# # 2000 data: NAICS Based Measure
# 
# # NAICS is available in CBP data post 1997.
# 
# 
# # cbp employment raw data
# cbp <- fread(paste0("C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/CBP/county/cbp",substr(st_yr,3,4),"co.txt"))
# cbp[,naics:=as.numeric(naics)]
# cbp <- cbp[!is.na(naics)]
# 
# cbp[,imp_emp:=n1_4*2.5+n5_9*7+n10_19*15+n20_49*35+n50_99*75+n100_249*175+n250_499*375+n500_999*750+n1000_1*1250+n1000_2*2000+n1000_3*3750+n1000_4*10000]
# 
# cbp[,imp_emp:=ifelse(!is.na(emp) & emp>0,emp,imp_emp)]
# 
# cbp[,fips:=paste0(str_pad(fipstate,2,"left","0"),str_pad(fipscty,3,"left","0"))]
# 
# cbp <- cbp[,c("fips","naics","imp_emp")]
# 
# naics_sic <- fread("David Dorn/NAICS97_6_to_SIC87_4.csv")
# cbp <- merge(cbp,naics_sic,by.x="naics",by.y="naics6",allow.cartesian = T)
# cbp[,imp_emp:=imp_emp*weight]
# 
# cbp[,emp_sic_n:=sum(imp_emp),by=sic4]
# cbp[,emp_fips:=sum(imp_emp),by=fips]
# 
# 
# 
# 
# us_imports <- fread("David Dorn/Imports_from_China_by_sic87dd_1991_2014.csv")
# us_imports <- us_imports[,c("sic87dd","l_import_usch_2000","l_import_usch_2007")]
# us_imports[,chg_st_ed:=l_import_usch_2007-l_import_usch_2000]
# 
# 
# 
# emp_naics <- merge(cbp,us_imports[,c("chg_st_ed","sic87dd")],by.x="sic4",by.y="sic87dd",all.x=T)
# 
# emp_naics[,chg_per_employee:=chg_st_ed/emp_sic_n]
# 
# emp_naics[,w_chg_per_employee:=chg_per_employee*imp_emp/emp_fips]
# 
# # d_tradeusch_pw_dr is our approximation of d_tradeusch_pw in ADH
# emp_czone <- emp_naics[,.(import_sensitivity=sum(w_chg_per_employee,na.rm=T)),by=fips]
# 
# 
# 
# 
# # Other country IV
# imports_oth <- fread("David Dorn/Imports_from_China_by_sic87dd_1991_2014.csv")
# imports_oth <- imports_oth[,c("sic87dd","l_import_otch_2000","l_import_otch_2007")]
# imports_oth[,chg_st_ed:=l_import_otch_2007-l_import_otch_2000]
# 
# cbp <- fread(paste0("C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/CBP/county/cbp",substr(st_yr-2,3,4),"co.txt"))
# cbp[,naics:=as.numeric(naics)]
# cbp <- cbp[!is.na(naics)]
# 
# cbp[,imp_emp:=n1_4*2.5+n5_9*7+n10_19*15+n20_49*35+n50_99*75+n100_249*175+n250_499*375+n500_999*750+n1000_1*1250+n1000_2*2000+n1000_3*3750+n1000_4*10000]
# 
# cbp[,imp_emp:=ifelse(!is.na(emp) & emp>0,emp,imp_emp)]
# 
# cbp[,fips:=paste0(str_pad(fipstate,2,"left","0"),str_pad(fipscty,3,"left","0"))]
# 
# cbp <- cbp[,c("fips","naics","imp_emp")]
# 
# naics_sic <- fread("David Dorn/NAICS97_6_to_SIC87_4.csv")
# cbp <- merge(cbp,naics_sic,by.x="naics",by.y="naics6",allow.cartesian = T)
# cbp[,imp_emp:=imp_emp*weight]
# 
# cbp[,emp_sic_n:=sum(imp_emp),by=sic4]
# cbp[,emp_fips:=sum(imp_emp),by=fips]
# 
# 
# emp_naics_oc <- merge(cbp,imports_oth[,c("chg_st_ed","sic87dd")],by.x="sic4",by.y="sic87dd",all.x=T)
# 
# emp_naics_oc[,chg_per_employee:=chg_st_ed/emp_sic_n]
# 
# emp_naics_oc[,w_chg_per_employee:=chg_per_employee*imp_emp/emp_fips]
# 
# # tradeotch_pw_lag_dr is our approximation of tradeotch_pw_lag in ADH
# emp_naics_oc <- emp_naics_oc[,.(iv_import_sensitivity=sum(w_chg_per_employee,na.rm=T)),by=fips]
# 
# measures <- merge(emp_czone,emp_naics_oc,by="fips")
# 
# measures[,x_bin:=ntile(import_sensitivity,3)]
# measures[,iv_bin:=ntile(iv_import_sensitivity,100)]
# 
# saveRDS(measures,"measures_county_levels_sic87dd.rds")
# pop_data <- list()
# 
# pop_2000 <- get_decennial(geography = "county", variables = "P001001",year = 2000)
# pop_2000 <- pop_2000[,c("GEOID","value")]
# names(pop_2000) <- c("fips","population")
# pop_2000 <- data.table(pop_2000)
# pop_2000[,fips:=as.numeric(fips)]
# pop_2000[,year:=2000]
# pop_data[[1]] <- pop_2000
# 
# #https://repository.duke.edu/catalog/f49b199b-1496-4636-91f3-36226c8e7f80
# pop_csv <- fread("county_population_2000_2010.csv")
# pop_csv <- pop_csv[year %in% 2001:2009, c("fips","tot_pop","year")]
# names(pop_csv) <- c("fips","population","year")
# pop_data[[2]] <- pop_csv
# 
# i=3
# for(yr in 2010:2019){
#   pop <- get_acs(geography = "county", variables = c("B01003_001"), year = yr)
#   pop <- data.table(pop)
#   pop <- dcast(pop,GEOID~variable,value.var = "estimate",fun.aggregate = sum)
#   