Nama : Muhammad Hafidlul Qolbi
NIM : 220605110063
Kelas : A
Mata Kuliah : Linear Algebra
Dosen Pengampuh : Prof. Dr. Suhartono, M.Kom
Jurusan : Teknik Informatika
Lembaga : Universitas Islam Negeri Maulana Malik Ibrahim Malang
===========================================================================================
Tea <- matrix(c(3, 1, 1, 3), 2, 2, byrow = TRUE)
fisher.test(Tea, alternative = "greater")
##
## Fisher's Exact Test for Count Data
##
## data: Tea
## p-value = 0.2429
## alternative hypothesis: true odds ratio is greater than 1
## 95 percent confidence interval:
## 0.3135693 Inf
## sample estimates:
## odds ratio
## 6.408309
B <- matrix(c(1, 0, 0, 1, 1, 0, 1, 1, 1), 3, 3, byrow = TRUE)
v <- c(2, 4, 0)
B <- matrix(c(1, 0, 0, 1, 1, 0, 1, 1, 1), 3, 3, byrow = TRUE)
Library “mvtnorm” di RStudio adalah sebuah paket yang menyediakan fungsi-fungsi untuk analisis multivariat berdasarkan distribusi multivariat normal. “mvtnorm” adalah singkatan dari “Multivariate Normal Distribution”, yang mengacu pada distribusi normal multivariat.
Paket “mvtnorm” memungkinkan Anda untuk menghasilkan sampel dari distribusi multivariat normal, menghitung fungsi kepadatan probabilitas (PDF), menghitung fungsi distribusi kumulatif (CDF), menghitung invers dari CDF, dan melakukan berbagai operasi lainnya terkait distribusi normal multivariat.
Fungsi-fungsi populer dalam paket ini meliputi rmvnorm() untuk menghasilkan sampel acak dari distribusi multivariat normal, dmvnorm() untuk menghitung PDF dari distribusi multivariat normal, dan pnorm() untuk menghitung CDF dan invers CDF dari distribusi normal univariat.
Paket “mvtnorm” sangat berguna dalam analisis multivariat, seperti analisis faktor, analisis komponen utama, analisis kluster, dan banyak lagi. Dengan menggunakan paket ini, Anda dapat mengambil sampel acak dari distribusi multivariat normal, menghitung probabilitas, dan melakukan berbagai analisis statistik yang melibatkan variabel multivariat.
Untuk menggunakan paket “mvtnorm” di RStudio, Anda perlu menginstalnya terlebih dahulu menggunakan perintah install.packages(“mvtnorm”), kemudian memuatnya ke dalam lingkungan R dengan perintah library(mvtnorm). Setelah itu, Anda dapat menggunakan fungsi-fungsi yang disediakan oleh paket “mvtnorm” dalam skrip R Anda.
library(mvtnorm)
set.seed(123)
sigma <- matrix(c(4,2,2,3), ncol=2)
sigma
## [,1] [,2]
## [1,] 4 2
## [2,] 2 3
x <- rmvnorm(n=500, mean=c(0,0), sigma=sigma)
x
## [,1] [,2]
## [1,] -1.205156592 -6.921777e-01
## [2,] 3.031369338 9.917705e-01
## [3,] 1.212307319 2.882441e+00
## [4,] 0.173488321 -1.813413e+00
## [5,] -1.568859453 -1.116247e+00
## [6,] 2.551737218 1.277617e+00
## [7,] 0.831449504 4.066308e-01
## [8,] -0.062314892 2.614990e+00
## [9,] -0.150014479 -2.941996e+00
## [10,] 1.080369843 -3.802846e-01
## [11,] -2.172083277 -9.574019e-01
## [12,] -2.379038272 -1.770917e+00
## [13,] -2.147886254 -3.114656e+00
## [14,] 1.694241593 7.222465e-01
## [15,] -1.479645074 