Nama : Muhammad Hafidlul Qolbi

NIM : 220605110063

Kelas : A

Mata Kuliah : Linear Algebra

Dosen Pengampuh : Prof. Dr. Suhartono, M.Kom

Jurusan : Teknik Informatika

Lembaga : Universitas Islam Negeri Maulana Malik Ibrahim Malang

===========================================================================================

Tea <- matrix(c(3, 1, 1, 3), 2, 2, byrow = TRUE)
fisher.test(Tea, alternative = "greater")
## 
##  Fisher's Exact Test for Count Data
## 
## data:  Tea
## p-value = 0.2429
## alternative hypothesis: true odds ratio is greater than 1
## 95 percent confidence interval:
##  0.3135693       Inf
## sample estimates:
## odds ratio 
##   6.408309
B <- matrix(c(1, 0, 0, 1, 1, 0, 1, 1, 1), 3, 3, byrow = TRUE)
v <- c(2, 4, 0)
B <- matrix(c(1, 0, 0, 1, 1, 0, 1, 1, 1), 3, 3, byrow = TRUE)

Library “mvtnorm” di RStudio adalah sebuah paket yang menyediakan fungsi-fungsi untuk analisis multivariat berdasarkan distribusi multivariat normal. “mvtnorm” adalah singkatan dari “Multivariate Normal Distribution”, yang mengacu pada distribusi normal multivariat.

Paket “mvtnorm” memungkinkan Anda untuk menghasilkan sampel dari distribusi multivariat normal, menghitung fungsi kepadatan probabilitas (PDF), menghitung fungsi distribusi kumulatif (CDF), menghitung invers dari CDF, dan melakukan berbagai operasi lainnya terkait distribusi normal multivariat.

Fungsi-fungsi populer dalam paket ini meliputi rmvnorm() untuk menghasilkan sampel acak dari distribusi multivariat normal, dmvnorm() untuk menghitung PDF dari distribusi multivariat normal, dan pnorm() untuk menghitung CDF dan invers CDF dari distribusi normal univariat.

Paket “mvtnorm” sangat berguna dalam analisis multivariat, seperti analisis faktor, analisis komponen utama, analisis kluster, dan banyak lagi. Dengan menggunakan paket ini, Anda dapat mengambil sampel acak dari distribusi multivariat normal, menghitung probabilitas, dan melakukan berbagai analisis statistik yang melibatkan variabel multivariat.

Untuk menggunakan paket “mvtnorm” di RStudio, Anda perlu menginstalnya terlebih dahulu menggunakan perintah install.packages(“mvtnorm”), kemudian memuatnya ke dalam lingkungan R dengan perintah library(mvtnorm). Setelah itu, Anda dapat menggunakan fungsi-fungsi yang disediakan oleh paket “mvtnorm” dalam skrip R Anda.