names(pop) <- c("fips","population")
#   pop[,year:=yr]
#   pop_data[[i]] <- pop
#   i=i+1
# }
# 
# pop_data <- do.call(rbind,pop_data)
# 
# pop_data[,fips:=str_pad(as.character(fips),width = 5,side = "left",pad = "0")]
# 
# 
# 
# #https://apps.bea.gov/regional/downloadzip.cfm
# county_data <- fread("bea_data_1969_2021.csv")
# 
# county_data[,variable:=ifelse(Description=="Personal income (thousands of dollars)","total_income",
#                               ifelse(Description=="Population (persons) 1/","population",
#                                      ifelse(Description=="Per capita personal income (dollars) 2/","income_per_capita","")))]
# 
# county_data <- county_data[variable %in% c("income_per_capita")]
# county_data[,c("GeoName","Region","TableName","LineCode","IndustryClassification","Unit","Description"):=list(NULL)]
# setnames(county_data,"GeoFIPS","fips")
# 
# county_data <- melt(county_data,id.vars = c("fips","variable"))
# county_data[,value:=as.numeric(value)]
# county_data <- dcast(county_data,fips+variable.1~variable,value.var = "value",fun.aggregate = sum)
# county_data[,variable.1:=as.numeric(as.character(variable.1))]
# 
# setnames(county_data,"variable.1","year")
# 
# unemp <- fread("la.data.64.County.txt")
# unemp <- unemp[substr(series_id,1,5)=="LAUCN"]
# unemp[,fips:=substr(series_id,6,10)]
# unemp <- unemp[substr(series_id,19,20)=="03"]
# unemp[,value:=as.numeric(value)]
# unemp <- unemp[,.(unemp_rate=mean(value,na.rm=T)),by=.(fips,year)]
# unemp[,c("series_id","period","footnote_codes"):=list(NULL)]
# 
# county_data <- merge(county_data,unemp,by=c("fips","year"))
# county_data <- merge(county_data,pop_data,by=c("fips","year"))
# 
# saveRDS(county_data,"county_data.rds")
# sod <- list()
# i=1
# for(fl in list.files(path="C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/SOD/data",full.names = T)){
#   sod[[i]] <- fread(fl,select = c("YEAR","CERT","DEPSUMBR","DEPSUM","RSSDHCR","RSSDID","STCNTYBR","ASSET","UNINUMBR","SIMS_ESTABLISHED_DATE","SIMS_LATITUDE","SIMS_LONGITUDE","ADDRESBR"))
#   i=i+1
# }
# 
# sod <- rbindlist(sod,fill=T)
# 
# sod[,DEPSUMBR:=str_remove_all(DEPSUMBR,",")]
# sod[,DEPSUM:=str_remove_all(DEPSUM,",")]
# sod[,ASSET:=str_remove_all(ASSET,",")]
# 
# sod[,DEPSUMBR:= as.numeric(DEPSUMBR)]
# sod[,DEPSUM:= as.numeric(DEPSUM)]
# sod[,ASSET:= as.numeric(ASSET)]
# 
# sod[,fips:=str_pad(STCNTYBR,5,"left","0")]
# sod[,SIMS_ESTABLISHED_DATE:=as.Date(SIMS_ESTABLISHED_DATE,"%m/%d/%Y")]
# 
# sod[,br_id:=paste0(tolower(ADDRESBR),round(SIMS_LATITUDE,1),round(SIMS_LONGITUDE,1))]
# 
# 
# 
# 
# br <- list()
# i <- 1
# for(yr in 2001:2020){
#   temp <- sod[YEAR==yr]
#   temp_p <- sod[YEAR==(yr-1)]
#   temp_a <- sod[YEAR==(yr+1)]
#   
#   # openings <- temp[year(SIMS_ESTABLISHED_DATE)==yr]
#   openings <- temp[DEPSUMBR> 0 & !UNINUMBR %in% temp_p[DEPSUMBR> 0]$UNINUMBR]
#   openings <- rbind(openings,temp[DEPSUMBR> 0 & !br_id %in% temp_p[DEPSUMBR> 0]$br_id])
#   openings <- openings[!duplicated(openings)]
#   openings <- openings[,.(openings=.N),by=fips]
#   
#   
#   closings <- temp[DEPSUMBR> 0 & !UNINUMBR %in% temp_a[DEPSUMBR> 0]$UNINUMBR]
#   closings <- rbind(closings,temp[DEPSUMBR> 0 & !br_id %in% temp_a[DEPSUMBR> 0]$br_id])
#   closings <- closings[!duplicated(closings)]
#   closings <- closings[,.(closings=.N),by=fips]
#   
#   temp<- data.table(fips=unique(sod$fips),YEAR=yr)
#   temp <- merge(temp,openings,by="fips",all.x = T)
#   temp <- merge(temp,closings,by="fips",all.x = T)
#   temp[is.na(temp)] <- 0
#   
#   br[[i]] <- temp
#   i=i+1
# }
# 
# br <- do.call(rbind,br)
# setorder(br,fips,YEAR)
# 
# 
# saveRDS(sod,"sod_sum.rds")
# saveRDS(br,"br_open_close.rds")
measures <- readRDS("measures_county_levels_sic87dd.rds")
measures[,import_sensitivity:=(import_sensitivity-min(measures$import_sensitivity,na.rm=T)+1)]
measures[,iv_import_sensitivity:=(iv_import_sensitivity-min(measures$iv_import_sensitivity,na.rm=T)+1)]
measures[,high_x:=ntile(import_sensitivity,2)]
measures[,low_x:=2-high_x]
measures[,rev_x_bin:=3-x_bin]
sod <- readRDS("sod_sum.rds")

