_OTHER` -> `12E_DF_SHARE_OTHER...83`
## • `12E_DF_DNSHARE_REASO` -> `12E_DF_DNSHARE_REASO...84`
## • `12E_DF_DNSHARE_OTHER` -> `12E_DF_DNSHARE_OTHER...85`
## • `14E_DF_IMPT` -> `14E_DF_IMPT...87`
## • `14E_DF_INTEREST` -> `14E_DF_INTEREST...88`
## • `14E_DF_FAMILIAR` -> `14E_DF_FAMILIAR...89`
## • `14E_DF_NOVEL` -> `14E_DF_NOVEL...90`
## • `14E_DF_SHARE` -> `14E_DF_SHARE...91`
## • `14E_DF_SHARE_REASONS` -> `14E_DF_SHARE_REASONS...92`
## • `14E_DF_SHARE_OTHER` -> `14E_DF_SHARE_OTHER...93`
## • `14E_DF_DNSHARE_REASO` -> `14E_DF_DNSHARE_REASO...94`
## • `14E_DF_DNSHARE_OTHER` -> `14E_DF_DNSHARE_OTHER...95`
## • `16E_DF_IMPT` -> `16E_DF_IMPT...97`
## • `16E_DF_INTEREST` -> `16E_DF_INTEREST...98`
## • `16E_DF_FAMILIAR` -> `16E_DF_FAMILIAR...99`
## • `16E_DF_NOVEL` -> `16E_DF_NOVEL...100`
## • `16E_DF_SHARE` -> `16E_DF_SHARE...101`
## • `16E_DF_SHARE_REASONS` -> `16E_DF_SHARE_REASONS...102`
## • `16E_DF_SHARE_OTHER` -> `16E_DF_SHARE_OTHER...103`
## • `16E_DF_DNSHARE_REASO` -> `16E_DF_DNSHARE_REASO...104`
## • `16E_DF_DNSHARE_OTHER` -> `16E_DF_DNSHARE_OTHER...105`
## • `18P_R_IMPT` -> `18P_R_IMPT...107`
## • `18P_R_INTEREST` -> `18P_R_INTEREST...108`
## • `18P_R_FAMILIAR` -> `18P_R_FAMILIAR...109`
## • `18P_R_NOVEL` -> `18P_R_NOVEL...110`
## • `18P_R_SHARE` -> `18P_R_SHARE...111`
## • `18P_R_SHARE_REASONS` -> `18P_R_SHARE_REASONS...112`
## • `18P_R_SHARE_OTHER` -> `18P_R_SHARE_OTHER...113`
## • `18P_R_DNSHARE_REASON` -> `18P_R_DNSHARE_REASON...114`
## • `18P_R_DNSHARE_OTHER` -> `18P_R_DNSHARE_OTHER...115`
## • `20E_R_IMPT` -> `20E_R_IMPT...117`
## • `20E_R_INTEREST` -> `20E_R_INTEREST...118`
## • `20E_R_FAMILIAR` -> `20E_R_FAMILIAR...119`
## • `20E_R_NOVEL` -> `20E_R_NOVEL...120`
## • `20E_R_SHARE` -> `20E_R_SHARE...121`
## • `20E_R_SHARE_REASONS` -> `20E_R_SHARE_REASONS...122`
## • `20E_R_SHARE_OTHER` -> `20E_R_SHARE_OTHER...123`
## • `20E_R_DNSHARE_REASON` -> `20E_R_DNSHARE_REASON...124`
## • `20E_R_DNSHARE_OTHER` -> `20E_R_DNSHARE_OTHER...125`
## • `22E_R_IMPT` -> `22E_R_IMPT...127`
## • `22E_R_INTEREST` -> `22E_R_INTEREST...128`
## • `22E_R_FAMILIAR` -> `22E_R_FAMILIAR...129`
## • `22E_R_NOVEL` -> `22E_R_NOVEL...130`
## • `22E_R_SHARE` -> `22E_R_SHARE...131`
## • `22E_R_SHARE_REASONS` -> `22E_R_SHARE_REASONS...132`
## • `22E_R_SHARE_OTHER` -> `22E_R_SHARE_OTHER...133`
## • `22E_R_DNSHARE_REASON` -> `22E_R_DNSHARE_REASON...134`
## • `22E_R_DNSHARE_OTHER` -> `22E_R_DNSHARE_OTHER...135`
## • `24E_DF_IMPT` -> `24E_DF_IMPT...137`
## • `24E_DF_INTEREST` -> `24E_DF_INTEREST...138`
## • `24E_DF_FAMILIAR` -> `24E_DF_FAMILIAR...139`
## • `24E_DF_NOVEL` -> `24E_DF_NOVEL...140`
## • `24E_DF_SHARE` -> `24E_DF_SHARE...141`
## • `24E_DF_SHARE_REASONS` -> `24E_DF_SHARE_REASONS...142`
## • `24E_DF_SHARE_OTHER` -> `24E_DF_SHARE_OTHER...143`
## • `24E_DF_DNSHARE_REASO` -> `24E_DF_DNSHARE_REASO...144`
## • `24E_DF_DNSHARE_OTHER` -> `24E_DF_DNSHARE_OTHER...145`
## • `CTRL_SHARING_PERSP` -> `CTRL_SHARING_PERSP...147`
## • `CTRL_SHARING_PERSP` -> `CTRL_SHARING_PERSP...148`
## • `3E_R_IMPT` -> `3E_R_IMPT...150`
## • `3E_R_INTEREST` -> `3E_R_INTEREST...151`
## • `3E_R_FAMILIAR` -> `3E_R_FAMILIAR...152`
## • `3E_R_NOVEL` -> `3E_R_NOVEL...153`
## • `3E_R_SHARE` -> `3E_R_SHARE...154`
## • `3E_R_SHARE_REASONS` -> `3E_R_SHARE_REASONS...155`
## • `3E_R_SHARE_OTHER` -> `3E_R_SHARE_OTHER...156`
## • `3E_R_DNSHARE_REASONS` -> `3E_R_DNSHARE_REASONS...157`
## • `3E_R_DNSHARE_OTHER` -> `3E_R_DNSHARE_OTHER...158`
## • `8E_DF_IMPT` -> `8E_DF_IMPT...159`
## • `8E_DF_INTEREST` -> `8E_DF_INTEREST...160`
## • `8E_DF_FAMILIAR` -> `8E_DF_FAMILIAR...161`
## • `8E_DF_NOVEL` -> `8E_DF_NOVEL...162`
## • `8E_DF_SHARE` -> `8E_DF_SHARE...163`
## • `8E_DF_SHARE_REASONS` -> `8E_DF_SHARE_REASONS...164`
## • `8E_DF_SHARE_OTHER` -> `8E_DF_SHARE_OTHER...165`
## • `8E_DF_DNSHARE_REASON` -> `8E_DF_DNSHARE_REASON...166`
## • `8E_DF_DNSHARE_OTHER` -> `8E_DF_DNSHARE_OTHER...167`
## • `9E_R_IMPT` -> `9E_R_IMPT...168`
## • `9E_R_INTEREST` -> `9E_R_INTEREST...169`
## • `9E_R_FAMILIAR` -> `9E_R_FAMILIAR...170`
## • `9E_R_NOVEL` -> `9E_R_NOVEL...171`
## • `9E_R_SHARE` -> `9E_R_SHARE...172`
## • `9E_R_SHARE_REASONS` -> `9E_R_SHARE_REASONS...173`
## • `9E_R_SHARE_OTHER` -> `9E_R_SHARE_OTHER...174`
## • `9E_R_DNSHARE_REASONS` -> `9E_R_DNSHARE_REASONS...175`
## • `9E_R_DNSHARE_OTHER` -> `9E_R_DNSHARE_OTHER...176`
## • `10E_DF_IMPT` -> `10E_DF_IMPT...177`
## • `10E_DF_INTEREST` -> `10E_DF_INTEREST...178`
## • `10E_DF_FAMILIAR` -> `10E_DF_FAMILIAR...179`
## • `10E_DF_NOVEL` -> `10E_DF_NOVEL...180`
## • `10E_DF_SHARE` -> `10E_DF_SHARE...181`
## • `10E_DF_SHARE_REASONS` -> `10E_DF_SHARE_REASONS...182`
## • `10E_DF_SHARE_OTHER` -> `10E_DF_SHARE_OTHER...183`
## • `10E_DF_DNSHARE_REASO` -> `10E_DF_DNSHARE_REASO...184`
## • `10E_DF_DNSHARE_OTHER` -> `10E_DF_DNSHARE_OTHER...185`
## • `11E_R_IMPT` -> `11E_R_IMPT...186`
## • `11E_R_INTEREST` -> `11E_R_INTEREST...187`
## • `11E_R_FAMILIAR` -> `11E_R_FAMILIAR...188`
## • `11E_R_NOVEL` -> `11E_R_NOVEL...189`
## • `11E_R_SHARE` -> `11E_R_SHARE...190`
## • `11E_R_SHARE_REASONS` -> `11E_R_SHARE_REASONS...191`
## • `11E_R_SHARE_OTHER` -> `11E_R_SHARE_OTHER...192`
## • `11E_R_DNSHARE_REASON` -> `11E_R_DNSHARE_REASON...193`
## • `11E_R_DNSHARE_OTHER` -> `11E_R_DNSHARE_OTHER...194`
## • `12E_DF_IMPT` -> `12E_DF_IMPT...195`
## • `12E_DF_INTEREST` -> `12E_DF_INTEREST...196`
## • `12E_DF_FAMILIAR` -> `12E_DF_FAMILIAR...197`
## • `12E_DF_NOVEL` -> `12E_DF_NOVEL...198`
## • `12E_DF_SHARE` -> `12E_DF_SHARE...199`
## • `12E_DF_SHARE_REASONS` -> `12E_DF_SHARE_REASONS...200`
## • `12E_DF_SHARE_OTHER` -> `12E_DF_SHARE_OTHER...201`
## • `12E_DF_DNSHARE_REASO` -> `12E_DF_DNSHARE_REASO...202`
## • `12E_DF_DNSHARE_OTHER` -> `12E_DF_DNSHARE_OTHER...203`
## • `14E_DF_IMPT` -> `14E_DF_IMPT...204`
## • `14E_DF_INTEREST` -> `14E_DF_INTEREST...205`
## • `14E_DF_FAMILIAR` -> `14E_DF_FAMILIAR...206`
## • `14E_DF_NOVEL` -> `14E_DF_NOVEL...207`
## • `14E_DF_SHARE` -> `14E_DF_SHARE...208`
## • `14E_DF_SHARE_REASONS` -> `14E_DF_SHARE_REASONS...209`
## • `14E_DF_SHARE_OTHER` -> `14E_DF_SHARE_OTHER...210`
## • `14E_DF_DNSHARE_REASO` -> `14E_DF_DNSHARE_REASO...211`
## • `14E_DF_DNSHARE_OTHER` -> `14E_DF_DNSHARE_OTHER...212`
## • `16E_DF_IMPT` -> `16E_DF_IMPT...213`
## • `16E_DF_INTEREST` -> `16E_DF_INTEREST...214`
## • `16E_DF_FAMILIAR` -> `16E_DF_FAMILIAR...215`
## • `16E_DF_NOVEL` -> `16E_DF_NOVEL...216`
## • `16E_DF_SHARE` -> `16E_DF_SHARE...217`
## • `16E_DF_SHARE_REASONS` -> `16E_DF_SHARE_REASONS...218`
## • `16E_DF_SHARE_OTHER` -> `16E_DF_SHARE_OTHER...219`
## • `16E_DF_DNSHARE_REASO` -> `16E_DF_DNSHARE_REASO...220`
## • `16E_DF_DNSHARE_OTHER` -> `16E_DF_DNSHARE_OTHER...221`
## • `18P_R_IMPT` -> `18P_R_IMPT...222`
## • `18P_R_INTEREST` -> `18P_R_INTEREST...223`
## • `18P_R_FAMILIAR` -> `18P_R_FAMILIAR...224`
## • `18P_R_NOVEL` -> `18P_R_NOVEL...225`
## • `18P_R_SHARE` -> `18P_R_SHARE...226`
## • `18P_R_SHARE_REASONS` -> `18P_R_SHARE_REASONS...227`
## • `18P_R_SHARE_OTHER` -> `18P_R_SHARE_OTHER...228`
## • `18P_R_DNSHARE_REASON` -> `18P_R_DNSHARE_REASON...229`
## • `18P_R_DNSHARE_OTHER` -> `18P_R_DNSHARE_OTHER...230`
## • `20E_R_IMPT` -> `20E_R_IMPT...231`
## • `20E_R_INTEREST` -> `20E_R_INTEREST...232`
## • `20E_R_FAMILIAR` -> `20E_R_FAMILIAR...233`
## • `20E_R_NOVEL` -> `20E_R_NOVEL...234`
## • `20E_R_SHARE` -> `20E_R_SHARE...235`
## • `20E_R_SHARE_REASONS` -> `20E_R_SHARE_REASONS...236`
## • `20E_R_SHARE_OTHER` -> `20E_R_SHARE_OTHER...237`
## • `20E_R_DNSHARE_REASON` -> `20E_R_DNSHARE_REASON...238`
## • `20E_R_DNSHARE_OTHER` -> `20E_R_DNSHARE_OTHER...239`
## • `22E_R_IMPT` -> `22E_R_IMPT...240`
## • `22E_R_INTEREST` -> `22E_R_INTEREST...241`
## • `22E_R_FAMILIAR` -> `22E_R_FAMILIAR...242`
## • `22E_R_NOVEL` -> `22E_R_NOVEL...243`
## • `22E_R_SHARE` -> `22E_R_SHARE...244`
## • `22E_R_SHARE_REASONS` -> `22E_R_SHARE_REASONS...245`
## • `22E_R_SHARE_OTHER` -> `22E_R_SHARE_OTHER...246`
## • `22E_R_DNSHARE_REASON` -> `22E_R_DNSHARE_REASON...247`
## • `22E_R_DNSHARE_OTHER` -> `22E_R_DNSHARE_OTHER...248`
## • `24E_DF_IMPT` -> `24E_DF_IMPT...249`
## • `24E_DF_INTEREST` -> `24E_DF_INTEREST...250`
## • `24E_DF_FAMILIAR` -> `24E_DF_FAMILIAR...251`
## • `24E_DF_NOVEL` -> `24E_DF_NOVEL...252`
## • `24E_DF_SHARE` -> `24E_DF_SHARE...253`
## • `24E_DF_SHARE_REASONS` -> `24E_DF_SHARE_REASONS...254`
## • `24E_DF_SHARE_OTHER` -> `24E_DF_SHARE_OTHER...255`
## • `24E_DF_DNSHARE_REASO` -> `24E_DF_DNSHARE_REASO...256`
## • `24E_DF_DNSHARE_OTHER` -> `24E_DF_DNSHARE_OTHER...257`

