If we fit a repeated-measures regression aggregating across
students, each of them is classified into one or the other cluster. From
the ratio below, we can see two distinct classifications (about
91-100%).
Call:
flexmix(formula = value ~ time | as.factor(sub), data = long,
k = 2, control = list(iter.max = 10))
prior size post>0 ratio
Comp.1 0.5 100 100 1.000
Comp.2 0.5 100 110 0.909
'log Lik.' -382.1782 (df=7)
AIC: 778.3564 BIC: 801.4446
Model parameters
Comp.1 Comp.2
coef.(Intercept) 9.9607590 5.1754053
coef.time -0.4886075 0.4633109
sigma 1.5150882 1.5525637
Clusters
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 0 0 0 0 0 0 0 0 0 0 10 10 10 10 10 10 10 10 10 10
2 10 10 10 10 10 10 10 10 10 10 0 0 0 0 0 0 0 0 0 0