1. SV vs. SR all factors
SV<-subset(df, Stress=="SV")
SR<-subset(df, Stress=="SR")
# 1.1 Agonistic Behaviors(Day2)
# 1.1.1 FT
#boxplot
p <- ggplot(df, aes(x=Stress, y=FT2)) +
geom_boxplot(outlier.colour="red", outlier.shape=8,
outlier.size=2)
p

#blocked anova test/equal-variance/block o
levene.test(df$FT2,df$Stress, location="mean")
##
## Classical Levene's test based on the absolute deviations from the mean
## ( none not applied because the location is not set to median )
##
## data: df$FT2
## Test Statistic = 0.60036, p-value = 0.4421
summary(aov(FT2~Stress+unique_pen, data=df))
## Df Sum Sq Mean Sq F value Pr(>F)
## Stress 1 31853 31853 0.239 0.62842
## unique_pen 20 6819120 340956 2.559 0.00973 **
## Residuals 30 3996740 133225
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# 1.1.2 INC
#boxplot
p <- ggplot(df, aes(x=Stress, y=INC2)) +
geom_boxplot(outlier.colour="red", outlier.shape=8,
outlier.size=2)
p

#blocked anova test/equal-variance/block o
levene.test(df$INC2,df$Stress, location="mean")
##
## Classical Levene's test based on the absolute deviations from the mean
## ( none not applied because the location is not set to median )
##
## data: df$INC2
## Test Statistic = 0.76593, p-value = 0.3857
summary(aov(INC2~Stress+unique_pen, data=df))
## Df Sum Sq Mean Sq F value Pr(>F)
## Stress 1 185 184.7 2.199 0.14856
## unique_pen 20 5953 297.6 3.543 0.00089 ***
## Residuals 30 2520 84.0
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# 1.2 Non-Agonistic Behaviors(Day2)
# 1.2.1 NC
#boxplot
p <- ggplot(df, aes(x=Stress, y=NC2)) +
geom_boxplot(outlier.colour="red", outlier.shape=8,
outlier.size=2)
p

#blocked anova test/equal-variance/block o & stress o *****
levene.test(df$NC2,df$Stress, location="mean")
##
## Classical Levene's test based on the absolute deviations from the mean
## ( none not applied because the location is not set to median )
##
## data: df$NC2
## Test Statistic = 0.74617, p-value = 0.3918
summary(aov(NC2~Stress+unique_pen, data=df))
## Df Sum Sq Mean Sq F value Pr(>F)
## Stress 1 9694 9694 5.396 0.027151 *
## unique_pen 20 135404 6770 3.768 0.000534 ***
## Residuals 30 53897 1797
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# 1.2.2 BN - zero inflation check
#boxplot
p <- ggplot(df, aes(x=Stress, y=BN2)) +
geom_boxplot(outlier.colour="red", outlier.shape=8,
outlier.size=2)
p

#blocked anova test/equal-variance/block o
levene.test(df$BN2,df$Stress, location="mean")
##
## Classical Levene's test based on the absolute deviations from the mean
## ( none not applied because the location is not set to median )
##
## data: df$BN2
## Test Statistic = 0.010931, p-value = 0.9172
summary(aov(BN2~Stress+unique_pen, data=df))
## Df Sum Sq Mean Sq F value Pr(>F)
## Stress 1 0.0 0.000 0.000 1.000
## unique_pen 20 242.3 12.113 2.344 0.017 *
## Residuals 30 155.1 5.168
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# 1.3 Daily Behaviors(Day2)
# 1.3.1 SLP -zero inflation
#boxplot
p <- ggplot(df, aes(x=Stress, y=SLP2)) +
geom_boxplot(outlier.colour="red", outlier.shape=8,
outlier.size=2)
p