##Data cleaning Political and Entertainment type data ### Likert scales to order levels

#Likert scale has 
likely_values <-  c(
  "very unlikely",
  "moderately unlikely",
  "slightly unlikely",
  "slightly likely",
  "moderately likely",
  "very likely"
)
consume_values <- c(
  "Less than 1 hour per day",
  "1-2 hours per day",
  "2-3 hours per day",
  "3-4 hours per day",
  "5+ hours per day"
)

interest_levels <- c ( "not at all interested in this",
                      "not interested", 
                      "neither not interested nor interested",
                      "interested",
                      "very much interested"
                      )


likley_shory_values <- c("Very unlikely",
                         "Unlikely",
                         "Neither likely nor unlikely",
                         "Likely",
                         "Very likely")


knowledgable_values <- c(
  "Very unknowledgeable",
  "Somewhat Unknowledgeable",
  "Neither",
  "Somewhat Knowledgeable",
  "Very knowledgeable"
)
easy_levels <- c("Very difficult",
                 "Difficult",
                 "Neither difficult nor easy",
                 "Easy",
                 "Very easy")

boolen_q <- c( "Yes", "No")

importance_levels <- c ("very unimportant" ,
                       "unimportant",
                       "neither important nor unimportant",
                       "important" ,
                       "very important"
                       )

novel_levels <-c ("not at all novel",
                  "not novel",
                  "neither novel nor not novel",
                  "novel",
                  "very novel")

familiar_levels <-c ("not at all familiar",
                     "not familiar",
                     "neither familiar nor unfamiliar",
                     "familiar",
                     "very familiar")

believe_levels <- c("very unlikely", 
                    "unlikely", 
                    "neither likely nor unlikely", 
                    "likely",
                    "very likely" )
ent_individual_df <- data_raw_ent |> filter(Finished == "True") |>
  mutate(Duration = as.numeric(`Duration (in seconds)`),
         AGE = as.numeric(AGE),
         BROWSE_INTERNET = ordered(BROWSE_INTERNET, levels = consume_values),
         browse_internet = as.numeric(BROWSE_INTERNET, levels = consume_values),
         USE_SNS = ordered(USE_SNS, levels = consume_values),
         use_sns = as.numeric(USE_SNS,  levels = consume_values),
         WATCHING_BEHAVIOR = ordered(WATCHING_BEHAVIOR, levels =likley_shory_values),
         watching_behavior = as.numeric (WATCHING_BEHAVIOR, levels =likley_shory_values),
         SHARING_BEHAVIOR = ordered(SHARING_BEHAVIOR, levels = likley_shory_values),
         sharing_behavior = as.numeric(SHARING_BEHAVIOR, levels = likley_shory_values),
         KNOW_DEEPFAKE = KNOW_DEEPFAKE == "Yes",
         EXP_CREATE_DF = EXP_CREATE_DF == "Yes",
         KNOW_CREATE_DF = ordered(KNOW_CREATE_DF, levels = knowledgable_values),
         know_create_df = as.numeric(KNOW_CREATE_DF, levels = knowledgable_values),
         EASE_CREATE_DF = ordered(EASE_CREATE_DF, levels = easy_levels),
        ease_create_df = as.numeric(EASE_CREATE_DF, levels = easy_levels)
        
  ) |>
  select(
    ResponseId,
    Duration,
    AGE,
    BROWSE_INTERNET,
    browse_internet,
    USE_SNS,
    use_sns,
    SNS_PLATFORM_USE,
    WATCHING_BEHAVIOR,
    watching_behavior,
    SHARING_BEHAVIOR,
    sharing_behavior,
    KNOW_DEEPFAKE,
    KNOW_CREATE_DF,
    know_create_df,
    EXP_CREATE_DF,
    EASE_CREATE_DF,
    ease_create_df
  ) |> mutate(
    SNS_PLATFORM_USE = strsplit(SNS_PLATFORM_USE,split = ","),
    value = TRUE
  ) |> 
  unnest() |> 
  mutate(SNS_PLATFORM_USE = paste0("Plat_",SNS_PLATFORM_USE)) |> 
  pivot_wider(names_from = SNS_PLATFORM_USE, values_fill = FALSE)
## Warning: `cols` is now required when using `unnest()`.
## ℹ Please use `cols = c(SNS_PLATFORM_USE)`.
pol_individual_df <- data_raw_pol |> filter(Finished == "True") |>
  mutate(Duration = as.numeric(`Duration (in seconds)`),
         AGE = as.numeric(AGE),
         BROWSE_INTERNET = ordered(BROWSE_INTERNET, levels = consume_values),
         browse_internet = as.numeric(BROWSE_INTERNET, levels = consume_values),
         USE_SNS = ordered(USE_SNS, levels = consume_values),
         use_sns = as.numeric(USE_SNS,  levels = consume_values),
         WATCHING_BEHAVIOR = ordered(WATCHING_BEHAVIOR, levels =likley_shory_values),
         watching_behavior = as.numeric (WATCHING_BEHAVIOR, levels =likley_shory_values),
         SHARING_BEHAVIOR = ordered(SHARING_BEHAVIOR, levels = likley_shory_values),
         sharing_behavior = as.numeric(SHARING_BEHAVIOR, levels = likley_shory_values),
         KNOW_DEEPFAKE = KNOW_DEEPFAKE == "Yes",
         EXP_CREATE_DF = EXP_CREATE_DF == "Yes",
         KNOW_CREATE_DF = ordered(KNOW_CREATE_DF, levels = knowledgable_values),
         know_create_df = as.numeric(KNOW_CREATE_DF, levels = knowledgable_values),
         EASE_CREATE_DF = ordered(EASE_CREATE_DF, levels = easy_levels),
        ease_create_df = as.numeric(EASE_CREATE_DF, levels = easy_levels)
        