1.414276e+00
## [16,] 0.652660790 -2.436650e-01
## [17,] 2.211733394 1.941842e+00
## [18,] 1.964047158 1.590054e+00
## [19,] 1.028365830 2.099667e-01
## [20,] -0.801143430 -7.953213e-01
## [21,] -1.450281636 -7.311699e-01
## [22,] -1.209438285 2.841993e+00
## [23,] 1.687144008 -1.160889e+00
## [24,] -1.035622743 -9.910022e-01
## [25,] 1.450170974 3.018904e-01
## [26,] 0.470162825 9.564027e-02
## [27,] 0.687102058 2.218055e+00
## [28,] 0.419176035 2.357484e+00
## [29,] -2.643971532 8.710055e-02
## [30,] 0.359117335 4.234001e-01
## [31,] 0.446276290 -6.095255e-01
## [32,] -1.212158696 -1.856032e+00
## [33,] -1.886525125 -1.052628e-01
## [34,] 0.890075942 3.388056e-01
## [35,] 2.922663410 3.877086e+00
## [36,] -2.240612301 -4.059111e+00
## [37,] 1.531689414 -5.964751e-01
## [38,] -0.743995608 1.293397e+00
## [39,] -1.232833609 -2.159970e+00
## [40,] 0.269907272 -1.256199e-01
## [41,] 0.227656386 6.344381e-01
## [42,] -0.349183552 8.472964e-01
## [43,] -0.236676776 4.196014e-01
## [44,] 2.349881134 1.329559e+00
## [45,] 0.020242354 1.698841e+00
## [46,] 2.215189408 1.456946e+00
## [47,] 0.105224063 -8.944792e-01
## [48,] 2.274142502 -2.184771e-01
## [49,] 5.059879105 3.740499e+00
## [50,] -1.029417541 -1.814070e+00
## [51,] -1.219118051 2.147904e-02
## [52,] -0.668869767 -7.080551e-01
## [53,] -1.851817493 -6.087388e-01
## [54,] -2.444184634 -3.173807e+00
## [55,] -0.213162184 1.291823e+00
## [56,] -0.762522515 6.725742e-01
## [57,] -3.136544235 -1.000550e+00
## [58,] 1.166231676 7.853687e-01
## [59,] -0.157353942 -9.902488e-01
## [60,] -2.206627342 -2.155489e+00
## [61,] -0.306834243 -1.486093e+00
## [62,] -1.085526423 -6.953274e-01
## [63,] 3.172539772 -3.151478e-02
## [64,] 0.495620170 2.600489e-01
## [65,] -1.886242101 -6.575490e-01
## [66,] 3.026443458 1.551773e+00
## [67,] -0.158373671 -6.689888e-01
## [68,] -3.304929812 6.991761e-01
## [69,] -2.387527083 3.911152e-01
## [70,] 2.852556041 -1.292264e+00
## [71,] 1.199581595 -3.503166e-02
## [72,] -3.869019608 -3.365263e+00
## [73,] -3.372393357 -1.770109e+00
## [74,] -2.418918244 3.052471e-01
## [75,] 3.307348632 -9.279013e-01
## [76,] 1.944291052 1.702750e+00
## [77,] 0.070739976 -1.465250e+00
## [78,] -0.386902910 -5.265190e-01
## [79,] 0.871209323 -2.936640e-01
## [80,] 1.664591617 -6.444440e-02
## [81,] 1.430723480 -1.127045e+00
## [82,] -0.596686015 4.601315e+00
## [83,] -0.632447878 2.542362e-01
## [84,] 0.949843563 -4.347089e-01
## [85,] 1.199467937 8.950317e-01
## [86,] -0.376688278 -1.411195e-02
## [87,] 1.131162735 3.467851e+00
## [88,] -2.039030699 -2.212307e+00
## [89,] 0.247072505 5.298983e-01
## [90,] 0.580169401 -5.055313e-01
## [91,] -1.330788096 1.471683e+00
## [92,] -1.157671793 -1.614516e+00
## [93,] -0.564353192 -4.558587e-01
## [94,] 2.177979930 7.627866e-01
## [95,] 1.166618539 -3.940749e-01
## [96,] 0.229070585 -4.113723e-01
## [97,] -0.321805365 -1.413685e+00
## [98,] -1.393135848 2.535105e+00
## [99,] 0.449553756 -1.712234e+00