#blocked anova test/unequal-variance/
levene.test(df$SLP2,df$Stress, location="mean")
##
## Classical Levene's test based on the absolute deviations from the mean
## ( none not applied because the location is not set to median )
##
## data: df$SLP2
## Test Statistic = 5.3523, p-value = 0.02485
summary(aov(SLP2~Stress+unique_pen, data=df)) ##unequal
## Df Sum Sq Mean Sq F value Pr(>F)
## Stress 1 246 245.6 1.307 0.262
## unique_pen 20 3221 161.1 0.857 0.634
## Residuals 30 5636 187.9
oneway.test(SLP2~Stress, data=df)
##
## One-way analysis of means (not assuming equal variances)
##
## data: SLP2 and Stress
## F = 1.3862, num df = 1.000, denom df = 25.094, p-value = 0.2501
# 1.3.2 SP
#boxplot
p <- ggplot(df, aes(x=Stress, y=SP2)) +
geom_boxplot(outlier.colour="red", outlier.shape=8,
outlier.size=2)
p

#blocked anova test/equal-variance/stress, block x
levene.test(df$SP2,df$Stress, location="mean")
##
## Classical Levene's test based on the absolute deviations from the mean
## ( none not applied because the location is not set to median )
##
## data: df$SP2
## Test Statistic = 1.5379, p-value = 0.2207
summary(aov(SP2~Stress+unique_pen, data=df)) ##unequal
## Df Sum Sq Mean Sq F value Pr(>F)
## Stress 1 7416 7416 0.795 0.3798
## unique_pen 20 349005 17450 1.870 0.0588 .
## Residuals 30 279970 9332
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# 1.3.3 FE
#boxplot
p <- ggplot(df, aes(x=Stress, y=FE2)) +
geom_boxplot(outlier.colour="red", outlier.shape=8,
outlier.size=2)
p

#blocked anova test/equal-variance/stress, block x
levene.test(df$FE2,df$Stress, location="mean")
##
## Classical Levene's test based on the absolute deviations from the mean
## ( none not applied because the location is not set to median )
##
## data: df$FE2
## Test Statistic = 2.9629, p-value = 0.09138
summary(aov(FE2~Stress+unique_pen, data=df)) ##unequal
## Df Sum Sq Mean Sq F value Pr(>F)
## Stress 1 119904 119904 0.102 0.751
## unique_pen 20 34534613 1726731 1.476 0.163
## Residuals 30 35100900 1170030
# 1.3.4 LD
#boxplot
p <- ggplot(df, aes(x=Stress, y=LD2)) +
geom_boxplot(outlier.colour="red", outlier.shape=8,
outlier.size=2)
p

#blocked anova test/equal-variance/ block o
levene.test(df$LD2,df$Stress, location="mean")
##
## Classical Levene's test based on the absolute deviations from the mean
## ( none not applied because the location is not set to median )
##
## data: df$LD2
## Test Statistic = 0.0099597, p-value = 0.9209
summary(aov(LD2~Stress+unique_pen, data=df))
## Df Sum Sq Mean Sq F value Pr(>F)
## Stress 1 5235577 5235577 2.405 0.1314
## unique_pen 20 97074164 4853708 2.230 0.0228 *
## Residuals 30 65309753 2176992
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# 1.3.5 EX
#boxplot
p <- ggplot(df, aes(x=Stress, y=EX2)) +
geom_boxplot(outlier.colour="red", outlier.shape=8,
outlier.size=2)
p

#blocked anova test/equal-variance/block o
levene.test(df$EX2,df$Stress, location="mean")
##
## Classical Levene's test based on the absolute deviations from the mean
## ( none not applied because the location is not set to median )
##
## data: df$EX2
## Test Statistic = 2.4928, p-value = 0.1207
summary(aov(EX2~Stress+unique_pen, data=df))
## Df Sum Sq Mean Sq F value Pr(>F)
## Stress 1 1151176 1151176 1.077 0.308
## unique_pen 20 42521908 2126095 1.989 0.043 *
## Residuals 30 32069717 1068991
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# 1.3.6 DR
#boxplot
p <- ggplot(df, aes(x=Stress, y=DR2)) +
geom_boxplot(outlier.colour="red", outlier.shape=8,
outlier.size=2)
p