  ) |>
  select(
    ResponseId,
    Duration,
    AGE,
    BROWSE_INTERNET,
    browse_internet,
    USE_SNS,
    use_sns,
    SNS_PLATFORM_USE,
    WATCHING_BEHAVIOR,
    watching_behavior,
    SHARING_BEHAVIOR,
    sharing_behavior,
    KNOW_DEEPFAKE,
    KNOW_CREATE_DF,
    know_create_df,
    EXP_CREATE_DF,
    EASE_CREATE_DF,
    ease_create_df
  ) |> mutate(
    SNS_PLATFORM_USE = strsplit(SNS_PLATFORM_USE,split = ","),
    value = TRUE
  ) |> 
  unnest() |> 
  mutate(SNS_PLATFORM_USE = paste0("Plat_",SNS_PLATFORM_USE)) |> 
  pivot_wider(names_from = SNS_PLATFORM_USE, values_fill = FALSE)
## Warning: `cols` is now required when using `unnest()`.
## ℹ Please use `cols = c(SNS_PLATFORM_USE)`.
#Combining the two data frames of Pol and Ent 
#data needed to be selected since columns were uneven from tables on sns_use
pol_df<-pol_individual_df|> select ( ResponseId,
    Duration,
         AGE ,
         BROWSE_INTERNET ,
         browse_internet ,
         USE_SNS ,
         use_sns ,
         WATCHING_BEHAVIOR,
         watching_behavior,
         SHARING_BEHAVIOR ,
         sharing_behavior ,
         KNOW_DEEPFAKE ,
         EXP_CREATE_DF ,
         KNOW_CREATE_DF,
         know_create_df ,
         EASE_CREATE_DF,
        ease_create_df,
        )

ent_df<-ent_individual_df|> select ( ResponseId,
    Duration,
         AGE ,
         BROWSE_INTERNET ,
         browse_internet ,
         USE_SNS ,
         use_sns ,
         WATCHING_BEHAVIOR,
         watching_behavior,
         SHARING_BEHAVIOR ,
         sharing_behavior ,
         KNOW_DEEPFAKE ,
         EXP_CREATE_DF ,
         KNOW_CREATE_DF,
         know_create_df ,
         EASE_CREATE_DF,
        ease_create_df,
        )

combined_individual_df <- rbind(pol_df, ent_df)
# Sharability behavior after watching each video
pol_behavior_df <-data_raw_pol |> filter(Finished == "True") |>
  select(ResponseId, matches ("_R_"), matches ("_DF_")) |> 
     pivot_longer(-ResponseId, values_drop_na = TRUE) |>
  separate(name, c("video", "fake", "question", "question_detail")) |>
  group_by(ResponseId) |>
  mutate(condition = if_else(any(grepl("BELIEVE", question)), "Treatment", "Control")) |> 
   ungroup() |>
  filter(question_detail != "REASONS", question_detail != "OTHER") |> group_by(ResponseId) |>
  select(-question_detail) |> pivot_wider(names_from = question, values_from = value)|>
   mutate(SHARE = str_to_lower(SHARE),
          share_numerical = as.numeric(ordered(SHARE, levels = likely_values)),
         IMPT = str_to_lower (IMPT),
         impt_numerical = as.numeric(ordered(IMPT, levels = importance_levels)),
         INTEREST = str_to_lower(INTEREST), 
         INTEREST = str_replace (INTEREST, "uninterested" , "not interested" ),
         interest_numerical = as.numeric(ordered(IMPT, levels = importance_levels)),
         FAMILIAR = str_to_lower (FAMILIAR),
         familiar_numerical = as.numeric(ordered(FAMILIAR, levels = familiar_levels)),
         NOVEL = str_to_lower(NOVEL),
         novel_numerical = as.numeric(ordered(NOVEL, levels = novel_levels)),
         fake = as.factor(fake),
         isvideodeepfake= ifelse(fake=="R",0,1)
         )
## Warning: Expected 4 pieces. Additional pieces discarded in 1621 rows [6, 12, 18, 24, 30,
## 36, 42, 48, 54, 60, 66, 72, 79, 80, 87, 94, 101, 108, 109, 116, ...].
## Warning: Expected 4 pieces. Missing pieces filled with `NA` in 756 rows [73, 81, 88, 95,
## 102, 110, 118, 125, 132, 139, 146, 153, 232, 239, 246, 253, 260, 267, 274, 281,
## ...].
# Sharability behavior after watching each video
ent_behavior_df <-data_raw_ent |> filter(Finished == "True") |>
  select(ResponseId, matches ("_R_"), matches ("_DF_")) |> 
     pivot_longer(-ResponseId, values_drop_na = TRUE) |>
  separate(name, c("video", "fake", "question", "question_detail")) |>
  group_by(ResponseId) |>
  mutate(condition = if_else(any(grepl("BELIEVE", question)), "Treatment", "Control")) |> 
   ungroup() |>
  filter(question_detail != "REASONS", question_detail != "OTHER") |> group_by(ResponseId) |>
  select(-question_detail) |> pivot_wider(names_from = question, values_from = value)|>
   mutate(SHARE = str_to_lower(SHARE), 
         share_numerical = as.numeric(ordered(SHARE, levels = likely_values)),
         IMPT = str_to_lower (IMPT),
         impt_numerical = as.numeric(ordered(IMPT, levels = importance_levels)),
         INTEREST = str_to_lower(INTEREST), 
         INTEREST = str_replace (INTEREST, "uninterested" , "not interested" ),
         interest_numerical = as.numeric(ordered(IMPT, levels = importance_levels)),
         FAMILIAR = str_to_lower (FAMILIAR),
         familiar_numerical = as.numeric(ordered(FAMILIAR, levels = familiar_levels)),
         NOVEL = str_to_lower(NOVEL),
         novel_numerical = as.numeric(ordered(NOVEL, levels = novel_levels)),
         fake = as.factor(fake),
         isvideodeepfake= ifelse(fake=="R",0,1)
         )
## Warning: Expected 4 pieces. Additional pieces discarded in 1610 rows [7, 14, 21, 28, 35,
## 42, 49, 56, 63, 70, 77, 84, 90, 96, 102, 108, 114, 120, 126, 132, ...].
## Warning: Expected 4 pieces. Missing pieces filled with `NA` in 780 rows [1, 8, 15, 22,
## 29, 36, 43, 50, 57, 64, 71, 78, 230, 237, 244, 251, 258, 265, 272, 279, ...].
combined_behavior_df <- rbind(pol_behavior_df,ent_behavior_df)
# combined all indivual and behavior 
combined_df<- merge(combined_individual_df, combined_behavior_df, by.x = "ResponseId", by.y = "ResponseId")  
                                                                                                        Individuals_behavior_combined_df <- combined_df |> mutate(video_subject= if_else(grepl("P", video), "Political", "Entertrianment"))

##Understanding the demography of both pol and ent data on their previous deepfake experience

# Histogram By Category

ggplot(Individuals_behavior_combined_df, aes(x=SHARING_BEHAVIOR, fill = condition)) +
  geom_bar() +
  facet_wrap(~condition, nrow=2) 

ggplot(Individuals_behavior_combined_df, aes(x=WATCHING_BEHAVIOR,fill = condition)) +
  geom_bar() +
  facet_wrap(~condition, nrow=2)

ggplot(Individuals_behavior_combined_df, aes(x=BROWSE_INTERNET, fill = condition)) +
  geom_bar() +
  facet_wrap(~condition, nrow=2)

ggplot(Individuals_behavior_combined_df, aes(x=USE_SNS,fill = condition)) +
  geom_bar() +
  facet_wrap(~condition, nrow=2)

ggplot(Individuals_behavior_combined_df, aes(x=KNOW_DEEPFAKE,fill = condition)) +
  geom_bar() +
  facet_wrap(~condition, nrow=2)

Understanding the sharing behavior based on individual data

###Behaviors after watching videos

ggplot(Individuals_behavior_combined_df, aes(x=share_numerical, fill= condition)) +
  geom_bar() +
  facet_wrap(~condition, nrow=2)

ggplot(Individuals_behavior_combined_df, aes(x=interest_numerical, fill= condition)) +
  geom_bar() +
  facet_wrap(~condition, nrow=2)

ggplot(Individuals_behavior_combined_df, aes(x=novel_numerical, fill=condition)) +
  geom_bar() +
  facet_wrap(~condition, nrow=2)

ggplot(Individuals_behavior_combined_df, aes(x=impt_numerical, fill= condition)) +
  geom_bar() +
  facet_wrap(~condition, nrow=2)

ggplot(Individuals_behavior_combined_df, aes(share_numerical)) + 
  geom_histogram(color = "#000000", fill = "#0099F8")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

ggplot(Individuals_behavior_combined_df, aes(x=share_numerical, color=condition)) +
  geom_histogram(fill="white", alpha=0.5, position="identity")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Regression model

Regreasion_model_df<-Individuals_behavior_combined_df |>select ( ResponseId, video, fake, isvideodeepfake,  condition, share_numerical, impt_numerical, interest_numerical, familiar_numerical, novel_numerical, use_sns, watching_behavior, sharing_behavior, know_create_df, ease_create_df, browse_internet)

sharing_deepfakes_df<-Individuals_behavior_combined_df |>select ( ResponseId, fake, isvideodeepfake,  condition, share_numerical)

corelations_df <-Individuals_behavior_combined_df |>select ( share_numerical, impt_numerical, interest_numerical, familiar_numerical, novel_numerical, use_sns, watching_behavior, sharing_behavior, know_create_df, ease_create_df, browse_internet, isvideodeepfake)