asset_w <- sod[,c("CERT","YEAR","ASSET")]
asset_w <- asset_w[!duplicated(asset_w)]
asset_w[,tot_assets:=sum(ASSET,na.rm=T),by=YEAR]
asset_w[,w_asset:=ASSET/tot_assets]
asset_w[,q80:=quantile(ASSET,0.8,na.rm=T),by=YEAR]
asset_w[,q95:=quantile(ASSET,0.95,na.rm=T),by=YEAR]
asset_w[,size:=ifelse(ASSET <q80,1,ifelse(ASSET<q95,2,0))]

bank_import_exposure <- sod[YEAR %in% 1994:2000]

bank_import_exposure <- bank_import_exposure[,.(county_deposits=sum(DEPSUMBR,na.rm=T)),by=.(CERT,fips)]

bank_import_exposure <- merge( bank_import_exposure,measures,by="fips")

bank_import_exposure[,total_deposits:=sum(county_deposits,na.rm=T),by=CERT]

bank_import_exposure[,wa_exposure:=county_deposits*import_sensitivity/total_deposits]

bank_import_exposure <- bank_import_exposure[,.(wa_exposure=sum(wa_exposure,na.rm=T)),by=CERT]

bank_import_exposure[,exp_bin:=ntile(bank_import_exposure,3)]

1 Deposit Rates

rw_inst <- fread("C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/RateWatch/Deposit_InstitutionDetails.txt")
rw_inst <- rw_inst[,c("ACCT_NBR","RSSD_ID","CERT_NBR","STATE_FPS","CNTY_FPS")]
rw_inst[,fips:=paste0(str_pad(STATE_FPS,2,"left","0"),str_pad(CNTY_FPS,3,"left","0"))]
rw_inst[,c("STATE_FPS","CNTY_FPS"):=list(NULL)]

rw_summary <- readRDS("C:/Users/dratnadiwakara2/Documents/OneDrive - Louisiana State University/Raw Data/RateWatch/rate_watch_summary.rds")
rw_summary[,year:=year(qtr)]
rw_summary <- rw_summary[,.(mean_apy=mean(mean_apy,na.rm=T),median_apy=median(median_apy,na.rm=T)),by=.(year,ACCOUNTNUMBER,PRD_TYP_JOIN)]

rw_summary <- merge(rw_summary,rw_inst,by.x="ACCOUNTNUMBER",by.y="ACCT_NBR")

rw_bank <- rw_summary[,.(mean_apy=mean(mean_apy,na.rm=T),median_apy=median(median_apy,na.rm = T)),by=.(year,PRD_TYP_JOIN,CERT_NBR)]
rw_county <- rw_summary[,.(mean_apy=mean(mean_apy,na.rm=T),median_apy=median(median_apy,na.rm = T)),by=.(year,PRD_TYP_JOIN,fips)]
rw_bank_county <- rw_summary[,.(mean_apy=mean(mean_apy,na.rm=T),median_apy=median(median_apy,na.rm = T)),by=.(year,PRD_TYP_JOIN,CERT_NBR,fips)]
reg_sample <- merge(measures,rw_bank_county,by="fips")
reg_sample <- merge(bank_import_exposure,reg_sample,by.x="CERT",by.y="CERT_NBR")
reg_sample[,high_exposure:=ifelse(wa_exposure>14,1,0)]
reg_sample[,high_x:=high_x-1]
reg_sample[,fips_yr:=paste(fips,year)]
reg_sample[,bank_yr:=paste(CERT,year)]

reg_sample <- reg_sample[log(1+wa_exposure)>=2 & log(1+wa_exposure)<=4 & log(import_sensitivity)>=2 & log(import_sensitivity)<=4]

reg_sample <- merge(reg_sample,asset_w[,c("CERT","YEAR","w_asset","ASSET")],by.x=c("CERT","year"),by.y=c("CERT","YEAR"))

Data: The following results are based on RateWatch data. RateWatch data starts in 2001, and provides deposit rates for different products offered by each branch weekly.