#blocked anova test/equal-variance/block,Stress x
levene.test(df$DR2,df$Stress, location="mean")
##
## Classical Levene's test based on the absolute deviations from the mean
## ( none not applied because the location is not set to median )
##
## data: df$DR2
## Test Statistic = 0.32203, p-value = 0.5729
summary(aov(DR2~Stress+unique_pen, data=df))
## Df Sum Sq Mean Sq F value Pr(>F)
## Stress 1 32.3 32.33 0.440 0.512
## unique_pen 20 1600.6 80.03 1.088 0.408
## Residuals 30 2205.8 73.53
##################################################
# 1.4 Agonistic Behaviors(Day5)
# 1.4.1 FT
#boxplot
p <- ggplot(df, aes(x=Stress, y=FT5)) +
geom_boxplot(outlier.colour="red", outlier.shape=8,
outlier.size=2)
p

#blocked anova test/equal-variance/stress,block o
levene.test(df$FT5,df$Stress, location="mean")
##
## Classical Levene's test based on the absolute deviations from the mean
## ( none not applied because the location is not set to median )
##
## data: df$FT5
## Test Statistic = 0.15955, p-value = 0.6913
summary(aov(FT5~Stress+unique_pen, data=df))
## Df Sum Sq Mean Sq F value Pr(>F)
## Stress 1 3233 3233 4.805 0.0363 *
## unique_pen 20 61483 3074 4.569 9.69e-05 ***
## Residuals 30 20184 673
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# 1.4.2 INC
#boxplot
p <- ggplot(df, aes(x=Stress, y=INC5)) +
geom_boxplot(outlier.colour="red", outlier.shape=8,
outlier.size=2)
p

#blocked anova test/unequal-variance/
levene.test(df$INC5,df$Stress, location="mean")
##
## Classical Levene's test based on the absolute deviations from the mean
## ( none not applied because the location is not set to median )
##
## data: df$INC5
## Test Statistic = 5.4916, p-value = 0.02313
summary(aov(INC5~Stress+unique_pen, data=df)) ## unequal
## Df Sum Sq Mean Sq F value Pr(>F)
## Stress 1 291 290.9 4.554 0.0411 *
## unique_pen 20 8312 415.6 6.505 2.85e-06 ***
## Residuals 30 1917 63.9
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
oneway.test(INC5~Stress, data=df)
##
## One-way analysis of means (not assuming equal variances)
##
## data: INC5 and Stress
## F = 1.4221, num df = 1.000, denom df = 36.694, p-value = 0.2407
# 1.5 Non-Agonistic Behaviors(Day5)
# 1.5.1 NC
#boxplot
p <- ggplot(df, aes(x=Stress, y=NC5)) +
geom_boxplot(outlier.colour="red", outlier.shape=8,
outlier.size=2)
p

#blocked anova test/equal-variance/block o
levene.test(df$NC5,df$Stress, location="mean")
##
## Classical Levene's test based on the absolute deviations from the mean
## ( none not applied because the location is not set to median )
##
## data: df$NC5
## Test Statistic = 2.2443, p-value = 0.1404
summary(aov(NC5~Stress+unique_pen, data=df))
## Df Sum Sq Mean Sq F value Pr(>F)
## Stress 1 438 438 0.760 0.39
## unique_pen 20 63970 3198 5.545 1.49e-05 ***
## Residuals 30 17306 577
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# 1.5.2 BN - zero inflation check
#boxplot
p <- ggplot(df, aes(x=Stress, y=BN5)) +
geom_boxplot(outlier.colour="red", outlier.shape=8,
outlier.size=2)
p

#blocked anova test/equal-variance/block o
levene.test(df$BN5,df$Stress, location="mean")
##
## Classical Levene's test based on the absolute deviations from the mean
## ( none not applied because the location is not set to median )
##
## data: df$BN5
## Test Statistic = 0.73966, p-value = 0.3939
summary(aov(BN5~Stress+unique_pen, data=df))
## Df Sum Sq Mean Sq F value Pr(>F)
## Stress 1 0.17 0.1731 0.252 0.620
## unique_pen 20 33.25 1.6624 2.416 0.014 *
## Residuals 30 20.64 0.6879
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# 1.6 Daily Behaviors(Day2)
# 1.6.1 SLP -zero inflation
#boxplot
p <- ggplot(df, aes(x=Stress, y=SLP5)) +
geom_boxplot(outlier.colour="red", outlier.shape=8,
outlier.size=2)
p