## [100,] -1.839491539 -2.285729e+00
## [101,] 4.958119998 3.386205e+00
## [102,] -0.203543387 7.408483e-01
## [103,] -1.063001365 -1.013156e+00
## [104,] -1.847893005 -1.417479e+00
## [105,] 3.138322651 8.395762e-01
## [106,] 0.365868834 4.662646e-01
## [107,] 2.075457023 -1.525977e-01
## [108,] -0.962959114 2.187306e+00
## [109,] -1.253239136 -1.432594e+00
## [110,] -3.095088254 -2.799721e+00
## [111,] -0.754252522 6.897644e-01
## [112,] 2.527989176 1.783151e+00
## [113,] -0.664401860 -1.065498e-01
## [114,] -1.755576485 -1.571108e+00
## [115,] 1.127033114 -1.166503e+00
## [116,] 3.702149787 9.512373e-01
## [117,] -0.003399063 -1.089309e+00
## [118,] -1.842848106 -2.480547e+00
## [119,] -0.115561729 5.835760e-01
## [120,] 0.183102920 -1.098063e+00
## [121,] -1.795974859 -1.266082e+00
## [122,] 2.232130778 -1.022184e+00
## [123,] 0.725783831 3.015947e+00
## [124,] -0.958268421 -2.284567e+00
## [125,] -1.003025144 4.216071e-01
## [126,] -1.036788996 -1.131664e+00
## [127,] -0.609228599 -4.508074e-02
## [128,] 3.018334744 7.535379e-01
## [129,] 2.429040352 1.640945e+00
## [130,] -1.079866956 -2.575210e+00
## [131,] -1.275604961 -1.095502e+00
## [132,] 0.821438362 2.156600e+00
## [133,] 5.271260259 3.824472e+00
## [134,] -1.243031162 -2.952539e+00
## [135,] -0.696061279 -7.241357e-02
## [136,] 2.162992850 2.051932e+00
## [137,] 0.529059858 -1.901154e+00
## [138,] 1.379735197 -2.539431e-01
## [139,] 0.377420734 2.204045e-01
## [140,] 0.835680233 2.811268e-01
## [141,] -2.786459546 2.691843e-01
## [142,] 0.591585075 -2.181998e-01
## [143,] 0.302114962 2.860102e-01
## [144,] 1.346650546 2.812418e+00
## [145,] -0.325956647 1.521950e-01
## [146,] 2.835184422 2.383875e+00
## [147,] 1.873544267 -3.022233e-01
## [148,] 3.880994377 1.235009e+00
## [149,] 2.823735907 -1.163672e+00
## [150,] 0.742938750 2.059508e+00
## [151,] -1.795950122 -1.635203e+00
## [152,] -2.393089872 -2.251930e+00
## [153,] -0.652890373 2.968070e-01
## [154,] -3.746838188 -7.850437e-01
## [155,] 3.519093503 4.033340e+00
## [156,] 2.922868434 1.971291e+00
## [157,] -3.652376148 -1.956152e+00
## [158,] -0.280206464 9.546604e-01
## [159,] -0.910395549 -2.121426e+00
## [160,] 3.745404750 2.440053e+00
## [161,] 1.140498819 2.129081e+00
## [162,] -2.198104933 3.299918e-01
## [163,] -0.619279493 8.262022e-01
## [164,] 0.239091476 1.002775e+00
## [165,] 2.567445320 7.627302e-01
## [166,] 1.284966314 -1.374949e+00
## [167,] -0.530965483 2.083242e+00
## [168,] -0.429350985 -3.149962e+00
## [169,] -2.730959978 -1.095756e+00
## [170,] 1.604471885 3.198011e-01
## [171,] 1.737167548 1.922020e+00
## [172,] 3.238856650 1.031187e+00
## [173,] -1.085388477 -2.901519e+00
## [174,] -0.130830529 -8.810123e-01
## [175,] -1.970618598 -8.422953e-01
## [176,] 0.827785408 -2.694113e+00
## [177,] -0.754535424 -4.911860e-02
## [178,] -1.526682234 4.489310e-02
## [179,] 0.771112673 1.771707e-01
## [180,] -3.287366302 2.826520e+00
## [181,] -0.027963552 9.514249e-01
## [182,] 1.101497895 