lmshare = lm(share_numerical~ impt_numerical+ interest_numerical + familiar_numerical+ novel_numerical+ condition + fake + video, data = Regreasion_model_df)
summary(lmshare)
## 
## Call:
## lm(formula = share_numerical ~ impt_numerical + interest_numerical + 
##     familiar_numerical + novel_numerical + condition + fake + 
##     video, data = Regreasion_model_df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.6748 -0.6938 -0.0969  0.4496  4.1864 
## 
## Coefficients: (2 not defined because of singularities)
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         0.11219    0.11612   0.966 0.334051    
## impt_numerical      0.19598    0.01860  10.537  < 2e-16 ***
## interest_numerical       NA         NA      NA       NA    
## familiar_numerical  0.03625    0.01603   2.262 0.023792 *  
## novel_numerical     0.48425    0.01888  25.651  < 2e-16 ***
## conditionTreatment -0.08304    0.03781  -2.196 0.028138 *  
## fakeR               0.11837    0.13305   0.890 0.373737    
## video11E            0.16459    0.13333   1.234 0.217123    
## video12E           -0.12001    0.13178  -0.911 0.362556    
## video13P           -0.19540    0.13362  -1.462 0.143759    
## video14E           -0.03341    0.13064  -0.256 0.798149    
## video15P           -0.40541    0.13311  -3.046 0.002342 ** 
## video16E           -0.09286    0.13448  -0.690 0.489938    
## video17P           -0.25753    0.13183  -1.953 0.050856 .  
## video18P           -0.09609    0.13117  -0.733 0.463901    
## video19P           -0.37629    0.13139  -2.864 0.004213 ** 
## video1P            -0.47483    0.13372  -3.551 0.000390 ***
## video20E           -0.01507    0.13088  -0.115 0.908350    
## video21P           -0.23660    0.13407  -1.765 0.077702 .  
## video22E            0.13536    0.13376   1.012 0.311650    
## video23P           -0.46610    0.13200  -3.531 0.000420 ***
## video24E           -0.01982    0.13102  -0.151 0.879785    
## video2P            -0.44458    0.13143  -3.382 0.000727 ***
## video3E            -0.14944    0.13365  -1.118 0.263585    
## video4P            -0.16882    0.13404  -1.259 0.207951    
## video5P            -0.12907    0.13529  -0.954 0.340141    
## video6P            -0.51765    0.13339  -3.881 0.000106 ***
## video7P            -0.51069    0.13217  -3.864 0.000114 ***
## video8E            -0.21575    0.13121  -1.644 0.100216    
## video9E                  NA         NA      NA       NA    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.048 on 3056 degrees of freedom
## Multiple R-squared:  0.3298, Adjusted R-squared:  0.3239 
## F-statistic:  55.7 on 27 and 3056 DF,  p-value: < 2.2e-16
tab_model(lmshare)
## Model matrix is rank deficient. Parameters `interest_numerical, video9E`
##   were not estimable.
  share_numerical
Predictors Estimates CI p
(Intercept) 0.11 -0.12 – 0.34 0.334
impt numerical 0.20 0.16 – 0.23 <0.001
familiar numerical 0.04 0.00 – 0.07 0.024
novel numerical 0.48 0.45 – 0.52 <0.001
condition [Treatment] -0.08 -0.16 – -0.01 0.028
fake [R] 0.12 -0.14 – 0.38 0.374
video [11E] 0.16 -0.10 – 0.43 0.217
video [12E] -0.12 -0.38 – 0.14 0.363
video [13P] -0.20 -0.46 – 0.07 0.144
video [14E] -0.03 -0.29 – 0.22 0.798
video [15P] -0.41 -0.67 – -0.14 0.002
video [16E] -0.09 -0.36 – 0.17 0.490
video [17P] -0.26 -0.52 – 0.00 0.051
video [18P] -0.10 -0.35 – 0.16 0.464
video [19P] -0.38 -0.63 – -0.12 0.004
video [1P] -0.47 -0.74 – -0.21 <0.001
video [20E] -0.02 -0.27 – 0.24 0.908
video [21P] -0.24 -0.50 – 0.03 0.078
video [22E] 0.14 -0.13 – 0.40 0.312
video [23P] -0.47 -0.72 – -0.21 <0.001
video [24E] -0.02 -0.28 – 0.24 0.880
video [2P] -0.44 -0.70 – -0.19 0.001
video [3E] -0.15 -0.41 – 0.11 0.264
video [4P] -0.17 -0.43 – 0.09 0.208
video [5P] -0.13 -0.39 – 0.14 0.340
video [6P] -0.52 -0.78 – -0.26 <0.001
video [7P] -0.51 -0.77 – -0.25 <0.001
video [8E] -0.22 -0.47 – 0.04 0.100
Observations 3084
R2 / R2 adjusted 0.330 / 0.324
#does the share depends on video being a deepfake 
dfshare = lm(isvideodeepfake~share_numerical, data = Regreasion_model_df)
summary(dfshare)
## 
## Call:
## lm(formula = isvideodeepfake ~ share_numerical, data = Regreasion_model_df)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.53497 -0.53497  0.07544  0.46503  0.68584 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      0.579130   0.015445  37.496  < 2e-16 ***
## share_numerical -0.044162   0.007025  -6.286 3.72e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.497 on 3082 degrees of freedom
## Multiple R-squared:  0.01266,    Adjusted R-squared:  0.01234 
## F-statistic: 39.51 on 1 and 3082 DF,  p-value: 3.717e-10
tab_model(dfshare)
  isvideodeepfake
Predictors Estimates CI p
(Intercept) 0.58 0.55 – 0.61 <0.001
share numerical -0.04 -0.06 – -0.03 <0.001
Observations 3084
R2 / R2 adjusted 0.013 / 0.012
#Anova between two groups, to check if there is a diference in deepfake or real videos 
sharability_deepfake_df <-Individuals_behavior_combined_df |>select ( ResponseId, fake, isvideodeepfake,  condition, share_numerical)

share_deepfakes_or_not <- aov(share_numerical~fake, data= sharability_deepfake_df)

summary(share_deepfakes_or_not)
##               Df Sum Sq Mean Sq F value   Pr(>F)    
## fake           1     63   63.35   39.51 3.72e-10 ***
## Residuals   3082   4941    1.60                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tab_model(share_deepfakes_or_not)
  share_numerical
Predictors p
fake <0.001
Residuals
Observations 3084
R2 / R2 adjusted 0.013 / 0.012
TukeyHSD(share_deepfakes_or_not, conf.level=.95)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = share_numerical ~ fake, data = sharability_deepfake_df)
## 
## $fake
##           diff       lwr       upr p adj
## R-DF 0.2866407 0.1972314 0.3760501     0
pairwise.t.test(sharability_deepfake_df$share_numerical, sharability_deepfake_df$fake, p.adj = "bonf")
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  sharability_deepfake_df$share_numerical and sharability_deepfake_df$fake 
## 
##   DF     
## R 3.7e-10
## 
## P value adjustment method: bonferroni
ggplot(sharability_deepfake_df, aes(fake,share_numerical)) + 
  # facet_wrap(vars(video)) +
  stat_summary(
    fun.data = mean_cl_boot,
    geom = "pointrange",
    shape = 21,
    fill = "white"
  )

ggplot(sharability_deepfake_df, aes(x=share_numerical, fill = fake)) +
  geom_bar() +
  facet_wrap(~fake, nrow=2)

ggplot(sharability_deepfake_df, aes(x=fake, y= share_numerical,group=fake)) + 
  geom_boxplot(aes(fill=fake))

corelation_behavior <-cor(corelations_df)
print(corelation_behavior)
##                    share_numerical impt_numerical interest_numerical
## share_numerical         1.00000000    0.359276962        0.359276962
## impt_numerical          0.35927696    1.000000000        1.000000000
## interest_numerical      0.35927696    1.000000000        1.000000000
## familiar_numerical      0.15470677    0.256001917        0.256001917
## novel_numerical         0.52199955    0.389133784        0.389133784
## use_sns                 0.15526789    0.119024866        0.119024866
## watching_behavior       0.06824486    0.099735605        0.099735605
## sharing_behavior        0.27160075    0.076250190        0.076250190
## know_create_df          0.03252887   -0.007354733       -0.007354733
## ease_create_df          0.01191750    0.004865348        0.004865348
## browse_internet         0.16725007    0.137174348        0.137174348
## isvideodeepfake        -0.11250999   -0.198593869       -0.198593869
##                    familiar_numerical novel_numerical       use_sns
## share_numerical          0.1547067738     0.521999554  0.1552678896
## impt_numerical           0.2560019165     0.389133784  0.1190248664
## interest_numerical       0.2560019165     0.389133784  0.1190248664
## familiar_numerical       1.0000000000     0.191947879 -0.0006834883
## novel_numerical          0.1919478786     1.000000000  0.0886806342
## use_sns                 -0.0006834883     0.088680634  1.0000000000
## watching_behavior        0.1119849637     0.008414933  0.3473773536
## sharing_behavior         0.0541559044     0.145934137  0.2587550930
## know_create_df           0.0874720865    -0.015285694 -0.0050098789
## ease_create_df          -0.0519797982     0.010469816  0.1204580288
## browse_internet          0.0323313344     0.112576414  0.5465527147
## isvideodeepfake          0.0304437259    -0.023325180  0.0000000000
##                    watching_behavior sharing_behavior know_create_df
## share_numerical          0.068244857       0.27160075    0.032528874
## impt_numerical           0.099735605       0.07625019   -0.007354733
## interest_numerical       0.099735605       0.07625019   -0.007354733
## familiar_numerical       0.111984964       0.05415590    0.087472086
## novel_numerical          0.008414933       0.14593414   -0.015285694
## use_sns                  0.347377354       0.25875509   -0.005009879
## watching_behavior        1.000000000       0.26078604    0.052366378
## sharing_behavior         0.260786044       1.00000000    0.069391589
## know_create_df           0.052366378       0.06939159    1.000000000
## ease_create_df          -0.013183927      -0.02990752    0.105552370
## browse_internet          0.264180750       0.18943918    0.195119814
## isvideodeepfake          0.000000000       0.00000000    0.000000000
##                    ease_create_df browse_internet isvideodeepfake
## share_numerical       0.011917504      0.16725007     -0.11250999
## impt_numerical        0.004865348      0.13717435     -0.19859387
## interest_numerical    0.004865348      0.13717435     -0.19859387
## familiar_numerical   -0.051979798      0.03233133      0.03044373
## novel_numerical       0.010469816      0.11257641     -0.02332518
## use_sns               0.120458029      0.54655271      0.00000000
## watching_behavior    -0.013183927      0.26418075      0.00000000
## sharing_behavior     -0.029907517      0.18943918      0.00000000
## know_create_df        0.105552370      0.19511981      0.00000000
## ease_create_df        1.000000000      0.07597182      0.00000000
## browse_internet       0.075971819      1.00000000      0.00000000
## isvideodeepfake       0.000000000      0.00000000      1.00000000
confint(lmshare)
##                           2.5 %        97.5 %
## (Intercept)        -0.115492100  0.3398664553
## impt_numerical      0.159506583  0.2324438988
## interest_numerical           NA            NA
## familiar_numerical  0.004822706  0.0676836956
## novel_numerical     0.447237362  0.5212707026
## conditionTreatment -0.157162677 -0.0089090974
## fakeR              -0.142515410  0.3792505067
## video11E           -0.096833305  0.4260159771
## video12E           -0.378395088  0.1383837060
## video13P           -0.457399756  0.0666021857
## video14E           -0.289567452  0.2227401779
## video15P           -0.666410036 -0.1444066980
## video16E           -0.356549757  0.1708291077
## video17P           -0.516025857  0.0009596433
## video18P           -0.353272925  0.1611028970
## video19P           -0.633922173 -0.1186658950
## video1P            -0.737015141 -0.2126432488
## video20E           -0.271689490  0.2415533110
## video21P           -0.499465158  0.0262729612
## video22E           -0.126914788  0.3976327010
## video23P           -0.724927771 -0.2072808711
## video24E           -0.276707093  0.2370731992
## video2P            -0.702284497 -0.1868655646
## video3E            -0.411480876  0.1126064400
## video4P            -0.431646075  0.0939978486
## video5P            -0.394332459  0.1361945546
## video6P            -0.779182082 -0.2561150004
## video7P            -0.769847307 -0.2515312102
## video8E            -0.473030412  0.0415205906
## video9E                      NA            NA
library("Hmisc")
## 
## Attaching package: 'Hmisc'
## The following object is masked from 'package:sjmisc':
## 
##     %nin%
## The following objects are masked from 'package:dplyr':
## 
##     src, summarize
## The following objects are masked from 'package:base':
## 
##     format.pval, units
cor <- rcorr(as.matrix(corelations_df))