#blocked anova test/unequal-variance/
levene.test(df$SLP5,df$Stress, location="mean")
##
## Classical Levene's test based on the absolute deviations from the mean
## ( none not applied because the location is not set to median )
##
## data: df$SLP5
## Test Statistic = 10.203, p-value = 0.002428
summary(aov(SLP5~Stress+unique_pen, data=df)) ##unequal
## Df Sum Sq Mean Sq F value Pr(>F)
## Stress 1 96.9 96.94 2.788 0.105
## unique_pen 20 670.8 33.54 0.964 0.524
## Residuals 30 1043.3 34.78
oneway.test(SLP5~Stress, data=df)
##
## One-way analysis of means (not assuming equal variances)
##
## data: SLP5 and Stress
## F = 2.8279, num df = 1.000, denom df = 28.682, p-value = 0.1035
# 1.6.2 SP - zero inflated
#boxplot
p <- ggplot(df, aes(x=Stress, y=SP5)) +
geom_boxplot(outlier.colour="red", outlier.shape=8,
outlier.size=2)
p

#blocked anova test/equal-variance
levene.test(df$SP5,df$Stress, location="mean")
##
## Classical Levene's test based on the absolute deviations from the mean
## ( none not applied because the location is not set to median )
##
## data: df$SP5
## Test Statistic = 2.1816, p-value = 0.1459
summary(aov(SP5~Stress+unique_pen, data=df))
## Df Sum Sq Mean Sq F value Pr(>F)
## Stress 1 746 746.3 0.880 0.3557
## unique_pen 20 29630 1481.5 1.747 0.0813 .
## Residuals 30 25443 848.1
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# 1.6.3 FE
#boxplot
p <- ggplot(df, aes(x=Stress, y=FE5)) +
geom_boxplot(outlier.colour="red", outlier.shape=8,
outlier.size=2)
p

#blocked anova test/equal-variance/
levene.test(df$FE5,df$Stress, location="mean")
##
## Classical Levene's test based on the absolute deviations from the mean
## ( none not applied because the location is not set to median )
##
## data: df$FE5
## Test Statistic = 3.7686, p-value = 0.05787
summary(aov(FE5~Stress+unique_pen, data=df))
## Df Sum Sq Mean Sq F value Pr(>F)
## Stress 1 497646 497646 0.443 0.511
## unique_pen 20 25740003 1287000 1.145 0.361
## Residuals 30 33728657 1124289
# 1.6.4 LD
#boxplot
p <- ggplot(df, aes(x=Stress, y=LD5)) +
geom_boxplot(outlier.colour="red", outlier.shape=8,
outlier.size=2)
p

#blocked anova test/equal-variance/block o
levene.test(df$LD5,df$Stress, location="mean")
##
## Classical Levene's test based on the absolute deviations from the mean
## ( none not applied because the location is not set to median )
##
## data: df$LD5
## Test Statistic = 0.62986, p-value = 0.4312
summary(aov(LD5~Stress+unique_pen, data=df))
## Df Sum Sq Mean Sq F value Pr(>F)
## Stress 1 772261 772261 0.329 0.570467
## unique_pen 20 170133142 8506657 3.625 0.000738 ***
## Residuals 30 70398039 2346601
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# 1.6.5 EX
#boxplot
p <- ggplot(df, aes(x=Stress, y=EX5)) +
geom_boxplot(outlier.colour="red", outlier.shape=8,
outlier.size=2)
p

#blocked anova test/equal-variance/block o
levene.test(df$EX5,df$Stress, location="mean")
##
## Classical Levene's test based on the absolute deviations from the mean
## ( none not applied because the location is not set to median )
##
## data: df$EX5
## Test Statistic = 0.83665, p-value = 0.3647
summary(aov(EX5~Stress+unique_pen, data=df))
## Df Sum Sq Mean Sq F value Pr(>F)
## Stress 1 18545 18545 0.065 0.80042
## unique_pen 20 18978879 948944 3.329 0.00147 **
## Residuals 30 8551725 285058
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# 1.6.6 DR
#boxplot
p <- ggplot(df, aes(x=Stress, y=DR5)) +
geom_boxplot(outlier.colour="red", outlier.shape=8,
outlier.size=2)
p