1.832606e+00
## [183,] 1.451448437 1.159628e-01
## [184,] 0.194362553 -1.336251e+00
## [185,] 1.385567272 -2.735747e-01
## [186,] 3.710503558 -1.346247e+00
## [187,] -0.426558123 1.091365e+00
## [188,] 0.647742920 -6.789549e-01
## [189,] -1.831967228 -3.236677e-01
## [190,] -1.033902268 -2.941028e+00
## [191,] 0.173257781 3.310743e-01
## [192,] -0.257734267 -1.630189e+00
## [193,] 1.688863784 2.526153e+00
## [194,] 0.237291676 -1.603931e+00
## [195,] -0.641594266 3.221086e-01
## [196,] -2.454879839 -3.898581e+00
## [197,] 1.230894100 -8.618190e-01
## [198,] -0.255425347 2.141374e+00
## [199,] -1.010423142 9.503457e-01
## [200,] -2.619024656 -1.289557e+00
## [201,] -0.798160844 -1.955931e+00
## [202,] -1.234528051 -4.040865e-01
## [203,] 0.359424461 -2.327015e+00
## [204,] -0.246077923 1.042585e+00
## [205,] -0.906395428 6.946616e-02
## [206,] 1.095335381 7.155049e-01
## [207,] 1.184857517 1.662101e-01
## [208,] -2.279893752 -4.562778e+00
## [209,] 0.063505008 6.526788e-01
## [210,] 0.715465884 -6.087174e-01
## [211,] 3.576536327 1.469626e+00
## [212,] 0.957675653 2.155342e+00
## [213,] -1.632166150 -1.141681e+00
## [214,] 4.607845179 1.366007e+00
## [215,] 2.326731390 -1.438337e+00
## [216,] -0.152933174 5.128621e-01
## [217,] 0.010545964 -1.478843e+00
## [218,] -0.568727192 -1.754291e+00
## [219,] 1.977765732 2.177827e+00
## [220,] -3.575896758 7.735938e-01
## [221,] -2.126361257 4.736292e-02
## [222,] 1.154222744 4.350122e-02
## [223,] -1.145271373 -9.182090e-02
## [224,] 1.338819385 1.693789e+00
## [225,] -4.859107902 -3.834610e+00
## [226,] 3.333848150 2.518801e+00
## [227,] 1.237530120 1.416370e+00
## [228,] 0.264505279 -3.843733e+00
## [229,] 1.858382945 -1.703825e-01
## [230,] 0.276709448 -3.539058e-01
## [231,] 1.477719351 -8.070400e-02
## [232,] 0.775567389 -3.485650e-01
## [233,] -1.417227844 1.368006e+00
## [234,] 2.391385518 3.241338e+00
## [235,] 0.757496219 1.879699e+00
## [236,] 3.633311501 6.493730e-01
## [237,] -2.673783436 -1.135848e+00
## [238,] -0.325553352 1.281679e-01
## [239,] 3.103191819 4.282898e-01
## [240,] 0.587935455 -1.633188e-01
## [241,] 0.215805963 5.260116e-01
## [242,] 2.617531546 9.454351e-01
## [243,] 1.806056466 1.676730e+00
## [244,] 1.432877712 -4.267624e-01
## [245,] 2.908418257 2.904683e-01
## [246,] 0.586275391 2.240761e+00
## [247,] 1.871060664 -1.058219e+00
## [248,] -2.439213084 -2.715729e+00
## [249,] 0.441699784 3.722846e-01
## [250,] 1.009275440 1.109284e+00
## [251,] -1.713879460 -1.966324e+00
## [252,] 2.392999878 1.807677e+00
## [253,] -2.950131860 -1.004285e+00
## [254,] -2.883764386 -3.896147e+00
## [255,] 0.243605081 -4.537814e-02
## [256,] -0.065372940 2.993807e-01
## [257,] 1.809354202 8.329214e-01
## [258,] -1.596247539 -1.550349e+00
## [259,] -0.078695770 4.337996e-01
## [260,] -2.099139866 -8.864261e-01
## [261,] 1.795668117 3.663747e-01
## [262,] -1.495652754 -8.447065e-01
## [263,] 2.448636296 1.527748e+00
## [264,] 2.451829981 9.231026e-01
## [265,] 