library(mvtnorm)
set.seed(123)
sigma <- matrix(c(4,2,2,3), ncol=2)
sigma
##      [,1] [,2]
## [1,]    4    2
## [2,]    2    3
x <- rmvnorm(n=500, mean=c(0,0), sigma=sigma)
x
##                [,1]          [,2]
##   [1,] -1.205156592 -6.921777e-01
##   [2,]  3.031369338  9.917705e-01
##   [3,]  1.212307319  2.882441e+00
##   [4,]  0.173488321 -1.813413e+00
##   [5,] -1.568859453 -1.116247e+00
##   [6,]  2.551737218  1.277617e+00
##   [7,]  0.831449504  4.066308e-01
##   [8,] -0.062314892  2.614990e+00
##   [9,] -0.150014479 -2.941996e+00
##  [10,]  1.080369843 -3.802846e-01
##  [11,] -2.172083277 -9.574019e-01
##  [12,] -2.379038272 -1.770917e+00
##  [13,] -2.147886254 -3.114656e+00
##  [14,]  1.694241593  7.222465e-01
##  [15,] -1.479645074  1.414276e+00
##  [16,]  0.652660790 -2.436650e-01
##  [17,]  2.211733394  1.941842e+00
##  [18,]  1.964047158  1.590054e+00
##  [19,]  1.028365830  2.099667e-01
##  [20,] -0.801143430 -7.953213e-01
##  [21,] -1.450281636 -7.311699e-01
##  [22,] -1.209438285  2.841993e+00
##  [23,]  1.687144008 -1.160889e+00
##  [24,] -1.035622743 -9.910022e-01
##  [25,]  1.450170974  3.018904e-01
##  [26,]  0.470162825  9.564027e-02
##  [27,]  0.687102058  2.218055e+00
##  [28,]  0.419176035  2.357484e+00
##  [29,] -2.643971532  8.710055e-02
##  [30,]  0.359117335  4.234001e-01
##  [31,]  0.446276290 -6.095255e-01
##  [32,] -1.212158696 -1.856032e+00
##  [33,] -1.886525125 -1.052628e-01
##  [34,]  0.890075942  3.388056e-01
##  [35,]  2.922663410  3.877086e+00
##  [36,] -2.240612301 -4.059111e+00
##  [37,]  1.531689414 -5.964751e-01
##  [38,] -0.743995608  1.293397e+00
##  [39,] -1.232833609 -2.159970e+00
##  [40,]  0.269907272 -1.256199e-01
##  [41,]  0.227656386  6.344381e-01
##  [42,] -0.349183552  8.472964e-01
##  [43,] -0.236676776  4.196014e-01
##  [44,]  2.349881134  1.329559e+00
##  [45,]  0.020242354  1.698841e+00
##  [46,]  2.215189408  1.456946e+00
##  [47,]  0.105224063 -8.944792e-01
##  [48,]  2.274142502 -2.184771e-01
##  [49,]  5.059879105  3.740499e+00
##  [50,] -1.029417541 -1.814070e+00
##  [51,] -1.219118051  2.147904e-02
##  [52,] -0.668869767 -7.080551e-01
##  [53,] -1.851817493 -6.087388e-01
##  [54,] -2.444184634 -3.173807e+00
##  [55,] -0.213162184  1.291823e+00
##  [56,] -0.762522515  6.725742e-01
##  [57,] -3.136544235 -1.000550e+00
##  [58,]  1.166231676  7.853687e-01
##  [59,] -0.157353942 -9.902488e-01
##  [60,] -2.206627342 -2.155489e+00
##  [61,] -0.306834243 -1.486093e+00
##  [62,] -1.085526423 -6.953274e-01
##  [63,]  3.172539772 -3.151478e-02
##  [64,]  0.495620170  2.600489e-01
##  [65,] -1.886242101 -6.575490e-01
##  [66,]  3.026443458  1.551773e+00
##  [67,] -0.158373671 -6.689888e-01
##  [68,] -3.304929812  6.991761e-01
##  [69,] -2.387527083  3.911152e-01
##  [70,]  2.852556041 -1.292264e+00
##  [71,]  1.199581595 -3.503166e-02
##  [72,] -3.869019608 -3.365263e+00
##  [73,] -3.372393357 -1.770109e+00
##  [74,] -2.418918244  3.052471e-01
##  [75,]  3.307348632 -9.279013e-01
##  [76,]  1.944291052  1.702750e+00
##  [77,]  0.070739976 -1.465250e+00
##  [78,] -0.386902910 -5.265190e-01
##  [79,]  0.871209323 -2.936640e-01
##  [80,]  1.664591617 -6.444440e-02
##  [81,]  1.430723480 -1.127045e+00
##  [82,] -0.596686015  4.601315e+00
##  [83,] -0.632447878  2.542362e-01
##  [84,]  0.949843563 -4.347089e-01
##  [85,]  1.199467937  8.950317e-01
##  [86,] -0.376688278 -1.411195e-02
##  [87,]  1.131162735  3.467851e+00
##  [88,] -2.039030699 -2.212307e+00
##  [89,]  0.247072505  5.298983e-01
##  [90,]  0.580169401 -5.055313e-01
##  [91,] -1.330788096  1.471683e+00
##  [92,] -1.157671793 -1.614516e+00
##  [93,] -0.564353192 -4.558587e-01
##  [94,]  2.177979930  7.627866e-01
##  [95,]  1.166618539 -3.940749e-01
##  [96,]  0.229070585 -4.113723e-01
##  [97,] -0.321805365 -1.413685e+00
##  [98,] -1.393135848  2.535105e+00
##  [99,]  0.449553756 -1.712234e+00
## [100,] -1.839491539 -2.285729e+00
## [101,]  4.958119998  3.386205e+00
## [102,] -0.203543387  7.408483e-01
## [103,] -1.063001365 -1.013156e+00
## [104,] -1.847893005 -1.417479e+00
## [105,]  3.138322651  8.395762e-01
## [106,]  0.365868834  4.662646e-01
## [107,]  2.075457023 -1.525977e-01
## [108,] -0.962959114  2.187306e+00
## [109,] -1.253239136 -1.432594e+00
## [110,] -3.095088254 -2.799721e+00
## [111,] -0.754252522  6.897644e-01
## [112,]  2.527989176  1.783151e+00
## [113,] -0.664401860 -1.065498e-01
## [114,] -1.755576485 -1.571108e+00
## [115,]  1.127033114 -1.166503e+00
## [116,]  3.702149787  9.512373e-01
## [117,] -0.003399063 -1.089309e+00
## [118,] -1.842848106 -2.480547e+00
## [119,] -0.115561729  5.835760e-01
## [120,]  0.183102920 -1.098063e+00
## [121,] -1.795974859 -1.266082e+00
## [122,]  2.232130778 -1.022184e+00
## [123,]  0.725783831  3.015947e+00
## [124,] -0.958268421 -2.284567e+00
## [125,] -1.003025144  4.216071e-01
## [126,] -1.036788996 -1.131664e+00
## [127,] -0.609228599 -4.508074e-02
## [128,]  3.018334744  7.535379e-01
## [129,]  2.429040352  1.640945e+00
## [130,] -1.079866956 -2.575210e+00
## [131,] -1.275604961 -1.095502e+00
## [132,]  0.821438362  2.156600e+00
## [133,]  5.271260259  3.824472e+00
## [134,] -1.243031162 -2.952539e+00
## [135,] -0.696061279 -7.241357e-02
## [136,]  2.162992850  2.051932e+00
## [137,]  0.529059858 -1.901154e+00
## [138,]  1.379735197 -2.539431e-01
## [139,]  0.377420734  2.204045e-01
## [140,]  0.835680233  2.811268e-01
## [141,] -2.786459546  2.691843e-01
## [142,]  0.591585075 -2.181998e-01
## [143,]  0.302114962  2.860102e-01
## [144,]  1.346650546  2.812418e+00
## [145,] -0.325956647  1.521950e-01
## [146,]  2.835184422  2.383875e+00
## [147,]  1.873544267 -3.022233e-01
## [148,]  3.880994377  1.235009e+00
## [149,]  2.823735907 -1.163672e+00
## [150,]  0.742938750  2.059508e+00
## [151,] -1.795950122 -1.635203e+00
## [152,] -2.393089872 -2.251930e+00
## [153,] -0.652890373  2.968070e-01
## [154,] -3.746838188 -7.850437e-01
## [155,]  3.519093503  4.033340e+00
## [156,]  2.922868434  1.971291e+00
## [157,] -3.652376148 -1.956152e+00
## [158,] -0.280206464  9.546604e-01
## [159,] -0.910395549 -2.121426e+00
## [160,]  3.745404750  2.440053e+00
## [161,]  1.140498819  2.129081e+00
## [162,] -2.198104933  3.299918e-01
## [163,] -0.619279493  8.262022e-01
## [164,]  0.239091476  1.002775e+00
## [165,]  2.567445320  7.627302e-01
## [166,]  1.284966314 -1.374949e+00
## [167,] -0.530965483  2.083242e+00