#blocked anova test/equal-variance/
levene.test(df$DR5,df$Stress, location="mean")
##
## Classical Levene's test based on the absolute deviations from the mean
## ( none not applied because the location is not set to median )
##
## data: df$DR5
## Test Statistic = 0.039832, p-value = 0.8426
summary(aov(DR5~Stress+unique_pen, data=df))
## Df Sum Sq Mean Sq F value Pr(>F)
## Stress 1 0.1 0.08 0.002 0.969
## unique_pen 20 1415.2 70.76 1.425 0.186
## Residuals 30 1490.0 49.67
2. SV vs. SR all factors with ages
# 2.1
# 2.1.1 FT *** interaction x, group x, age o
summary(aov(FT~Stress*Age+Error(ID/Age),data=df2))
##
## Error: ID
## Df Sum Sq Mean Sq F value Pr(>F)
## Stress 1 27690 27690 0.244 0.624
## Residuals 50 5678396 113568
##
## Error: ID:Age
## Df Sum Sq Mean Sq F value Pr(>F)
## Age 1 2024145 2024145 19.392 5.61e-05 ***
## Stress:Age 1 7395 7395 0.071 0.791
## Residuals 50 5219130 104383
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
interaction.plot(df2$Age,df2$Stress,df2$FT,
fun=mean,type="b",pch=c(2,4),col=c(3,4),xlab="Time",ylab="Mean of FT", trace.label = "Stress", legend = F)
legend("topright",legend=c("SR","SV"),pch=c(2,4),col=c(3,4), bg="gray90")

ggplot(df2, aes(x=Stress, y=FT, color=as.factor(Age)))+
geom_boxplot()+
ggtitle("FT distribution by Stress and Age")+
theme(plot.title=element_text(face="bold", hjust=0.5))+
scale_color_discrete(name="Age")

# 2.1.2 INC *** interaction o, stress x, age x
summary(aov(INC~Stress*Age+Error(ID/Age),data=df2))
##
## Error: ID
## Df Sum Sq Mean Sq F value Pr(>F)
## Stress 1 6 6.01 0.024 0.879
## Residuals 50 12754 255.09
##
## Error: ID:Age
## Df Sum Sq Mean Sq F value Pr(>F)
## Age 1 83 83.2 0.699 0.4071
## Stress:Age 1 470 469.6 3.948 0.0524 .
## Residuals 50 5948 119.0
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
interaction.plot(df2$Age,df2$Stress,df2$INC,
fun=mean,type="b",pch=c(2,4),col=c(3,4),xlab="Time",ylab="Mean of INC", trace.label = "Stress", legend = F)
legend("topleft",legend=c("SR","SV"),pch=c(2,4),col=c(3,4), bg="gray90")

ggplot(df2, aes(x=Stress, y=INC, color=as.factor(Age)))+
geom_boxplot()+
ggtitle("INC distribution by Stress and Age")+
theme(plot.title=element_text(face="bold", hjust=0.5))+
scale_color_discrete(name="Age")

# 2.2
# 2.2.1 NC *interaction x, stress x, age o
summary(aov(NC~Stress*Age+Error(ID/Age),data=df2))
##
## Error: ID
## Df Sum Sq Mean Sq F value Pr(>F)
## Stress 1 7128 7128 2.052 0.158
## Residuals 50 173722 3474
##
## Error: ID:Age
## Df Sum Sq Mean Sq F value Pr(>F)
## Age 1 12916 12916 6.668 0.0128 *
## Stress:Age 1 3005 3005 1.551 0.2188
## Residuals 50 96855 1937
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
interaction.plot(df2$Age,df2$Stress,df2$NC,
fun=mean,type="b",pch=c(2,4),col=c(3,4),xlab="Time",ylab="Mean of NC", trace.label = "Stress", legend = F)
legend("topright",legend=c("SR","SV"),pch=c(2,4),col=c(3,4), bg="gray90")

ggplot(df2, aes(x=Stress, y=NC, color=as.factor(Age)))+
geom_boxplot()+
ggtitle("NC distribution by Stress and Age")+
theme(plot.title=element_text(face="bold", hjust=0.5))+
scale_color_discrete(name="Age")