0.473520739 -6.842655e-01
## [266,] 0.877282697 -4.891960e-01
## [267,] -2.654631367 -5.889098e-01
## [268,] 4.185050033 2.406021e+00
## [269,] 2.438285359 1.242976e+00
## [270,] -1.281737531 -6.734396e-01
## [271,] -0.787951732 -9.214738e-01
## [272,] 0.678433746 -1.565757e+00
## [273,] 2.148673644 1.902769e+00
## [274,] -1.941092207 3.738391e-01
## [275,] 4.351244899 4.533230e-01
## [276,] 1.181950599 -8.064875e-01
## [277,] 2.272305474 1.033691e+00
## [278,] 2.350441662 -1.461548e+00
## [279,] -0.394680561 -8.920898e-01
## [280,] -0.732553301 -1.142323e+00
## [281,] -1.275111050 4.793488e-01
## [282,] -1.253188813 1.819856e+00
## [283,] -2.219940953 -5.012528e-01
## [284,] 1.352846077 1.260868e+00
## [285,] -0.534468697 -3.938607e-02
## [286,] 1.026237307 -1.845708e+00
## [287,] -1.320324259 8.543908e-02
## [288,] -0.083525238 1.994409e+00
## [289,] 1.332790482 4.967121e-01
## [290,] -2.879265333 -8.048553e-01
## [291,] -0.664853913 -3.455517e-01
## [292,] -1.987514334 1.527059e-01
## [293,] -2.121312678 -9.546846e-01
## [294,] 0.291627252 -1.069193e+00
## [295,] 0.378872163 -1.829075e+00
## [296,] -5.131595168 -8.178206e-01
## [297,] 1.452610021 4.230446e-03
## [298,] 0.317782020 -1.610312e+00
## [299,] -1.335506687 -3.252232e+00
## [300,] 3.312703142 3.711081e+00
## [301,] 2.046048954 5.589747e-01
## [302,] -0.916259762 -2.502483e+00
## [303,] 1.398570446 9.908848e-02
## [304,] -2.054327535 -2.682496e+00
## [305,] -1.052670017 -1.559518e+00
## [306,] -1.446544170 -2.217970e+00
## [307,] 3.230105687 9.224943e-01
## [308,] 0.600617377 -3.658015e+00
## [309,] -1.249587881 -1.361404e+00
## [310,] -1.477786738 1.846289e+00
## [311,] -2.537454725 -2.740152e-01
## [312,] 1.724794047 7.677661e-01
## [313,] -1.150841074 1.049853e+00
## [314,] -0.270444889 -1.646409e+00
## [315,] -1.491085671 2.638312e+00
## [316,] -2.345441216 -3.421382e+00
## [317,] 1.197921789 8.080265e-01
## [318,] -3.690773945 -3.944193e+00
## [319,] 0.417306495 1.801270e+00
## [320,] 0.943840548 -4.499608e-01
## [321,] -1.448727097 -2.487139e-02
## [322,] 0.656023255 1.120104e+00
## [323,] -0.254091898 1.250890e+00
## [324,] -1.780453443 -1.008582e+00
## [325,] 1.978425805 2.038315e+00
## [326,] -3.660440793 -9.141597e-01
## [327,] 0.352860862 -2.034622e+00
## [328,] 0.456922289 -1.086589e+00
## [329,] 2.260956961 1.455740e+00
## [330,] 1.543957498 6.301098e-01
## [331,] 2.433740262 2.747188e+00
## [332,] 3.757986691 1.058845e+00
## [333,] -4.299029164 -1.212699e+00
## [334,] 0.307216806 -1.389392e-01
## [335,] 1.658925936 1.975249e+00
## [336,] -1.159529204 -7.730047e-01
## [337,] 0.454285913 -6.777666e-01
## [338,] -0.927636230 -3.162521e+00
## [339,] -2.895920743 -2.804810e+00
## [340,] -2.028170774 -1.615709e+00
## [341,] 1.285897234 1.823898e+00
## [342,] -1.956507437 -2.042015e+00
## [343,] -2.232451185 -1.264818e+00
## [344,] -0.186909339 6.579268e-01
## [345,] -1.785202772 -3.585789e+00
## [346,] 0.491904113 1.893544e+00
## [347,] 