print(cor)
##                    share_numerical impt_numerical interest_numerical
## share_numerical               1.00           0.36               0.36
## impt_numerical                0.36           1.00               1.00
## interest_numerical            0.36           1.00               1.00
## familiar_numerical            0.15           0.26               0.26
## novel_numerical               0.52           0.39               0.39
## use_sns                       0.16           0.12               0.12
## watching_behavior             0.07           0.10               0.10
## sharing_behavior              0.27           0.08               0.08
## know_create_df                0.03          -0.01              -0.01
## ease_create_df                0.01           0.00               0.00
## browse_internet               0.17           0.14               0.14
## isvideodeepfake              -0.11          -0.20              -0.20
##                    familiar_numerical novel_numerical use_sns watching_behavior
## share_numerical                  0.15            0.52    0.16              0.07
## impt_numerical                   0.26            0.39    0.12              0.10
## interest_numerical               0.26            0.39    0.12              0.10
## familiar_numerical               1.00            0.19    0.00              0.11
## novel_numerical                  0.19            1.00    0.09              0.01
## use_sns                          0.00            0.09    1.00              0.35
## watching_behavior                0.11            0.01    0.35              1.00
## sharing_behavior                 0.05            0.15    0.26              0.26
## know_create_df                   0.09           -0.02   -0.01              0.05
## ease_create_df                  -0.05            0.01    0.12             -0.01
## browse_internet                  0.03            0.11    0.55              0.26
## isvideodeepfake                  0.03           -0.02    0.00              0.00
##                    sharing_behavior know_create_df ease_create_df
## share_numerical                0.27           0.03           0.01
## impt_numerical                 0.08          -0.01           0.00
## interest_numerical             0.08          -0.01           0.00
## familiar_numerical             0.05           0.09          -0.05
## novel_numerical                0.15          -0.02           0.01
## use_sns                        0.26          -0.01           0.12
## watching_behavior              0.26           0.05          -0.01
## sharing_behavior               1.00           0.07          -0.03
## know_create_df                 0.07           1.00           0.11
## ease_create_df                -0.03           0.11           1.00
## browse_internet                0.19           0.20           0.08
## isvideodeepfake                0.00           0.00           0.00
##                    browse_internet isvideodeepfake
## share_numerical               0.17           -0.11
## impt_numerical                0.14           -0.20
## interest_numerical            0.14           -0.20
## familiar_numerical            0.03            0.03
## novel_numerical               0.11           -0.02
## use_sns                       0.55            0.00
## watching_behavior             0.26            0.00
## sharing_behavior              0.19            0.00
## know_create_df                0.20            0.00
## ease_create_df                0.08            0.00
## browse_internet               1.00            0.00
## isvideodeepfake               0.00            1.00
## 
## n= 3084 
## 
## 
## P
##                    share_numerical impt_numerical interest_numerical
## share_numerical                    0.0000         0.0000            
## impt_numerical     0.0000                         0.0000            
## interest_numerical 0.0000          0.0000                           
## familiar_numerical 0.0000          0.0000         0.0000            
## novel_numerical    0.0000          0.0000         0.0000            
## use_sns            0.0000          0.0000         0.0000            
## watching_behavior  0.0001          0.0000         0.0000            
## sharing_behavior   0.0000          0.0000         0.0000            
## know_create_df     0.0709          0.6831         0.6831            
## ease_create_df     0.5082          0.7871         0.7871            
## browse_internet    0.0000          0.0000         0.0000            
## isvideodeepfake    0.0000          0.0000         0.0000            
##                    familiar_numerical novel_numerical use_sns watching_behavior
## share_numerical    0.0000             0.0000          0.0000  0.0001           
## impt_numerical     0.0000             0.0000          0.0000  0.0000           
## interest_numerical 0.0000             0.0000          0.0000  0.0000           
## familiar_numerical                    0.0000          0.9697  0.0000           
## novel_numerical    0.0000                             0.0000  0.6404           
## use_sns            0.9697             0.0000                  0.0000           
## watching_behavior  0.0000             0.6404          0.0000                   
## sharing_behavior   0.0026             0.0000          0.0000  0.0000           
## know_create_df     0.0000             0.3961          0.7809  0.0036           
## ease_create_df     0.0039             0.5611          0.0000  0.4642           
## browse_internet    0.0726             0.0000          0.0000  0.0000           
## isvideodeepfake    0.0910             0.1953          1.0000  1.0000           
##                    sharing_behavior know_create_df ease_create_df
## share_numerical    0.0000           0.0709         0.5082        
## impt_numerical     0.0000           0.6831         0.7871        
## interest_numerical 0.0000           0.6831         0.7871        
## familiar_numerical 0.0026           0.0000         0.0039        
## novel_numerical    0.0000           0.3961         0.5611        
## use_sns            0.0000           0.7809         0.0000        
## watching_behavior  0.0000           0.0036         0.4642        
## sharing_behavior                    0.0001         0.0968        
## know_create_df     0.0001                          0.0000        
## ease_create_df     0.0968           0.0000                       
## browse_internet    0.0000           0.0000         0.0000        
## isvideodeepfake    1.0000           1.0000         1.0000        
##                    browse_internet isvideodeepfake
## share_numerical    0.0000          0.0000         
## impt_numerical     0.0000          0.0000         
## interest_numerical 0.0000          0.0000         
## familiar_numerical 0.0726          0.0910         
## novel_numerical    0.0000          0.1953         
## use_sns            0.0000          1.0000         
## watching_behavior  0.0000          1.0000         
## sharing_behavior   0.0000          1.0000         
## know_create_df     0.0000          1.0000         
## ease_create_df     0.0000          1.0000         
## browse_internet                    1.0000         
## isvideodeepfake    1.0000
library(corrplot)
## corrplot 0.92 loaded
corrplot(corelation_behavior, type = "upper", order = "hclust", 
         tl.col = "black", tl.srt = 45)

cor.mtest <- function(mat, ...) {
    mat <- as.matrix(mat)
    n <- ncol(mat)
    p.mat<- matrix(NA, n, n)
    diag(p.mat) <- 0
    for (i in 1:(n - 1)) {
        for (j in (i + 1):n) {
            tmp <- cor.test(mat[, i], mat[, j], ...)
            p.mat[i, j] <- p.mat[j, i] <- tmp$p.value
        }
    }
  colnames(p.mat) <- rownames(p.mat) <- colnames(mat)
  p.mat
}
# matrix of the p-value of the correlation
p.mat <- cor.mtest(corelations_df)
print(p.mat[, 1:5])
##                    share_numerical impt_numerical interest_numerical
## share_numerical       0.000000e+00   1.281352e-94       1.281352e-94
## impt_numerical        1.281352e-94   0.000000e+00       0.000000e+00
## interest_numerical    1.281352e-94   0.000000e+00       0.000000e+00
## familiar_numerical    5.619676e-18   2.418161e-47       2.418161e-47
## novel_numerical      3.461304e-215  4.766198e-112      4.766198e-112
## use_sns               4.255107e-18   3.338649e-11       3.338649e-11
## watching_behavior     1.489700e-04   2.851924e-08       2.851924e-08
## sharing_behavior      2.739896e-53   2.246015e-05       2.246015e-05
## know_create_df        7.088761e-02   6.830710e-01       6.830710e-01
## ease_create_df        5.082410e-01   7.870962e-01       7.870962e-01
## browse_internet       8.748798e-21   1.995574e-14       1.995574e-14
## isvideodeepfake       3.716949e-10   8.447731e-29       8.447731e-29
##                    familiar_numerical novel_numerical
## share_numerical          5.619676e-18   3.461304e-215
## impt_numerical           2.418161e-47   4.766198e-112
## interest_numerical       2.418161e-47   4.766198e-112
## familiar_numerical       0.000000e+00    5.587541e-27
## novel_numerical          5.587541e-27    0.000000e+00
## use_sns                  9.697345e-01    8.118628e-07
## watching_behavior        4.487577e-10    6.404056e-01
## sharing_behavior         2.625664e-03    3.804588e-16
## know_create_df           1.144494e-06    3.961163e-01
## ease_create_df           3.884202e-03    5.610999e-01
## browse_internet          7.261827e-02    3.629166e-10
## isvideodeepfake          9.095884e-02    1.953250e-01
col <- colorRampPalette(c("#BB4444", "#EE9988", "#E0E0E0", "#77AADD", "#4477AA"))
corrplot(corelation_behavior, method="color", col=col(200),  
         type="upper", order="hclust", 
         addCoef.col = "black", # Add coefficient of correlation
         tl.col="black", tl.srt=45, #Text label color and rotation
         # Combine with significance
         p.mat = p.mat, sig.level = 0.01, insig = "blank", 
         # hide correlation coefficient on the principal diagonal
         diag=FALSE 
         )

#Treatment “Believe its a deepfake or not”