## [168,] -0.429350985 -3.149962e+00
## [169,] -2.730959978 -1.095756e+00
## [170,]  1.604471885  3.198011e-01
## [171,]  1.737167548  1.922020e+00
## [172,]  3.238856650  1.031187e+00
## [173,] -1.085388477 -2.901519e+00
## [174,] -0.130830529 -8.810123e-01
## [175,] -1.970618598 -8.422953e-01
## [176,]  0.827785408 -2.694113e+00
## [177,] -0.754535424 -4.911860e-02
## [178,] -1.526682234  4.489310e-02
## [179,]  0.771112673  1.771707e-01
## [180,] -3.287366302  2.826520e+00
## [181,] -0.027963552  9.514249e-01
## [182,]  1.101497895  1.832606e+00
## [183,]  1.451448437  1.159628e-01
## [184,]  0.194362553 -1.336251e+00
## [185,]  1.385567272 -2.735747e-01
## [186,]  3.710503558 -1.346247e+00
## [187,] -0.426558123  1.091365e+00
## [188,]  0.647742920 -6.789549e-01
## [189,] -1.831967228 -3.236677e-01
## [190,] -1.033902268 -2.941028e+00
## [191,]  0.173257781  3.310743e-01
## [192,] -0.257734267 -1.630189e+00
## [193,]  1.688863784  2.526153e+00
## [194,]  0.237291676 -1.603931e+00
## [195,] -0.641594266  3.221086e-01
## [196,] -2.454879839 -3.898581e+00
## [197,]  1.230894100 -8.618190e-01
## [198,] -0.255425347  2.141374e+00
## [199,] -1.010423142  9.503457e-01
## [200,] -2.619024656 -1.289557e+00
## [201,] -0.798160844 -1.955931e+00
## [202,] -1.234528051 -4.040865e-01
## [203,]  0.359424461 -2.327015e+00
## [204,] -0.246077923  1.042585e+00
## [205,] -0.906395428  6.946616e-02
## [206,]  1.095335381  7.155049e-01
## [207,]  1.184857517  1.662101e-01
## [208,] -2.279893752 -4.562778e+00
## [209,]  0.063505008  6.526788e-01
## [210,]  0.715465884 -6.087174e-01
## [211,]  3.576536327  1.469626e+00
## [212,]  0.957675653  2.155342e+00
## [213,] -1.632166150 -1.141681e+00
## [214,]  4.607845179  1.366007e+00
## [215,]  2.326731390 -1.438337e+00
## [216,] -0.152933174  5.128621e-01
## [217,]  0.010545964 -1.478843e+00
## [218,] -0.568727192 -1.754291e+00
## [219,]  1.977765732  2.177827e+00
## [220,] -3.575896758  7.735938e-01
## [221,] -2.126361257  4.736292e-02
## [222,]  1.154222744  4.350122e-02
## [223,] -1.145271373 -9.182090e-02
## [224,]  1.338819385  1.693789e+00
## [225,] -4.859107902 -3.834610e+00
## [226,]  3.333848150  2.518801e+00
## [227,]  1.237530120  1.416370e+00
## [228,]  0.264505279 -3.843733e+00
## [229,]  1.858382945 -1.703825e-01
## [230,]  0.276709448 -3.539058e-01
## [231,]  1.477719351 -8.070400e-02
## [232,]  0.775567389 -3.485650e-01
## [233,] -1.417227844  1.368006e+00
## [234,]  2.391385518  3.241338e+00
## [235,]  0.757496219  1.879699e+00
## [236,]  3.633311501  6.493730e-01
## [237,] -2.673783436 -1.135848e+00
## [238,] -0.325553352  1.281679e-01
## [239,]  3.103191819  4.282898e-01
## [240,]  0.587935455 -1.633188e-01
## [241,]  0.215805963  5.260116e-01
## [242,]  2.617531546  9.454351e-01
## [243,]  1.806056466  1.676730e+00
## [244,]  1.432877712 -4.267624e-01
## [245,]  2.908418257  2.904683e-01
## [246,]  0.586275391  2.240761e+00
## [247,]  1.871060664 -1.058219e+00
## [248,] -2.439213084 -2.715729e+00
## [249,]  0.441699784  3.722846e-01
## [250,]  1.009275440  1.109284e+00
## [251,] -1.713879460 -1.966324e+00
## [252,]  2.392999878  1.807677e+00
## [253,] -2.950131860 -1.004285e+00
## [254,] -2.883764386 -3.896147e+00
## [255,]  0.243605081 -4.537814e-02
## [256,] -0.065372940  2.993807e-01
## [257,]  1.809354202  8.329214e-01
## [258,] -1.596247539 -1.550349e+00
## [259,] -0.078695770  4.337996e-01
## [260,] -2.099139866 -8.864261e-01
## [261,]  1.795668117  3.663747e-01
## [262,] -1.495652754 -8.447065e-01
## [263,]  2.448636296  1.527748e+00
## [264,]  2.451829981  9.231026e-01
## [265,]  0.473520739 -6.842655e-01
## [266,]  0.877282697 -4.891960e-01
## [267,] -2.654631367 -5.889098e-01
## [268,]  4.185050033  2.406021e+00
## [269,]  2.438285359  1.242976e+00
## [270,] -1.281737531 -6.734396e-01
## [271,] -0.787951732 -9.214738e-01
## [272,]  0.678433746 -1.565757e+00
## [273,]  2.148673644  1.902769e+00
## [274,] -1.941092207  3.738391e-01
## [275,]  4.351244899  4.533230e-01
## [276,]  1.181950599 -8.064875e-01
## [277,]  2.272305474  1.033691e+00
## [278,]  2.350441662 -1.461548e+00
## [279,] -0.394680561 -8.920898e-01
## [280,] -0.732553301 -1.142323e+00
## [281,] -1.275111050  4.793488e-01
## [282,] -1.253188813  1.819856e+00
## [283,] -2.219940953 -5.012528e-01
## [284,]  1.352846077  1.260868e+00
## [285,] -0.534468697 -3.938607e-02
## [286,]  1.026237307 -1.845708e+00
## [287,] -1.320324259  8.543908e-02
## [288,] -0.083525238  1.994409e+00
## [289,]  1.332790482  4.967121e-01
## [290,] -2.879265333 -8.048553e-01
## [291,] -0.664853913 -3.455517e-01
## [292,] -1.987514334  1.527059e-01
## [293,] -2.121312678 -9.546846e-01
## [294,]  0.291627252 -1.069193e+00
## [295,]  0.378872163 -1.829075e+00
## [296,] -5.131595168 -8.178206e-01
## [297,]  1.452610021  4.230446e-03
## [298,]  0.317782020 -1.610312e+00
## [299,] -1.335506687 -3.252232e+00
## [300,]  3.312703142  3.711081e+00
## [301,]  2.046048954  5.589747e-01
## [302,] -0.916259762 -2.502483e+00
## [303,]  1.398570446  9.908848e-02
## [304,] -2.054327535 -2.682496e+00
## [305,] -1.052670017 -1.559518e+00
## [306,] -1.446544170 -2.217970e+00
## [307,]  3.230105687  9.224943e-01
## [308,]  0.600617377 -3.658015e+00
## [309,] -1.249587881 -1.361404e+00
## [310,] -1.477786738  1.846289e+00
## [311,] -2.537454725 -2.740152e-01
## [312,]  1.724794047  7.677661e-01
## [313,] -1.150841074  1.049853e+00
## [314,] -0.270444889 -1.646409e+00
## [315,] -1.491085671  2.638312e+00
## [316,] -2.345441216 -3.421382e+00
## [317,]  1.197921789  8.080265e-01
## [318,] -3.690773945 -3.944193e+00
## [319,]  0.417306495  1.801270e+00
## [320,]  0.943840548 -4.499608e-01
## [321,] -1.448727097 -2.487139e-02
## [322,]  0.656023255  1.120104e+00
## [323,] -0.254091898  1.250890e+00
## [324,] -1.780453443 -1.008582e+00
## [325,]  1.978425805  2.038315e+00
## [326,] -3.660440793 -9.141597e-01
## [327,]  0.352860862 -2.034622e+00
## [328,]  0.456922289 -1.086589e+00
## [329,]  2.260956961  1.455740e+00
## [330,]  1.543957498  6.301098e-01
## [331,]  2.433740262  2.747188e+00
## [332,]  3.757986691  1.058845e+00
## [333,] -4.299029164 -1.212699e+00
## [334,]  0.307216806 -1.389392e-01
## [335,]  1.658925936  1.975249e+00
## [336,] -1.159529204 -7.730047e-01
## [337,]  0.454285913 -6.777666e-01
## [338,] -0.927636230 -3.162521e+00
## [339,] -2.895920743 -2.804810e+00
## [340,] -2.028170774 -1.615709e+00