1.843588037 -6.226621e-01
## [348,] -1.588903533 3.156882e+00
## [349,] -0.366531247 -2.509612e-01
## [350,] -0.100127608 -2.407817e+00
## [351,] -2.263708368 -2.933060e+00
## [352,] -1.263488713 -1.949277e-01
## [353,] -2.287706750 1.993599e-01
## [354,] 0.047035175 -1.318698e+00
## [355,] 0.854948636 1.352800e+00
## [356,] 1.916973352 2.478098e-01
## [357,] -0.228471298 -1.947019e-01
## [358,] 3.399173484 2.653530e+00
## [359,] 1.439987801 -1.670142e-03
## [360,] 0.943104339 8.705279e-01
## [361,] -2.970951964 -3.417046e+00
## [362,] 0.372175317 -2.144624e+00
## [363,] 0.143913251 4.109229e-01
## [364,] 1.188757488 6.273224e-01
## [365,] -0.852110072 1.203957e+00
## [366,] 3.832446130 2.421025e+00
## [367,] -2.943778657 1.200239e+00
## [368,] 0.187498805 8.284443e-01
## [369,] 1.139555482 1.912890e-01
## [370,] 0.428481171 1.627355e+00
## [371,] 1.922519520 2.022369e+00
## [372,] 4.947222579 2.428108e+00
## [373,] -0.844709679 -3.505056e+00
## [374,] 4.895038165 7.224385e-01
## [375,] 4.768598090 1.948774e+00
## [376,] 2.891134791 6.851218e-01
## [377,] 1.101980161 6.380565e-01
## [378,] -0.424915445 -3.018703e-01
## [379,] 1.830746171 2.393392e-01
## [380,] -4.021181343 -1.466444e+00
## [381,] 1.382608180 1.313382e+00
## [382,] 0.232171798 -2.425523e+00
## [383,] 1.251851667 1.792921e+00
## [384,] 2.323755357 3.491035e-01
## [385,] 0.218587042 2.256539e+00
## [386,] -3.446936714 -1.653308e+00
## [387,] -0.031425560 -2.393197e+00
## [388,] 1.592385658 3.233668e+00
## [389,] -0.164332177 -4.584688e-01
## [390,] 0.754643580 -1.902180e-01
## [391,] 2.069658823 1.938988e+00
## [392,] -0.656333895 -1.926240e+00
## [393,] -2.863512897 -1.712560e+00
## [394,] 0.429622209 -2.759828e+00
## [395,] -3.988083238 -2.131509e+00
## [396,] 0.243409284 -1.274962e+00
## [397,] 1.889406275 1.044657e+00
## [398,] 0.132800145 1.245542e+00
## [399,] 0.494723904 -5.122401e-01
## [400,] 0.807606254 1.190735e+00
## [401,] 0.313925004 -8.777143e-01
## [402,] 2.289591328 2.369602e+00
## [403,] 0.611283194 3.913970e-01
## [404,] 1.069929374 3.498493e+00
## [405,] 0.441362588 -1.039940e-01
## [406,] -5.693565387 -3.974246e+00
## [407,] -0.033111124 2.943022e-01
## [408,] 0.993245446 1.501508e+00
## [409,] 0.310154976 1.880692e+00
## [410,] -2.448075897 -2.497817e+00
## [411,] -1.941577660 5.251931e-01
## [412,] 0.284857654 1.247329e+00
## [413,] -0.846570148 -1.120182e+00
## [414,] -1.748487653 -3.242184e+00
## [415,] -3.055587295 -3.019980e+00
## [416,] 1.687829660 -3.858871e-01
## [417,] 2.367786795 2.928248e+00
## [418,] -0.208498042 3.572636e-01
## [419,] -3.821170394 -2.325608e+00
## [420,] 0.276034336 5.215907e-01
## [421,] 0.051782338 3.971644e+00
## [422,] -0.843702678 -1.524438e-01
## [423,] 1.232561517 3.226672e-01
## [424,] -0.647602611 1.350711e+00
## [425,] 3.084129669 8.595629e-01
## [426,] 1.024434492 1.565003e-01
## [427,] 1.300987763 -1.322708e+00
## [428,] 4.115293398 3.159623e-01
## [429,] -2.997341134 -1.395022e+00