# 2.2.2 BN *interaction x, stress x, age x - zero-inflated
summary(aov(BN~Stress*Age+Error(ID/Age),data=df2))
##
## Error: ID
## Df Sum Sq Mean Sq F value Pr(>F)
## Stress 1 0.09 0.087 0.016 0.9
## Residuals 50 268.79 5.376
##
## Error: ID:Age
## Df Sum Sq Mean Sq F value Pr(>F)
## Age 1 7.01 7.010 1.921 0.172
## Stress:Age 1 0.09 0.087 0.024 0.878
## Residuals 50 182.40 3.648
interaction.plot(df2$Age,df2$Stress,df2$BN,
fun=mean,type="b",pch=c(2,4),col=c(3,4),xlab="Time",ylab="Mean of BN", trace.label = "Stress", legend = F)
legend("topright",legend=c("SR","SV"),pch=c(2,4),col=c(3,4), bg="gray90")

ggplot(df2, aes(x=Stress, y=BN, color=as.factor(Age)))+
geom_boxplot()+
ggtitle("BN distribution by Stress and Age")+
theme(plot.title=element_text(face="bold", hjust=0.5))+
scale_color_discrete(name="Age")

#2.3
#2.3.1 SLP *interaction o, stress x, age x - zero-inflated
summary(aov(SLP~Stress*Age+Error(ID/Age),data=df2))
##
## Error: ID
## Df Sum Sq Mean Sq F value Pr(>F)
## Stress 1 17 16.96 0.162 0.689
## Residuals 50 5231 104.62
##
## Error: ID:Age
## Df Sum Sq Mean Sq F value Pr(>F)
## Age 1 5 4.7 0.044 0.835
## Stress:Age 1 326 325.5 3.048 0.087 .
## Residuals 50 5340 106.8
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
interaction.plot(df2$Age,df2$Stress,df2$SLP,
fun=mean,type="b",pch=c(2,4),col=c(3,4),xlab="Time",ylab="Mean of SLP", trace.label = "Stress", legend = F)
legend("topright",legend=c("SR","SV"),pch=c(2,4),col=c(3,4), bg="gray90")

ggplot(df2, aes(x=Stress, y=SLP, color=as.factor(Age)))+
geom_boxplot()+
ggtitle("SLP distribution by Stress and Age")+
theme(plot.title=element_text(face="bold", hjust=0.5))+
scale_color_discrete(name="Age")

#2.3.2 SP *interaction x, stress x, age o : zero-inflated
summary(aov(SP~Stress*Age+Error(ID/Age),data=df2))
##
## Error: ID
## Df Sum Sq Mean Sq F value Pr(>F)
## Stress 1 6434 6434 0.743 0.393
## Residuals 50 433130 8663
##
## Error: ID:Age
## Df Sum Sq Mean Sq F value Pr(>F)
## Age 1 17889 17889 3.565 0.0648 .
## Stress:Age 1 1729 1729 0.344 0.5599
## Residuals 50 250917 5018
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
interaction.plot(df2$Age,df2$Stress,df2$SP,
fun=mean,type="b",pch=c(2,4),col=c(3,4),xlab="Time",ylab="Mean of SP", trace.label = "Stress", legend = F)
legend("topright",legend=c("SR","SV"),pch=c(2,4),col=c(3,4), bg="gray90")

ggplot(df2, aes(x=Stress, y=SP, color=as.factor(Age)))+
geom_boxplot()+
ggtitle("SP distribution by Stress and Age")+
theme(plot.title=element_text(face="bold", hjust=0.5))+
scale_color_discrete(name="Age")