Sample: Bank-county-year-product level. For each, bank-county-year-product, mean_apy, was calculated and was used as the dependent variable. Key product types are CD, SAV, MM, and INTCK (checking).

Key variables:

  • import_sensitivity: County-level sensitivity to Chinese imports based on Autor et al, 2013

  • low_x: This is a dummy variable that takes the value 1 if the import_sensitivity is less than the median

  • rev_x_bin: similar to low_x above, but three categories. 2: lowest sensitivity, 1: medium sensitivity, and 0: highest sensitivity to Chinese imports

  • wa_exposure: This is a bank-level variable, which calculates the weighted average exposure to chinese imports based on the county-level deposit composition

  • high_exposure: takes the value 1 if wa_exposure is greater than the median.

Specification: County, Year, Bank, and Product type fixed effects. Standard errors clustered at bank level

Main takeaway: Banks that are more exposed to Chinese imports (based on wa_exposure) offer higher rates in counties that are less exposed to Chinese imports?

min_yr = 2000
reg_formula <- as.formula("mean_apy~low_x*high_exposure|fips+CERT+year+PRD_TYP_JOIN|0|CERT")


r <- list()

r[[1]] <- felm(reg_formula,data=reg_sample[PRD_TYP_JOIN=="CD" & year>=min_yr])
r[[2]] <- felm(reg_formula,data=reg_sample[PRD_TYP_JOIN=="SAV" & year>=min_yr])
r[[3]] <- felm(reg_formula,data=reg_sample[PRD_TYP_JOIN=="MM" & year>=min_yr])
r[[4]] <- felm(reg_formula,data=reg_sample[PRD_TYP_JOIN=="INTCK" & year>=min_yr])
r[[5]] <- felm(reg_formula,data=reg_sample[PRD_TYP_JOIN %in% c("CD","SAV","MM","INTCK") & year>=min_yr])

stargazer(r,type="text",column.labels = c("CD","SAV","MM","INTCK","All"))
## 
## =======================================================================================================================
##                                                             Dependent variable:                                        
##                     ---------------------------------------------------------------------------------------------------
##                                                                  mean_apy                                              
##                             CD                  SAV                 MM                 INTCK                All        
##                             (1)                 (2)                 (3)                 (4)                 (5)        
## -----------------------------------------------------------------------------------------------------------------------
## low_x                                                                                                                  
##                           (0.000)             (0.000)             (0.000)             (0.000)             (0.000)      
##                                                                                                                        
## high_exposure                                                                                                          
##                           (0.000)             (0.000)             (0.000)             (0.000)             (0.000)      
##                                                                                                                        
## low_x:high_exposure       -0.001               0.018              0.032**             0.018*              0.017*       
##                           (0.014)             (0.011)             (0.014)             (0.009)             (0.010)      
##                                                                                                                        
## -----------------------------------------------------------------------------------------------------------------------
## Observations              154,434             153,297             146,775             148,502             603,008      
## R2                         0.952               0.804               0.795               0.717               0.762       
## Adjusted R2                0.950               0.794               0.784               0.702               0.759       
## Residual Std. Error 0.300 (df = 146852) 0.270 (df = 145745) 0.366 (df = 139411) 0.240 (df = 141095) 0.511 (df = 595412)
## =======================================================================================================================
## Note:                                                                                       *p<0.1; **p<0.05; ***p<0.01

Sample: All banks

reg_formula <- as.formula("mean_apy~factor(rev_x_bin)*log(wa_exposure)|fips+year+CERT+PRD_TYP_JOIN|0|CERT")
r <- list()

r[[1]] <- felm(reg_formula,data=reg_sample[PRD_TYP_JOIN=="CD"  & year>=min_yr])
r[[2]] <- felm(reg_formula,data=reg_sample[PRD_TYP_JOIN=="SAV" & year>=min_yr])
r[[3]] <- felm(reg_formula,data=reg_sample[PRD_TYP_JOIN=="MM"  & year>=min_yr])
r[[4]] <- felm(reg_formula,data=reg_sample[PRD_TYP_JOIN=="INTCK"  & year>=min_yr])
r[[5]] <- felm(reg_formula,data=reg_sample[PRD_TYP_JOIN %in% c("CD","SAV","MM","INTCK") & year>=min_yr])