# Beliveability 

pol_beliveble_vs_sharability_df <-data_raw_pol |> filter(Finished == "True") |>
  select(ResponseId, matches ("_R_"), matches ("_DF_")) |> 
     pivot_longer(-ResponseId, values_drop_na = TRUE) |>
  separate(name, c("video", "fake", "question", "question_detail"), "_", extra= "merge") |> 
  filter (question != "SHARE", question != "DNSHARE") |>
  separate(question, c("question", "other")) |>
  select(-question_detail, -other)|> 
  pivot_wider(names_from = question, values_from = value) |>
  mutate (condition = if_else(is.na(BELIEVE), "Control", "Treatment" )) |>
  select (ResponseId, fake, video, condition,SHARE, BELIEVE, IMPT, NOVEL, INTEREST, FAMILIAR)|> 
  filter (condition=="Treatment") |>
  mutate(SHARE = str_to_lower(SHARE),share_numerical = as.numeric(ordered(SHARE, levels = likely_values)),
         BELIEVE= str_to_lower(BELIEVE),
         believe_numerical = as.numeric(ordered(BELIEVE, levels = believe_levels)),
        IMPT= str_to_lower(IMPT),
         impt_numerical = as.numeric(ordered(IMPT, levels = importance_levels)),
         INTEREST = str_to_lower(INTEREST), 
         INTEREST = str_replace (INTEREST, "uninterested" , "not interested" ),
         interest_numerical = as.numeric(ordered(IMPT, levels = importance_levels)),
         FAMILIAR = str_to_lower (FAMILIAR),
         familiar_numerical = as.numeric(ordered(FAMILIAR, levels = familiar_levels)),
         NOVEL = str_to_lower(NOVEL),
         novel_numerical = as.numeric(ordered(NOVEL, levels = novel_levels)))
## Warning: Expected 4 pieces. Missing pieces filled with `NA` in 8436 rows [1, 2, 3, 4, 5,
## 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, ...].
## Warning: Expected 2 pieces. Missing pieces filled with `NA` in 756 rows [61, 67, 73, 79,
## 85, 91, 97, 103, 109, 115, 121, 127, 193, 199, 205, 211, 217, 223, 229, 235,
## ...].
ent_beliveble_vs_sharability_df <-data_raw_ent |> filter(Finished == "True") |>
  select(ResponseId, matches ("_R_"), matches ("_DF_")) |> 
     pivot_longer(-ResponseId, values_drop_na = TRUE) |>
  separate(name, c("video", "fake", "question", "question_detail"), "_", extra= "merge") |> 
  filter (question != "SHARE", question != "DNSHARE") |>
  separate(question, c("question", "other")) |>
  select(-question_detail, -other)|> 
  pivot_wider(names_from = question, values_from = value) |>
  mutate (condition = if_else(is.na(BELIEVE), "Control", "Treatment" )) |>
  select (ResponseId, fake, video, condition,SHARE, BELIEVE, IMPT, NOVEL, INTEREST, FAMILIAR)|> 
  filter (condition=="Treatment") |>
 mutate(SHARE = str_to_lower(SHARE),share_numerical = as.numeric(ordered(SHARE, levels = likely_values)),
         BELIEVE= str_to_lower(BELIEVE),
         believe_numerical = as.numeric(ordered(BELIEVE, levels = believe_levels)),
         IMPT= str_to_lower(IMPT),
         impt_numerical = as.numeric(ordered(IMPT, levels = importance_levels)),
         INTEREST = str_to_lower(INTEREST), 
         INTEREST = str_replace (INTEREST, "uninterested" , "not interested" ),
         interest_numerical = as.numeric(ordered(IMPT, levels = importance_levels)),
         FAMILIAR = str_to_lower (FAMILIAR),
         familiar_numerical = as.numeric(ordered(FAMILIAR, levels = familiar_levels)),
         NOVEL = str_to_lower(NOVEL),
         novel_numerical = as.numeric(ordered(NOVEL, levels = novel_levels)))
## Warning: Expected 4 pieces. Missing pieces filled with `NA` in 8520 rows [1, 2, 3, 4, 5,
## 6, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 22, 23, ...].
## Warning: Expected 2 pieces. Missing pieces filled with `NA` in 780 rows [1, 7, 13, 19,
## 25, 31, 37, 43, 49, 55, 61, 67, 193, 199, 205, 211, 217, 223, 229, 235, ...].
combined_df <- rbind(ent_beliveble_vs_sharability_df, pol_beliveble_vs_sharability_df )
#aading the Video_Subject column as political or entertainment 
pol_ent_combined_df <- combined_df |> mutate(video_subject= if_else(grepl("P", video), "Political", "Entertrianment"))

share_vs_believe_lm_df <- pol_ent_combined_df  |> select(ResponseId, fake, video, believe_numerical, share_numerical, video_subject)


ggplot(share_vs_believe_lm_df, aes(x=believe_numerical, fill= video_subject)) +
  geom_bar() +
  facet_wrap(~video_subject, nrow=2)

share_vs_believe_lm1 = lm (share_numerical~believe_numerical+ fake + video + video_subject, data=share_vs_believe_lm_df)
summary(share_vs_believe_lm1)
## 
## Call:
## lm(formula = share_numerical ~ believe_numerical + fake + video + 
##     video_subject, data = share_vs_believe_lm_df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.3369 -0.6744 -0.4669  0.3819  4.6135 
## 
## Coefficients: (2 not defined because of singularities)
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             1.64836    0.17469   9.436  < 2e-16 ***
## believe_numerical      -0.03292    0.02759  -1.193  0.23291    
## fakeR                   0.14410    0.21266   0.678  0.49813    
## video11E                0.57733    0.21004   2.749  0.00605 ** 
## video12E                0.42399    0.21006   2.018  0.04372 *  
## video13P                0.47254    0.21163   2.233  0.02570 *  
## video14E                0.02843    0.21046   0.135  0.89257    
## video15P                0.15730    0.21299   0.739  0.46031    
## video16E               -0.14847    0.21065  -0.705  0.48105    
## video17P               -0.07322    0.21159  -0.346  0.72937    
## video18P                0.06356    0.20994   0.303  0.76210    
## video19P               -0.10157    0.21424  -0.474  0.63550    
## video1P                -0.15363    0.21160  -0.726  0.46793    
## video20E               -0.09129    0.20993  -0.435  0.66372    
## video21P                0.11778    0.21159   0.557  0.57785    
## video22E                0.57651    0.21004   2.745  0.00613 ** 
## video23P               -0.29074    0.21161  -1.374  0.16968    
## video24E               -0.01722    0.21043  -0.082  0.93479    
## video2P                 0.19061    0.21315   0.894  0.37131    
## video3E                -0.03754    0.21006  -0.179  0.85817    
## video4P                -0.15245    0.21163  -0.720  0.47141    
## video5P                 0.51618    0.21159   2.439  0.01482 *  
## video6P                 0.49971    0.21241   2.353  0.01877 *  
## video7P                -0.16114    0.21166  -0.761  0.44659    
## video8E                -0.09725    0.21104  -0.461  0.64502    
## video9E                      NA         NA      NA       NA    
## video_subjectPolitical       NA         NA      NA       NA    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.197 on 1511 degrees of freedom
## Multiple R-squared:  0.05311,    Adjusted R-squared:  0.03807 
## F-statistic: 3.531 on 24 and 1511 DF,  p-value: 1.967e-08
tab_model(share_vs_believe_lm1)
## Model matrix is rank deficient. Parameters `video9E,
##   video_subjectPolitical` were not estimable.
  share_numerical
Predictors Estimates CI p
(Intercept) 1.65 1.31 – 1.99 <0.001
believe numerical -0.03 -0.09 – 0.02 0.233
fake [R] 0.14 -0.27 – 0.56 0.498
video [11E] 0.58 0.17 – 0.99 0.006
video [12E] 0.42 0.01 – 0.84 0.044
video [13P] 0.47 0.06 – 0.89 0.026
video [14E] 0.03 -0.38 – 0.44 0.893
video [15P] 0.16 -0.26 – 0.58 0.460
video [16E] -0.15 -0.56 – 0.26 0.481
video [17P] -0.07 -0.49 – 0.34 0.729
video [18P] 0.06 -0.35 – 0.48 0.762
video [19P] -0.10 -0.52 – 0.32 0.636
video [1P] -0.15 -0.57 – 0.26 0.468
video [20E] -0.09 -0.50 – 0.32 0.664
video [21P] 0.12 -0.30 – 0.53 0.578
video [22E] 0.58 0.16 – 0.99 0.006
video [23P] -0.29 -0.71 – 0.12 0.170
video [24E] -0.02 -0.43 – 0.40 0.935
video [2P] 0.19 -0.23 – 0.61 0.371
video [3E] -0.04 -0.45 – 0.37 0.858
video [4P] -0.15 -0.57 – 0.26 0.471
video [5P] 0.52 0.10 – 0.93 0.015
video [6P] 0.50 0.08 – 0.92 0.019
video [7P] -0.16 -0.58 – 0.25 0.447
video [8E] -0.10 -0.51 – 0.32 0.645
Observations 1536
R2 / R2 adjusted 0.053 / 0.038
share_vs_believe_lm2 = lm (share_numerical~believe_numerical+ fake , data=share_vs_believe_lm_df)
summary(share_vs_believe_lm2)
## 
## Call:
## lm(formula = share_numerical ~ believe_numerical + fake, data = share_vs_believe_lm_df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.8541 -0.7777 -0.6186  0.3050  4.4196 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        1.77134    0.10678  16.589   <2e-16 ***
## believe_numerical -0.03819    0.02634  -1.450    0.147    
## fakeR              0.12096    0.07414   1.631    0.103    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.217 on 1533 degrees of freedom
## Multiple R-squared:  0.006787,   Adjusted R-squared:  0.005491 
## F-statistic: 5.238 on 2 and 1533 DF,  p-value: 0.005408
tab_model(share_vs_believe_lm2)
  share_numerical
Predictors Estimates CI p
(Intercept) 1.77 1.56 – 1.98 <0.001
believe numerical -0.04 -0.09 – 0.01 0.147
fake [R] 0.12 -0.02 – 0.27 0.103
Observations 1536
R2 / R2 adjusted 0.007 / 0.005
share_vs_believe_lm3 = lm (share_numerical~believe_numerical+ video , data=share_vs_believe_lm_df)
summary(share_vs_believe_lm3)
## 
## Call:
## lm(formula = share_numerical ~ believe_numerical + video, data = share_vs_believe_lm_df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.3369 -0.6744 -0.4669  0.3819  4.6135 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        1.648364   0.174691   9.436  < 2e-16 ***
## believe_numerical -0.032920   0.027586  -1.193 0.232906    
## video11E           0.721432   0.211681   3.408 0.000671 ***
## video12E           0.423994   0.210055   2.018 0.043717 *  
## video13P           0.472540   0.211630   2.233 0.025705 *  
## video14E           0.028428   0.210456   0.135 0.892570    
## video15P           0.157299   0.212991   0.739 0.460312    
## video16E          -0.148466   0.210651  -0.705 0.481047    
## video17P           0.070882   0.214423   0.331 0.741013    
## video18P           0.207663   0.212395   0.978 0.328369    
## video19P          -0.101569   0.214238  -0.474 0.635501    
## video1P           -0.009528   0.214566  -0.044 0.964588    
## video20E           0.052804   0.212525   0.248 0.803814    
## video21P           0.261881   0.214352   1.222 0.221999    
## video22E           0.720610   0.213848   3.370 0.000771 ***
## video23P          -0.146637   0.213820  -0.686 0.492947    
## video24E          -0.017220   0.210427  -0.082 0.934791    
## video2P            0.190612   0.213145   0.894 0.371313    
## video3E            0.106554   0.211627   0.503 0.614686    
## video4P           -0.152453   0.211634  -0.720 0.471414    
## video5P            0.660274   0.214146   3.083 0.002084 ** 
## video6P            0.499712   0.212415   2.353 0.018774 *  
## video7P           -0.017040   0.213516  -0.080 0.936401    
## video8E           -0.097247   0.211044  -0.461 0.645015    
## video9E            0.144098   0.212659   0.678 0.498128    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.197 on 1511 degrees of freedom
## Multiple R-squared:  0.05311,    Adjusted R-squared:  0.03807 
## F-statistic: 3.531 on 24 and 1511 DF,  p-value: 1.967e-08
tab_model(share_vs_believe_lm3)
  share_numerical
Predictors Estimates CI p
(Intercept) 1.65 1.31 – 1.99 <0.001
believe numerical -0.03 -0.09 – 0.02 0.233
video [11E] 0.72 0.31 – 1.14 0.001
video [12E] 0.42 0.01 – 0.84 0.044
video [13P] 0.47 0.06 – 0.89 0.026
video [14E] 0.03 -0.38 – 0.44 0.893
video [15P] 0.16 -0.26 – 0.58 0.460
video [16E] -0.15 -0.56 – 0.26 0.481
video [17P] 0.07 -0.35 – 0.49 0.741
video [18P] 0.21 -0.21 – 0.62 0.328
video [19P] -0.10 -0.52 – 0.32 0.636
video [1P] -0.01 -0.43 – 0.41 0.965
video [20E] 0.05 -0.36 – 0.47 0.804
video [21P] 0.26 -0.16 – 0.68 0.222
video [22E] 0.72 0.30 – 1.14 0.001
video [23P] -0.15 -0.57 – 0.27 0.493
video [24E] -0.02 -0.43 – 0.40 0.935
video [2P] 0.19 -0.23 – 0.61 0.371
video [3E] 0.11 -0.31 – 0.52 0.615
video [4P] -0.15 -0.57 – 0.26 0.471
video [5P] 0.66 0.24 – 1.08 0.002
video [6P] 0.50 0.08 – 0.92 0.019
video [7P] -0.02 -0.44 – 0.40 0.936
video [8E] -0.10 -0.51 – 0.32 0.645
video [9E] 0.14 -0.27 – 0.56 0.498
Observations 1536
R2 / R2 adjusted 0.053 / 0.038
share_vs_believe_lm4 = lm (share_numerical~believe_numerical+ video_subject, data=share_vs_believe_lm_df)
summary(share_vs_believe_lm4)
## 
## Call:
## lm(formula = share_numerical ~ believe_numerical + video_subject, 
##     data = share_vs_believe_lm_df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.8445 -0.7718 -0.6488  0.2897  4.4127 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)             1.90604    0.07794  24.456  < 2e-16 ***
## believe_numerical      -0.06150    0.02210  -2.783  0.00546 ** 
## video_subjectPolitical -0.01128    0.06236  -0.181  0.85653    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.218 on 1533 degrees of freedom
## Multiple R-squared:  0.005084,   Adjusted R-squared:  0.003786 
## F-statistic: 3.917 on 2 and 1533 DF,  p-value: 0.02011
tab_model(share_vs_believe_lm4)
  share_numerical
Predictors Estimates CI p
(Intercept) 1.91 1.75 – 2.06 <0.001
believe numerical -0.06 -0.10 – -0.02 0.005
video subject [Political] -0.01 -0.13 – 0.11 0.857
Observations 1536
R2 / R2 adjusted 0.005 / 0.004