## [341,]  1.285897234  1.823898e+00
## [342,] -1.956507437 -2.042015e+00
## [343,] -2.232451185 -1.264818e+00
## [344,] -0.186909339  6.579268e-01
## [345,] -1.785202772 -3.585789e+00
## [346,]  0.491904113  1.893544e+00
## [347,]  1.843588037 -6.226621e-01
## [348,] -1.588903533  3.156882e+00
## [349,] -0.366531247 -2.509612e-01
## [350,] -0.100127608 -2.407817e+00
## [351,] -2.263708368 -2.933060e+00
## [352,] -1.263488713 -1.949277e-01
## [353,] -2.287706750  1.993599e-01
## [354,]  0.047035175 -1.318698e+00
## [355,]  0.854948636  1.352800e+00
## [356,]  1.916973352  2.478098e-01
## [357,] -0.228471298 -1.947019e-01
## [358,]  3.399173484  2.653530e+00
## [359,]  1.439987801 -1.670142e-03
## [360,]  0.943104339  8.705279e-01
## [361,] -2.970951964 -3.417046e+00
## [362,]  0.372175317 -2.144624e+00
## [363,]  0.143913251  4.109229e-01
## [364,]  1.188757488  6.273224e-01
## [365,] -0.852110072  1.203957e+00
## [366,]  3.832446130  2.421025e+00
## [367,] -2.943778657  1.200239e+00
## [368,]  0.187498805  8.284443e-01
## [369,]  1.139555482  1.912890e-01
## [370,]  0.428481171  1.627355e+00
## [371,]  1.922519520  2.022369e+00
## [372,]  4.947222579  2.428108e+00
## [373,] -0.844709679 -3.505056e+00
## [374,]  4.895038165  7.224385e-01
## [375,]  4.768598090  1.948774e+00
## [376,]  2.891134791  6.851218e-01
## [377,]  1.101980161  6.380565e-01
## [378,] -0.424915445 -3.018703e-01
## [379,]  1.830746171  2.393392e-01
## [380,] -4.021181343 -1.466444e+00
## [381,]  1.382608180  1.313382e+00
## [382,]  0.232171798 -2.425523e+00
## [383,]  1.251851667  1.792921e+00
## [384,]  2.323755357  3.491035e-01
## [385,]  0.218587042  2.256539e+00
## [386,] -3.446936714 -1.653308e+00
## [387,] -0.031425560 -2.393197e+00
## [388,]  1.592385658  3.233668e+00
## [389,] -0.164332177 -4.584688e-01
## [390,]  0.754643580 -1.902180e-01
## [391,]  2.069658823  1.938988e+00
## [392,] -0.656333895 -1.926240e+00
## [393,] -2.863512897 -1.712560e+00
## [394,]  0.429622209 -2.759828e+00
## [395,] -3.988083238 -2.131509e+00
## [396,]  0.243409284 -1.274962e+00
## [397,]  1.889406275  1.044657e+00
## [398,]  0.132800145  1.245542e+00
## [399,]  0.494723904 -5.122401e-01
## [400,]  0.807606254  1.190735e+00
## [401,]  0.313925004 -8.777143e-01
## [402,]  2.289591328  2.369602e+00
## [403,]  0.611283194  3.913970e-01
## [404,]  1.069929374  3.498493e+00
## [405,]  0.441362588 -1.039940e-01
## [406,] -5.693565387 -3.974246e+00
## [407,] -0.033111124  2.943022e-01
## [408,]  0.993245446  1.501508e+00
## [409,]  0.310154976  1.880692e+00
## [410,] -2.448075897 -2.497817e+00
## [411,] -1.941577660  5.251931e-01
## [412,]  0.284857654  1.247329e+00
## [413,] -0.846570148 -1.120182e+00
## [414,] -1.748487653 -3.242184e+00
## [415,] -3.055587295 -3.019980e+00
## [416,]  1.687829660 -3.858871e-01
## [417,]  2.367786795  2.928248e+00
## [418,] -0.208498042  3.572636e-01
## [419,] -3.821170394 -2.325608e+00
## [420,]  0.276034336  5.215907e-01
## [421,]  0.051782338  3.971644e+00
## [422,] -0.843702678 -1.524438e-01
## [423,]  1.232561517  3.226672e-01
## [424,] -0.647602611  1.350711e+00
## [425,]  3.084129669  8.595629e-01
## [426,]  1.024434492  1.565003e-01
## [427,]  