stargazer(r,type="text",column.labels = c("CD","SAV","MM","INTCK","All"))
## 
## =======================================================================================================================================
##                                                                             Dependent variable:                                        
##                                     ---------------------------------------------------------------------------------------------------
##                                                                                  mean_apy                                              
##                                             CD                  SAV                 MM                 INTCK                All        
##                                             (1)                 (2)                 (3)                 (4)                 (5)        
## ---------------------------------------------------------------------------------------------------------------------------------------
## factor(rev_x_bin)1                                                                                                                     
##                                           (0.000)             (0.000)             (0.000)             (0.000)             (0.000)      
##                                                                                                                                        
## factor(rev_x_bin)2                                                                                                                     
##                                           (0.000)             (0.000)             (0.000)             (0.000)             (0.000)      
##                                                                                                                                        
## log(wa_exposure)                                                                                                                       
##                                           (0.000)             (0.000)             (0.000)             (0.000)             (0.000)      
##                                                                                                                                        
## factor(rev_x_bin)1:log(wa_exposure)        0.031              0.115*             0.245***             0.105**            0.140***      
##                                           (0.057)             (0.063)             (0.077)             (0.053)             (0.050)      
##                                                                                                                                        
## factor(rev_x_bin)2:log(wa_exposure)       0.199**             0.147**            0.366***             0.115*             0.217***      
##                                           (0.080)             (0.069)             (0.079)             (0.060)             (0.055)      
##                                                                                                                                        
## ---------------------------------------------------------------------------------------------------------------------------------------
## Observations                              154,434             153,297             146,775             148,502             603,008      
## R2                                         0.952               0.804               0.795               0.717               0.762       
## Adjusted R2                                0.950               0.794               0.784               0.702               0.759       
## Residual Std. Error                 0.300 (df = 146671) 0.270 (df = 145563) 0.366 (df = 139220) 0.240 (df = 140910) 0.511 (df = 595232)
## =======================================================================================================================================
## Note:                                                                                                       *p<0.1; **p<0.05; ***p<0.01
# coef_plot_1reg(r[[1]],"high_x:high_exposure:factor(year)",2001)

Sample: Banks with total assets less than 1 billion in 2022

reg_formula <- as.formula("mean_apy~factor(rev_x_bin)*log(wa_exposure)|fips+year+CERT+PRD_TYP_JOIN|0|CERT")
r <- list()

r[[1]] <- felm(reg_formula,data=reg_sample[PRD_TYP_JOIN=="CD"  & year>=min_yr & ASSET <1e6])
r[[2]] <- felm(reg_formula,data=reg_sample[PRD_TYP_JOIN=="SAV" & year>=min_yr & ASSET <1e6])
r[[3]] <- felm(reg_formula,data=reg_sample[PRD_TYP_JOIN=="MM"  & year>=min_yr & ASSET <1e6])
r[[4]] <- felm(reg_formula,data=reg_sample[PRD_TYP_JOIN=="INTCK"  & year>=min_yr & ASSET <1e6])
r[[5]] <- felm(reg_formula,data=reg_sample[PRD_TYP_JOIN %in% c("CD","SAV","MM","INTCK") & year>=min_yr & ASSET <1e6])

stargazer(r,type="text",column.labels = c("CD","SAV","MM","INTCK","All"))
## 
## ===================================================================================================================================
##                                                                           Dependent variable:                                      
##                                     -----------------------------------------------------------------------------------------------
##                                                                                mean_apy                                            
##                                             CD                SAV                 MM               INTCK                All        
##                                            (1)                (2)                (3)                (4)                 (5)        
## -----------------------------------------------------------------------------------------------------------------------------------
## factor(rev_x_bin)1                                                                                                                 
##                                          (0.000)            (0.000)            (0.000)            (0.000)             (0.000)      
##                                                                                                                                    
## factor(rev_x_bin)2                                                                                                                 
##                                          (0.000)            (0.000)            (0.000)            (0.000)             (0.000)      
##                                                                                                                                    
## log(wa_exposure)                                                                                                                   
##                                          (0.000)            (0.000)            (0.000)            (0.000)             (0.000)      
##                                                                                                                                    
## factor(rev_x_bin)1:log(wa_exposure)       -0.059             -0.053             -0.016             0.022              -0.004       
##                                          (0.075)            (0.088)            (0.114)            (0.077)             (0.069)      
##                                                                                                                                    
## factor(rev_x_bin)2:log(wa_exposure)       0.200*             0.122             0.375***            0.074              0.195**      
##                                          (0.108)            (0.110)            (0.119)            (0.086)             (0.082)      
##                                                                                                                                    
## -----------------------------------------------------------------------------------------------------------------------------------
## Observations                             101,090            100,653             95,162             96,518             393,423      
## R2                                        0.959              0.849              0.831              0.780               0.788       
## Adjusted R2                               0.956              0.837              0.817              0.763               0.784       
## Residual Std. Error                 0.277 (df = 93783) 0.253 (df = 93367) 0.340 (df = 88068) 0.229 (df = 89381) 0.492 (df = 386101)
## ===================================================================================================================================
## Note:                                                                                                   *p<0.1; **p<0.05; ***p<0.01

Sample: Banks with total assets1-10 billion in 2022

reg_formula <- as.formula("mean_apy~factor(rev_x_bin)*log(wa_exposure)|fips+year+CERT+PRD_TYP_JOIN|0|CERT")
r <- list()

r[[1]] <- felm(reg_formula,data=reg_sample[PRD_TYP_JOIN=="CD"  & year>=min_yr & ASSET <1e7 & ASSET>1e6])
r[[2]] <- felm(reg_formula,data=reg_sample[PRD_TYP_JOIN=="SAV" & year>=min_yr & ASSET <1e7 & ASSET>1e6])
r[[3]] <- felm(reg_formula,data=reg_sample[PRD_TYP_JOIN=="MM"  & year>=min_yr & ASSET <1e7 & ASSET>1e6])
r[[4]] <- felm(reg_formula,data=reg_sample[PRD_TYP_JOIN=="INTCK"  & year>=min_yr & ASSET <1e7 & ASSET>1e6])
r[[5]] <- felm(reg_formula,data=reg_sample[PRD_TYP_JOIN %in% c("CD","SAV","MM","INTCK") & year>=min_yr & ASSET <1e7 & ASSET>1e6])