Believe behaviors for two video types

ggplot(share_vs_believe_lm_df, aes(x=believe_numerical, fill= video_subject)) +
  geom_bar() +
  facet_wrap(~video_subject, nrow=2)

#Anova diference between two groups of having political and entertainment belive status

belive_deepfakes_anova <- aov(believe_numerical~video_subject, data= share_vs_believe_lm_df)

summary(belive_deepfakes_anova)
##                 Df Sum Sq Mean Sq F value Pr(>F)  
## video_subject    1    5.6   5.633   2.845 0.0918 .
## Residuals     1534 3037.1   1.980                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tab_model(belive_deepfakes_anova)
  believe_numerical
Predictors p
video_subject 0.092
Residuals
Observations 1536
R2 / R2 adjusted 0.002 / 0.001
ggplot(share_vs_believe_lm_df, aes(video_subject,believe_numerical, fill= video_subject)) + 
    stat_summary(
    fun.data = mean_cl_boot,
    geom = "pointrange",
    shape = 21,
    fill = "white"
  )

t.test(believe_numerical ~ video_subject, data = share_vs_believe_lm_df , var.equal = TRUE)
## 
##  Two Sample t-test
## 
## data:  believe_numerical by video_subject
## t = -1.6868, df = 1534, p-value = 0.09184
## alternative hypothesis: true difference in means between group Entertrianment and group Political is not equal to 0
## 95 percent confidence interval:
##  -0.26258990  0.01977157
## sample estimates:
## mean in group Entertrianment      mean in group Political 
##                     2.861538                     2.982948
#t.test(believe_numerical ~ share_numerical, video_subject, data = pol_ent_combined_df , var.equal = TRUE)

believe_t_test_results <- nice_t_test(data = share_vs_believe_lm_df,
            response = "believe_numerical",
            group = "video_subject",
            warning = FALSE)

believe_t_test_results
##   Dependent Variable         t       df          p           d  CI_lower
## 1  believe_numerical -1.689773 1514.636 0.09127719 -0.08628552 -0.186576
##   CI_upper
## 1 0.014033
believe_t_test_table <- nice_table(believe_t_test_results)
believe_t_test_table

Dependent Variable

t

df

p

d

95% CI

believe_numerical

-1.69

1,514.64

.091

-0.09

[-0.19, 0.01]

# Believeability and sharebility difference in both groups Ent and Political 
all_t_test_results <- nice_t_test(data = pol_ent_combined_df,
            response = names(pol_ent_combined_df)[11:16],
            group = "video_subject",
            warning = FALSE)
all_t_test_results
##   Dependent Variable          t       df            p           d     CI_lower
## 1    share_numerical   0.298313 1458.335 7.655068e-01  0.01535485 -0.084907136
## 2  believe_numerical  -1.689773 1514.636 9.127719e-02 -0.08628552 -0.186575961
## 3     impt_numerical -12.252968 1523.432 5.468686e-33 -0.62439667 -0.726962658
## 4 interest_numerical -12.252968 1523.432 5.468686e-33 -0.62439667 -0.726962658
## 5 familiar_numerical  -3.224132 1489.584 1.290932e-03 -0.16531622 -0.265717858
## 6    novel_numerical   2.018744 1458.294 4.369654e-02  0.10390986  0.003567536
##      CI_upper
## 1  0.11561182
## 2  0.01403300
## 3 -0.52163610
## 4 -0.52163610
## 5 -0.06486087
## 6  0.20421835
all_t_test_table <- nice_table(all_t_test_results)
all_t_test_table

Dependent Variable

t

df

p

d

95% CI

share_numerical

0.30

1,458.33

.766

0.02

[-0.08, 0.12]

believe_numerical

-1.69

1,514.64

.091

-0.09

[-0.19, 0.01]

impt_numerical

-12.25

1,523.43

< .001

-0.62

[-0.73, -0.52]

interest_numerical

-12.25

1,523.43

< .001

-0.62

[-0.73, -0.52]

familiar_numerical

-3.22

1,489.58

.001

-0.17

[-0.27, -0.06]

novel_numerical

2.02

1,458.29

.044

0.10

[0.00, 0.20]

ggplot(pol_ent_combined_df,aes(x=video_subject, y=share_numerical, color=video_subject)) + 
  geom_boxplot(width=0.5,lwd=1)+
  labs(subtitle="Sharing diferences in the Treatment groups based on the Subject of video")

ggplot(pol_ent_combined_df,aes(x=video_subject, y=interest_numerical, color=video_subject)) + 
  geom_boxplot(width=0.5,lwd=1)+
  labs(subtitle="Video interest in the Treatment groups based on the Subject of video")

ggplot(pol_ent_combined_df,aes(x=video_subject, y=familiar_numerical, color=video_subject)) + 
  geom_boxplot(width=0.5,lwd=1)+
  labs(subtitle="Video familiarity diferences in the Treatment groups based on the Subject of video")

##understanding the likelihood of believing and the truth (discernment)

#understanding the likelihood of believing and the truth (discernment) 

#Those who could not detect deepfakes
could_not_identify_DF1<- pol_ent_combined_df |> filter (fake == "DF", believe_numerical == 1)
could_not_identify_DF2<- pol_ent_combined_df |> filter (fake == "DF", believe_numerical == 2)
wrong_beleive_DF<-rbind(could_not_identify_DF1,could_not_identify_DF2) |> mutate (detect="DF_Wrong") #192

#Those who could not detect real 
could_not_identify_R1<- pol_ent_combined_df |> filter (fake == "R", believe_numerical == 4)
could_not_identify_R2<- pol_ent_combined_df |> filter (fake == "R", believe_numerical == 5)
wrong_beleive_R<-rbind(could_not_identify_R1,could_not_identify_R2) |> mutate (detect="R_Wrong") #115