1.300987763 -1.322708e+00
## [428,]  4.115293398  3.159623e-01
## [429,] -2.997341134 -1.395022e+00
## [430,]  1.194337229  2.742423e+00
## [431,]  1.829030594  7.456411e-01
## [432,] -3.153787196 -2.199938e+00
## [433,]  1.121829299  4.090781e+00
## [434,] -2.934613318  8.072229e-01
## [435,] -0.075386592  2.432967e+00
## [436,] -2.105802365 -4.051283e-01
## [437,] -1.602511479  8.620803e-01
## [438,]  3.944551264  4.029965e+00
## [439,]  2.567115210  3.468175e+00
## [440,]  2.318207604  4.846530e-01
## [441,]  0.369183757 -1.324224e+00
## [442,]  0.330917543  1.896167e+00
## [443,]  1.296034602  1.053573e+00
## [444,] -2.332392149 -1.573968e+00
## [445,] -1.245335566  2.177678e-01
## [446,] -1.585184232  3.639490e-01
## [447,] -1.114868021  2.368032e+00
## [448,]  0.489960667 -8.895108e-01
## [449,]  0.264516999 -4.419089e-01
## [450,]  0.849275374  6.076231e-01
## [451,] -2.391308577 -1.866499e+00
## [452,]  1.496454546  2.853651e+00
## [453,]  1.730664327 -4.134789e-01
## [454,]  1.557944671  3.847399e-01
## [455,]  0.724698398  5.959346e-01
## [456,]  4.276897668 -4.939978e-01
## [457,] -0.806946400 -2.859370e+00
## [458,]  1.748590585  2.128141e+00
## [459,]  1.692497390 -2.341223e+00
## [460,]  1.687999355  2.842435e+00
## [461,] -0.913912467 -5.803093e-01
## [462,]  0.135074026  5.774633e-01
## [463,]  2.017523638  2.532894e+00
## [464,] -0.072934145  2.678785e-01
## [465,]  5.017729017  2.104937e+00
## [466,] -0.392281551 -2.092861e+00
## [467,] -0.118940963 -3.609889e-01
## [468,] -0.344683108 -9.489056e-01
## [469,] -1.723447378 -1.566937e+00
## [470,]  0.357409473  2.120798e+00
## [471,]  1.811214214  2.375487e-05
## [472,] -3.710689516 -2.331436e+00
## [473,] -0.820347886 -8.755070e-02
## [474,] -0.143691623  2.915010e+00
## [475,] -1.205023322 -2.141843e+00
## [476,] -0.836325396 -1.726504e+00
## [477,]  0.431061589  4.705435e-01
## [478,] -0.229256123 -2.457160e+00
## [479,]  0.598151237  6.326817e-01
## [480,] -2.190549977  7.662542e-01
## [481,]  2.797886246  4.208260e+00
## [482,]  0.327042534  1.646563e-01
## [483,]  0.224603994  1.685943e-01
## [484,] -4.487352019 -3.776931e+00
## [485,] -0.475483882 -9.955419e-01
## [486,] -1.081797058 -3.427982e+00
## [487,] -3.495770568 -2.647062e+00
## [488,]  1.275069257 -1.245304e+00
## [489,] -1.489657264 -3.186064e-01
## [490,] -0.537157143  5.843444e-02
## [491,]  3.792039883 -5.465822e-01
## [492,] -0.876814315 -1.018323e+00
## [493,]  2.470259526 -4.104105e-01
## [494,]  0.284947524  1.243400e+00
## [495,] -1.101333656  2.116537e+00
## [496,]  0.693149429 -1.379960e+00
## [497,]  0.752586453 -9.390743e-02
## [498,]  0.550619353  2.868291e-02
## [499,]  1.295164921 -1.611671e+00
## [500,] -1.143180044 -7.020435e-01
pca<- princomp(x)
pca
## Call:
## princomp(x = x)
## 
## Standard deviations:
##   Comp.1   Comp.2 
## 2.241521 1.231119 
## 
##  2  variables and  500 observations.
pca$loadings
## 
## Loadings:
##      Comp.1 Comp.2
## [1,]  0.781  0.625
## [2,]  0.625 -0.781
## 
##                Comp.1 Comp.2
## SS loadings       1.0    1.0
## Proportion Var    0.5    0.5
## Cumulative Var    0.5    1.0

Sumber Referensi: Ruriko Yoshida - Linear Algebra and its Application with R