stargazer(r,type="text",column.labels = c("CD","SAV","MM","INTCK","All"))
## 
## ===================================================================================================================================
##                                                                           Dependent variable:                                      
##                                     -----------------------------------------------------------------------------------------------
##                                                                                mean_apy                                            
##                                             CD                SAV                 MM               INTCK                All        
##                                            (1)                (2)                (3)                (4)                 (5)        
## -----------------------------------------------------------------------------------------------------------------------------------
## factor(rev_x_bin)1                                                                                                                 
##                                          (0.000)            (0.000)            (0.000)            (0.000)             (0.000)      
##                                                                                                                                    
## factor(rev_x_bin)2                                                                                                                 
##                                          (0.000)            (0.000)            (0.000)            (0.000)             (0.000)      
##                                                                                                                                    
## log(wa_exposure)                                                                                                                   
##                                          (0.000)            (0.000)            (0.000)            (0.000)             (0.000)      
##                                                                                                                                    
## factor(rev_x_bin)1:log(wa_exposure)       0.045              0.181             0.509***            0.091              0.200**      
##                                          (0.134)            (0.133)            (0.145)            (0.110)             (0.096)      
##                                                                                                                                    
## factor(rev_x_bin)2:log(wa_exposure)       0.237              0.110             0.509***            0.111              0.243**      
##                                          (0.214)            (0.121)            (0.190)            (0.125)             (0.107)      
##                                                                                                                                    
## -----------------------------------------------------------------------------------------------------------------------------------
## Observations                              27,849             27,461             27,146             27,005             109,461      
## R2                                        0.955              0.783              0.782              0.671               0.743       
## Adjusted R2                               0.950              0.760              0.758              0.636               0.736       
## Residual Std. Error                 0.296 (df = 25206) 0.263 (df = 24839) 0.382 (df = 24530) 0.234 (df = 24396) 0.524 (df = 106812)
## ===================================================================================================================================
## Note:                                                                                                   *p<0.1; **p<0.05; ***p<0.01

Sample: Banks with total greater than10 billion in 2022

reg_formula <- as.formula("mean_apy~factor(rev_x_bin)*log(wa_exposure)|fips+year+CERT+PRD_TYP_JOIN|0|CERT")
r <- list()

r[[1]] <- felm(reg_formula,data=reg_sample[PRD_TYP_JOIN=="CD"  & year>=min_yr  & ASSET>1e7])
r[[2]] <- felm(reg_formula,data=reg_sample[PRD_TYP_JOIN=="SAV" & year>=min_yr  & ASSET>1e7])
r[[3]] <- felm(reg_formula,data=reg_sample[PRD_TYP_JOIN=="MM"  & year>=min_yr  & ASSET>1e7])
r[[4]] <- felm(reg_formula,data=reg_sample[PRD_TYP_JOIN=="INTCK"  & year>=min_yr & ASSET>1e7])
r[[5]] <- felm(reg_formula,data=reg_sample[PRD_TYP_JOIN %in% c("CD","SAV","MM","INTCK") & year>=min_yr  & ASSET>1e7])

stargazer(r,type="text",column.labels = c("CD","SAV","MM","INTCK","All"))
## 
## ==================================================================================================================================
##                                                                          Dependent variable:                                      
##                                     ----------------------------------------------------------------------------------------------
##                                                                                mean_apy                                           
##                                             CD                SAV                 MM               INTCK               All        
##                                            (1)                (2)                (3)                (4)                (5)        
## ----------------------------------------------------------------------------------------------------------------------------------
## factor(rev_x_bin)1                                                                                                                
##                                          (0.000)            (0.000)            (0.000)            (0.000)            (0.000)      
##                                                                                                                                   
## factor(rev_x_bin)2                                                                                                                
##                                          (0.000)            (0.000)            (0.000)            (0.000)            (0.000)      
##                                                                                                                                   
## log(wa_exposure)                                                                                                                  
##                                          (0.000)            (0.000)            (0.000)            (0.000)            (0.000)      
##                                                                                                                                   
## factor(rev_x_bin)1:log(wa_exposure)      0.386**             0.208*            0.296**             0.086             0.273***     
##                                          (0.149)            (0.116)            (0.148)            (0.087)            (0.099)      
##                                                                                                                                   
## factor(rev_x_bin)2:log(wa_exposure)       0.198              0.068              0.145              0.085              0.143       
##                                          (0.224)            (0.175)            (0.178)            (0.135)            (0.137)      
##                                                                                                                                   
## ----------------------------------------------------------------------------------------------------------------------------------
## Observations                              25,495             25,183             24,467             24,979            100,124      
## R2                                        0.956              0.750              0.761              0.623              0.690       
## Adjusted R2                               0.953              0.733              0.744              0.598              0.685       
## Residual Std. Error                 0.292 (df = 23893) 0.216 (df = 23594) 0.365 (df = 22887) 0.189 (df = 23404) 0.536 (df = 98519)
## ==================================================================================================================================
## Note:                                                                                                  *p<0.1; **p<0.05; ***p<0.01