## [430,] 1.194337229 2.742423e+00
## [431,] 1.829030594 7.456411e-01
## [432,] -3.153787196 -2.199938e+00
## [433,] 1.121829299 4.090781e+00
## [434,] -2.934613318 8.072229e-01
## [435,] -0.075386592 2.432967e+00
## [436,] -2.105802365 -4.051283e-01
## [437,] -1.602511479 8.620803e-01
## [438,] 3.944551264 4.029965e+00
## [439,] 2.567115210 3.468175e+00
## [440,] 2.318207604 4.846530e-01
## [441,] 0.369183757 -1.324224e+00
## [442,] 0.330917543 1.896167e+00
## [443,] 1.296034602 1.053573e+00
## [444,] -2.332392149 -1.573968e+00
## [445,] -1.245335566 2.177678e-01
## [446,] -1.585184232 3.639490e-01
## [447,] -1.114868021 2.368032e+00
## [448,] 0.489960667 -8.895108e-01
## [449,] 0.264516999 -4.419089e-01
## [450,] 0.849275374 6.076231e-01
## [451,] -2.391308577 -1.866499e+00
## [452,] 1.496454546 2.853651e+00
## [453,] 1.730664327 -4.134789e-01
## [454,] 1.557944671 3.847399e-01
## [455,] 0.724698398 5.959346e-01
## [456,] 4.276897668 -4.939978e-01
## [457,] -0.806946400 -2.859370e+00
## [458,] 1.748590585 2.128141e+00
## [459,] 1.692497390 -2.341223e+00
## [460,] 1.687999355 2.842435e+00
## [461,] -0.913912467 -5.803093e-01
## [462,] 0.135074026 5.774633e-01
## [463,] 2.017523638 2.532894e+00
## [464,] -0.072934145 2.678785e-01
## [465,] 5.017729017 2.104937e+00
## [466,] -0.392281551 -2.092861e+00
## [467,] -0.118940963 -3.609889e-01
## [468,] -0.344683108 -9.489056e-01
## [469,] -1.723447378 -1.566937e+00
## [470,] 0.357409473 2.120798e+00
## [471,] 1.811214214 2.375487e-05
## [472,] -3.710689516 -2.331436e+00
## [473,] -0.820347886 -8.755070e-02
## [474,] -0.143691623 2.915010e+00
## [475,] -1.205023322 -2.141843e+00
## [476,] -0.836325396 -1.726504e+00
## [477,] 0.431061589 4.705435e-01
## [478,] -0.229256123 -2.457160e+00
## [479,] 0.598151237 6.326817e-01
## [480,] -2.190549977 7.662542e-01
## [481,] 2.797886246 4.208260e+00
## [482,] 0.327042534 1.646563e-01
## [483,] 0.224603994 1.685943e-01
## [484,] -4.487352019 -3.776931e+00
## [485,] -0.475483882 -9.955419e-01
## [486,] -1.081797058 -3.427982e+00
## [487,] -3.495770568 -2.647062e+00
## [488,] 1.275069257 -1.245304e+00
## [489,] -1.489657264 -3.186064e-01
## [490,] -0.537157143 5.843444e-02
## [491,] 3.792039883 -5.465822e-01
## [492,] -0.876814315 -1.018323e+00
## [493,] 2.470259526 -4.104105e-01
## [494,] 0.284947524 1.243400e+00
## [495,] -1.101333656 2.116537e+00
## [496,] 0.693149429 -1.379960e+00
## [497,] 0.752586453 -9.390743e-02
## [498,] 0.550619353 2.868291e-02
## [499,] 1.295164921 -1.611671e+00
## [500,] -1.143180044 -7.020435e-01
pca<- princomp(x)
pca
## Call:
## princomp(x = x)
##
## Standard deviations:
## Comp.1 Comp.2
## 2.241521 1.231119
##
## 2 variables and 500 observations.
pca$loadings
##
## Loadings:
## Comp.1 Comp.2
## [1,] 0.781 0.625
## [2,] 0.625 -0.781
##
## Comp.1 Comp.2
## SS loadings 1.0 1.0
## Proportion Var 0.5 0.5
## Cumulative Var 0.5 1.0
Sumber Referensi: Ruriko Yoshida - Linear Algebra and its Application with R