#2.3.3 FE * interaction x, stress x, age o
summary(aov(FE~Stress*Age+Error(ID/Age),data=df2))
##
## Error: ID
## Df Sum Sq Mean Sq F value Pr(>F)
## Stress 1 553049 553049 0.386 0.537
## Residuals 50 71725761 1434515
##
## Error: ID:Age
## Df Sum Sq Mean Sq F value Pr(>F)
## Age 1 10261521 10261521 8.942 0.00432 **
## Stress:Age 1 64501 64501 0.056 0.81356
## Residuals 50 57378412 1147568
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
interaction.plot(df2$Age,df2$Stress,df2$FE,
fun=mean,type="b",pch=c(2,4),col=c(3,4),xlab="Time",ylab="Mean of FE", trace.label = "Stress", legend = F)
legend("topleft",legend=c("SR","SV"),pch=c(2,4),col=c(3,4), bg="gray90")

ggplot(df2, aes(x=Stress, y=FE, color=as.factor(Age)))+
geom_boxplot()+
ggtitle("FE distribution by Stress and Age")+
theme(plot.title=element_text(face="bold", hjust=0.5))+
scale_color_discrete(name="Age")

#2.3.4 LD * interaction x, stress x, age o
summary(aov(LD~Stress*Age+Error(ID/Age),data=df2))
##
## Error: ID
## Df Sum Sq Mean Sq F value Pr(>F)
## Stress 1 5014698 5014698 1.023 0.317
## Residuals 50 245107906 4902158
##
## Error: ID:Age
## Df Sum Sq Mean Sq F value Pr(>F)
## Age 1 51756891 51756891 16.399 0.000178 ***
## Stress:Age 1 993140 993140 0.315 0.577335
## Residuals 50 157807192 3156144
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
interaction.plot(df2$Age,df2$Stress,df2$LD,
fun=mean,type="b",pch=c(2,4),col=c(3,4),xlab="Time",ylab="Mean of LD", trace.label = "Stress", legend = F)
legend("topleft",legend=c("SR","SV"),pch=c(2,4),col=c(3,4), bg="gray90")

ggplot(df2, aes(x=Stress, y=LD, color=as.factor(Age)))+
geom_boxplot()+
ggtitle("LD distribution by Stress and Age")+
theme(plot.title=element_text(face="bold", hjust=0.5))+
scale_color_discrete(name="Age")

#2.3.5 EX * interaction x, stress x, age o
summary(aov(EX~Stress*Age+Error(ID/Age),data=df2))
##
## Error: ID
## Df Sum Sq Mean Sq F value Pr(>F)
## Stress 1 730971 730971 0.539 0.466
## Residuals 50 67866791 1357336
##
## Error: ID:Age
## Df Sum Sq Mean Sq F value Pr(>F)
## Age 1 9955378 9955378 14.53 0.000379 ***
## Stress:Age 1 438750 438750 0.64 0.427349
## Residuals 50 34255437 685109
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
interaction.plot(df2$Age,df2$Stress,df2$EX,
fun=mean,type="b",pch=c(2,4),col=c(3,4),xlab="Time",ylab="Mean of EX", trace.label = "Stress", legend = F)
legend("topright",legend=c("SR","SV"),pch=c(2,4),col=c(3,4), bg="gray90")

ggplot(df2, aes(x=Stress, y=EX, color=as.factor(Age)))+
geom_boxplot()+
ggtitle("EX distribution by Stress and Age")+
theme(plot.title=element_text(face="bold", hjust=0.5))+
scale_color_discrete(name="Age")

#2.3.6 DR *interaction x, stress x, age o
summary(aov(DR~Stress*Age+Error(ID/Age),data=df2))
##
## Error: ID
## Df Sum Sq Mean Sq F value Pr(>F)
## Stress 1 18 17.78 0.213 0.647
## Residuals 50 4180 83.61
##
## Error: ID:Age
## Df Sum Sq Mean Sq F value Pr(>F)
## Age 1 1211.8 1211.8 23.938 1.08e-05 ***
## Stress:Age 1 14.6 14.6 0.289 0.593
## Residuals 50 2531.1 50.6
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
interaction.plot(df2$Age,df2$Stress,df2$DR,
fun=mean,type="b",pch=c(2,4),col=c(3,4),xlab="Time",ylab="Mean of DR", trace.label = "Stress", legend = F)
legend("topright",legend=c("SR","SV"),pch=c(2,4),col=c(3,4), bg="gray90")

ggplot(df2, aes(x=Stress, y=DR, color=as.factor(Age)))+
geom_boxplot()+
ggtitle("DR distribution by Stress and Age")+
theme(plot.title=element_text(face="bold", hjust=0.5))+
scale_color_discrete(name="Age")