2 Deposit Composition

Data: This analysis is based on SOD data.

sod <- readRDS("sod_sum.rds")
sod <- sod[,.(deposits_bank_fips=sum(DEPSUMBR,na.rm=T)),by=.(YEAR,CERT,fips)]
sod[,total_deposits_bank:=sum(deposits_bank_fips,na.rm=T),by=.(YEAR,CERT)]
sod[,deposits_fips_frac:=deposits_bank_fips/total_deposits_bank]
reg_sample <- merge(measures,sod,by="fips")
reg_sample <- merge(bank_import_exposure,reg_sample,by="CERT")
reg_sample[,high_exposure:=ifelse(wa_exposure>14,1,0)]
reg_sample[,high_x:=high_x-1]
reg_sample[,fips_yr:=paste(fips,YEAR)]
reg_sample[,bank_yr:=paste(CERT,YEAR)]
reg_sample[,bank_fips:=paste(fips,CERT)]

reg_sample <- reg_sample[log(1+wa_exposure)>=2 & log(1+wa_exposure)<=4 & log(import_sensitivity)>=2 & log(import_sensitivity)<=4]
reg_sample <- merge(reg_sample,asset_w[,c("CERT","YEAR","w_asset","ASSET","size")],by.x=c("CERT","YEAR"),by.y=c("CERT","YEAR"))

Following plot looks at the fraction of aggregate deposits in counties that are most sensitive (rev_x_bin=0), moderately sensitive (rev_x_bin=1), and least sensitive (rev_x_bin=3) of banks that are least exposed to (plot 1), moderately exposed to (plot 2), and most exposed to (plot 3).

Takeaway: Most exposed banks reduced the deposit share in most exposed counties after 2000, after China joined the WTO.

univar <- reg_sample[,.(total_depoits_x_y=sum(deposits_bank_fips,na.rm=T)),by=.(YEAR,rev_x_bin,exp_bin)]
univar[,total_depoits:=sum(total_depoits_x_y,na.rm=T),by=.(YEAR,exp_bin)]
univar[,deposit_frac:=total_depoits_x_y/total_depoits]

ggplot(univar,aes(x=YEAR,y=deposit_frac,color=factor(rev_x_bin)))+geom_line()+facet_wrap(~exp_bin,nrow = 1)+theme(legend.position = "bottom")

This regression is based on a bank-county-year sample.

The dependent variable is log(deposit_fips_frac) which is the fraction of deposit of a given bank coming from a county in a given year.

Specification:

\[ log(deposit.fips.frac) = log(import.sensitivity)\times log(wa.exposure) \times Year.Dummies+Bank*County FE \]

Takeaway: The deposit share from less exposed counties for more exposed banks started increasing around 2007. Larger effect in smaller banks.

r <- list()

r[[1]] <- felm(log(0.0001+deposits_fips_frac)~log(import_sensitivity)*log(wa_exposure)*factor(YEAR)|bank_fips|0|CERT,data=reg_sample)
r[[2]] <- felm(log(0.0001+deposits_fips_frac)~I(rev_x_bin==0)*log(wa_exposure)*factor(YEAR)|bank_fips|0|CERT,data=reg_sample)

# stargazer(r,type="text")

coef_plot_1reg(r[[1]],"log(import_sensitivity):log(wa_exposure):factor(YEAR)",1994)

coef_plot_1reg(r[[2]],"I(rev_x_bin == 0)TRUE:log(wa_exposure):factor(YEAR)",1994)

Sample: Banks with total assets less than 1 billion in 2022

r <- list()

r[[1]] <- felm(log(0.0001+deposits_fips_frac)~log(import_sensitivity)*log(wa_exposure)*factor(YEAR)|bank_fips|0|CERT,data=reg_sample[size==1])
r[[2]] <- felm(log(0.0001+deposits_fips_frac)~I(rev_x_bin==0)*log(wa_exposure)*factor(YEAR)|bank_fips|0|CERT,data=reg_sample[size==1])

# stargazer(r,type="text")

coef_plot_1reg(r[[1]],"log(import_sensitivity):log(wa_exposure):factor(YEAR)",1994)

coef_plot_1reg(r[[2]],"I(rev_x_bin == 0)TRUE:log(wa_exposure):factor(YEAR)",1994)

Sample: Banks with total assets 1-10 billion in 2022

r <- list()

r[[1]] <- felm(log(0.0001+deposits_fips_frac)~log(import_sensitivity)*log(wa_exposure)*factor(YEAR)|bank_fips|0|CERT,data=reg_sample[size==2])
r[[2]] <- felm(log(0.0001+deposits_fips_frac)~I(rev_x_bin==0)*log(wa_exposure)*factor(YEAR)|bank_fips|0|CERT,data=reg_sample[size==2])

# stargazer(r,type="text")

coef_plot_1reg(r[[1]],"log(import_sensitivity):log(wa_exposure):factor(YEAR)",1994)

coef_plot_1reg(r[[2]],"I(rev_x_bin == 0)TRUE:log(wa_exposure):factor(YEAR)",1994)