#Those who were uncertain of deepfakes or real 
uncertain_to_belive_DF<- pol_ent_combined_df |> filter (fake == "DF", believe_numerical == 3)
uncertain_to_belive_F<- pol_ent_combined_df |> filter (fake == "R", believe_numerical == 3)
uncertain_DF_or_R<-rbind(uncertain_to_belive_DF,uncertain_to_belive_F) |> mutate (detect="R_DF_Uncertain") #201

#Those who got it right to detect deepfakes 
identified_correctly_DF1<-pol_ent_combined_df |> filter (fake == "DF", believe_numerical == 4)
identified_correctly_DF2<-pol_ent_combined_df |> filter (fake == "DF", believe_numerical == 5)
correct_belive_DF<-rbind(identified_correctly_DF1,identified_correctly_DF2) |> mutate (detect="DF_Right") #491

#Those who got it right to detect real videos 
identified_correctly_R1<-pol_ent_combined_df |> filter (fake == "R", believe_numerical == 1)
identified_correctly_R2<-pol_ent_combined_df |> filter (fake == "R", believe_numerical == 2)
correct_belive_R<-rbind(identified_correctly_R1,identified_correctly_R2)|> mutate (detect="R_Right") #557

#Those who detect DF and R right 
correct_R_DF <-rbind(correct_belive_DF,correct_belive_R)

#All of the belives combined to table 
All_believes <-rbind(correct_belive_R,
                     correct_belive_DF,
                     wrong_beleive_R, 
                     wrong_beleive_DF,
                     uncertain_DF_or_R)


ggplot(All_believes, aes(x=detect, fill= detect)) +
  geom_bar() 

ggplot(All_believes, aes(x=detect, fill= detect)) +
  geom_bar() +
  facet_wrap(~video_subject, nrow=2)

ggplot(All_believes, aes(x=detect, fill= detect)) +
  geom_bar() +
  facet_wrap(~video_subject, nrow=2)

ggplot(All_believes,aes(x=detect, y=share_numerical, color=detect)) + 
  geom_boxplot(width=0.5,lwd=1)+
  labs(subtitle="Sharing diferences in the Treatment groups based on the Subject of video")

Mediation analysis between sharing intention and beliveing in Entertainment videos

Is there a mediation effect of believing for sharing intention for Deepfakes and Real videos of Entertainment

#Entertainment dataset (treatment) with belive score and share score 
#view (ent_beliveble_vs_sharability_df )
head (ent_beliveble_vs_sharability_df)
## # A tibble: 6 × 16
##   ResponseId   fake  video condition SHARE BELIEVE IMPT  NOVEL INTEREST FAMILIAR
##   <chr>        <chr> <chr> <chr>     <chr> <chr>   <chr> <chr> <chr>    <chr>   
## 1 R_3Jh3kj1y3… R     3E    Treatment very… unlike… impo… not … not int… very fa…
## 2 R_3Jh3kj1y3… R     9E    Treatment slig… very u… impo… neit… interes… familiar
## 3 R_3Jh3kj1y3… R     11E   Treatment mode… unlike… impo… neit… not int… familiar
## 4 R_3Jh3kj1y3… R     18P   Treatment very… neithe… neit… not … not at … not at …
## 5 R_3Jh3kj1y3… R     20E   Treatment slig… very u… impo… neit… interes… very fa…
## 6 R_3Jh3kj1y3… R     22E   Treatment very… unlike… impo… not … not int… familiar
## # ℹ 6 more variables: share_numerical <dbl>, believe_numerical <dbl>,
## #   impt_numerical <dbl>, interest_numerical <dbl>, familiar_numerical <dbl>,
## #   novel_numerical <dbl>
Mediation_df<-ent_beliveble_vs_sharability_df |>
    select (fake,video, share_numerical, believe_numerical)

head (Mediation_df)
## # A tibble: 6 × 4
##   fake  video share_numerical believe_numerical
##   <chr> <chr>           <dbl>             <dbl>
## 1 R     3E                  1                 2
## 2 R     9E                  4                 1
## 3 R     11E                 2                 2
## 4 R     18P                 1                 3
## 5 R     20E                 3                 1
## 6 R     22E                 1                 2

Step 1- the total effect

#dependant variable is sharing intention  independant is the categorical variable fake (R or DF)
video_type_effect<-lm(share_numerical~fake,Mediation_df)
summary(video_type_effect)
## 
## Call:
## lm(formula = share_numerical ~ fake, data = Mediation_df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.9026 -0.9026 -0.5667  0.4333  4.4333 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.56667    0.06377  24.566  < 2e-16 ***
## fakeR        0.33590    0.09019   3.724  0.00021 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.259 on 778 degrees of freedom
## Multiple R-squared:  0.01752,    Adjusted R-squared:  0.01625 
## F-statistic: 13.87 on 1 and 778 DF,  p-value: 0.00021

The result of predictor is very significant to the dependant variable. Which means there is a significant change in the change of R to DF makes to the sharing intention. The coefficiant is

Step 2- The effect of the IV onto the mediator.

#Mediator is the dependant variable and IV is our Real or DF video
mediator_effect <-lm(believe_numerical~fake, Mediation_df)
summary(mediator_effect)
## 
## Call:
## lm(formula = believe_numerical ~ fake, data = Mediation_df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.4410 -1.1667 -0.1667  0.8333  2.8333 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.44103    0.06221   55.31   <2e-16 ***
## fakeR       -1.27436    0.08798  -14.48   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.229 on 778 degrees of freedom
## Multiple R-squared:  0.2124, Adjusted R-squared:  0.2114 
## F-statistic: 209.8 on 1 and 778 DF,  p-value: < 2.2e-16

Step 3 The effect of the mediator on the dependent variable

sharaing_effect=lm(share_numerical~fake+believe_numerical,Mediation_df)
summary(sharaing_effect)
## 
## Call:
## lm(formula = share_numerical ~ fake + believe_numerical, data = Mediation_df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.9583 -0.8269 -0.5399  0.3645  4.5079 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        1.73115    0.14157  12.228  < 2e-16 ***
## fakeR              0.27498    0.10158   2.707  0.00694 ** 
## believe_numerical -0.04780    0.03674  -1.301  0.19358    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.259 on 777 degrees of freedom
## Multiple R-squared:  0.01965,    Adjusted R-squared:  0.01713 
## F-statistic: 7.788 on 2 and 777 DF,  p-value: 0.0004479

Conclusion

This concludes that the believing nudge as a mediator is not significant. So -0.04780 coefficient is not supporting the effect of sharing behaviors.

Mediation analysis between sharing intention and beliveing in Political videos

Is there a mediation effect of believing for sharing intention for Deepfakes and Real videos of Political

#Entertainment dataset (treatment) with belive score and share score 
#view (ent_beliveble_vs_sharability_df )
head (pol_beliveble_vs_sharability_df)
## # A tibble: 6 × 16
##   ResponseId   fake  video condition SHARE BELIEVE IMPT  NOVEL INTEREST FAMILIAR
##   <chr>        <chr> <chr> <chr>     <chr> <chr>   <chr> <chr> <chr>    <chr>   
## 1 R_oXNZs9xxI… R     1P    Treatment very… neithe… impo… not … neither… very fa…
## 2 R_oXNZs9xxI… R     5P    Treatment very… very u… very… not … not int… very fa…
## 3 R_oXNZs9xxI… R     7P    Treatment very… very u… very… not … neither… very fa…
## 4 R_oXNZs9xxI… R     17P   Treatment mode… unlike… impo… not … interes… not fam…
## 5 R_oXNZs9xxI… R     21P   Treatment mode… very u… very… neit… interes… very fa…
## 6 R_oXNZs9xxI… R     23P   Treatment very… unlike… impo… not … not int… very fa…
## # ℹ 6 more variables: share_numerical <dbl>, believe_numerical <dbl>,
## #   impt_numerical <dbl>, interest_numerical <dbl>, familiar_numerical <dbl>,
## #   novel_numerical <dbl>
Pol_mediation_df<-pol_beliveble_vs_sharability_df |>
   dplyr::select (fake,video, share_numerical, believe_numerical)

head (Pol_mediation_df)
## # A tibble: 6 × 4
##   fake  video share_numerical believe_numerical
##   <chr> <chr>           <dbl>             <dbl>
## 1 R     1P                  1                 3
## 2 R     5P                  1                 1
## 3 R     7P                  1                 1
## 4 R     17P                 2                 2
## 5 R     21P                 2                 1
## 6 R     23P                 1                 2

Step 1- the total effect

pol_video_type_effect<-lm(share_numerical~fake,Mediation_df)
summary(pol_video_type_effect)
## 
## Call:
## lm(formula = share_numerical ~ fake, data = Mediation_df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.9026 -0.9026 -0.5667  0.4333  4.4333 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  1.56667    0.06377  24.566  < 2e-16 ***
## fakeR        0.33590    0.09019   3.724  0.00021 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.259 on 778 degrees of freedom
## Multiple R-squared:  0.01752,    Adjusted R-squared:  0.01625 
## F-statistic: 13.87 on 1 and 778 DF,  p-value: 0.00021

Step 2- The effect of the IV onto the mediator

pol_mediator_effect <-lm(believe_numerical~fake, Mediation_df)
summary(pol_mediator_effect)
## 
## Call:
## lm(formula = believe_numerical ~ fake, data = Mediation_df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.4410 -1.1667 -0.1667  0.8333  2.8333 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.44103    0.06221   55.31   <2e-16 ***
## fakeR       -1.27436    0.08798  -14.48   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.229 on 778 degrees of freedom
## Multiple R-squared:  0.2124, Adjusted R-squared:  0.2114 
## F-statistic: 209.8 on 1 and 778 DF,  p-value: < 2.2e-16

Step 3 The effect of the mediator on the dependent variable

pol_sharaing_effect=lm(share_numerical~fake+believe_numerical,Mediation_df)
summary(pol_sharaing_effect)
## 
## Call:
## lm(formula = share_numerical ~ fake + believe_numerical, data = Mediation_df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.9583 -0.8269 -0.5399  0.3645  4.5079 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        1.73115    0.14157  12.228  < 2e-16 ***
## fakeR              0.27498    0.10158   2.707  0.00694 ** 
## believe_numerical -0.04780    0.03674  -1.301  0.19358    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.259 on 777 degrees of freedom
## Multiple R-squared:  0.01965,    Adjusted R-squared:  0.01713 
## F-statistic: 7.788 on 2 and 777 DF,  p-value: 0.0004479