Sample: Banks with total assets greater than 10 billion in 2022

r <- list()

r[[1]] <- felm(log(0.0001+deposits_fips_frac)~log(import_sensitivity)*log(wa_exposure)*factor(YEAR)|bank_fips|0|CERT,data=reg_sample[size==0])
r[[2]] <- felm(log(0.0001+deposits_fips_frac)~I(rev_x_bin==0)*log(wa_exposure)*factor(YEAR)|bank_fips|0|CERT,data=reg_sample[size==0])

# stargazer(r,type="text")

coef_plot_1reg(r[[1]],"log(import_sensitivity):log(wa_exposure):factor(YEAR)",1994)

coef_plot_1reg(r[[2]],"I(rev_x_bin == 0)TRUE:log(wa_exposure):factor(YEAR)",1994)

3 Branch Composition

This part is same as the one above, except, now we are looking at the number of branches, not total deposits.

sod <- readRDS("sod_sum.rds")
sod <- sod[DEPSUMBR>0]
sod <- sod[,.(branches_bank_fips=.N),by=.(YEAR,CERT,fips)]
sod[,total_branches_bank:=sum(branches_bank_fips,na.rm=T),by=.(YEAR,CERT)]
sod[,branches_bank_frac:=branches_bank_fips/total_branches_bank]
reg_sample <- merge(measures,sod,by="fips")
reg_sample <- merge(bank_import_exposure,reg_sample,by="CERT")
reg_sample[,high_exposure:=ifelse(wa_exposure>14,1,0)]
reg_sample[,high_x:=high_x-1]
reg_sample[,fips_yr:=paste(fips,YEAR)]
reg_sample[,bank_yr:=paste(CERT,YEAR)]
reg_sample[,bank_fips:=paste(fips,CERT)]

reg_sample <- reg_sample[log(1+wa_exposure)>=2 & log(1+wa_exposure)<=4 & log(import_sensitivity)>=2 & log(import_sensitivity)<=4]
reg_sample <- merge(reg_sample,asset_w[,c("CERT","YEAR","w_asset","ASSET","size")],by.x=c("CERT","YEAR"),by.y=c("CERT","YEAR"))
r <- list()

r[[1]] <- felm(branches_bank_frac~log(import_sensitivity)*log(1+wa_exposure)*factor(YEAR)|bank_fips|0|CERT,data=reg_sample)

r[[2]] <- felm(log(0.0001+branches_bank_frac)~log(import_sensitivity)*log(1+wa_exposure)*factor(YEAR)|bank_fips|0|CERT,data=reg_sample)
# r[[2]] <- felm(deposits_fips_frac~x_bin*exp_bin*factor(YEAR)|CERT|0|CERT,data=reg_sample)

# stargazer(r,type="text")

# coef_plot_1reg(r[[1]],"log(import_sensitivity):log(1 + wa_exposure):factor(YEAR)",1994)
coef_plot_1reg(r[[2]],"log(import_sensitivity):log(1 + wa_exposure):factor(YEAR)",1994)

# coef_plot_1reg(r[[2]],"x_bin:exp_bin:factor(YEAR)",1994)

Sample: Banks with total assets less than 1 billion in 2022

r <- list()

r[[1]] <- felm(branches_bank_frac~log(import_sensitivity)*log(1+wa_exposure)*factor(YEAR)|bank_fips|0|CERT,data=reg_sample[size==1])

r[[2]] <- felm(log(0.0001+branches_bank_frac)~log(import_sensitivity)*log(1+wa_exposure)*factor(YEAR)|bank_fips|0|CERT,data=reg_sample[size==1])

coef_plot_1reg(r[[2]],"log(import_sensitivity):log(1 + wa_exposure):factor(YEAR)",1994)

# coef_plot_1reg(r[[1]],"log(import_sensitivity):log(1 + wa_exposure):factor(YEAR)",1994)

Sample: Banks with total assets 1 to 10 billion in 2022

r <- list()

r[[1]] <- felm(branches_bank_frac~log(import_sensitivity)*log(1+wa_exposure)*factor(YEAR)|bank_fips|0|CERT,data=reg_sample[size==2])

r[[2]] <- felm(log(0.0001+branches_bank_frac)~log(import_sensitivity)*log(1+wa_exposure)*factor(YEAR)|bank_fips|0|CERT,data=reg_sample[size==2])

coef_plot_1reg(r[[2]],"log(import_sensitivity):log(1 + wa_exposure):factor(YEAR)",1994)

Sample: Banks with total assets greater than 10 billion in 2022

r <- list()

r[[1]] <- felm(branches_bank_frac~log(import_sensitivity)*log(1+wa_exposure)*factor(YEAR)|bank_fips|0|CERT,data=reg_sample[size==0])

r[[2]] <- felm(log(0.0001+branches_bank_frac)~log(import_sensitivity)*log(1+wa_exposure)*factor(YEAR)|bank_fips|0|CERT,data=reg_sample[size==0])

coef_plot_1reg(r[[2]],"log(import_sensitivity):log(1 + wa_exposure):factor(YEAR)",1994)