Dataset

22 raw excel data were downloaded and iterated through using a “for loop” funnction with monthly Employment values extracted.

The data was converted from a long format to a wide format.

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.1     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.2     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.1     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(lubridate)
library(readxl)

# Set working directory for to the folders containing all quarterly data
#setwd("/Users/owad/Downloads/All Data")

# Get the list of files in the working directory
files <- list.files(pattern = "\\.xlsx$")

# Create a dataframe to append each transpose data for each quarterly raw data
main_df <- data.frame()

Iterating through every quarterly data

Each of the raw quarterly data was iterated through to extract required values and transpose to a time-series panel data.

# Iterate through each file
for (file in files) {
    df <- read_excel(file)
    # Changing the column names format
    colnames(df) <- gsub(" ", "_", colnames(df))
    # Removing leading numbers from observation starting with numbers
    df$Industry <- ifelse(grepl("^\\d", df$Industry),
        gsub("^\\d+", "", df$Industry), df$Industry)
    # Remove whitespace at the beginning of the new industry observation
    df$Industry <- trimws(df$Industry, "left")

    # Reshaping data to a time series panel data
    df1 <- df %>%
        filter(Area_Type == "MSA") %>%
        mutate(AreaName = Area) %>%
        separate(Area, into = c("Area", "State"), sep = ",") %>%
        mutate(State = substr(trimws(State), 1, 2),
            Own_indust = paste0(Ownership, " ", Industry))
    df_long <- pivot_longer(df1, cols = ends_with("Employment"),
        names_to = "Month", values_to = "Employment") %>%
        separate(Month, into = c("Month", "Stat"), sep = "_") %>%
        mutate(Month = match(Month, month.name),
            time = paste0(Year, "-", Month)) %>%
        select(Year, Month, time, State, AreaName, Own_indust, Employment) %>%
        pivot_wider(names_from = Own_indust,
              values_from = Employment)

    # Appending each transpose data for each quarter to one dataframe
    main_df <- bind_rows(main_df, df_long)
}

head(main_df)
##   Year Month   time State        AreaName Total Covered Total, all industries
## 1 2000     1 2000-1    TX Abilene, TX MSA                               59968
## 2 2000     2 2000-2    TX Abilene, TX MSA                               60275
## 3 2000     3 2000-3    TX Abilene, TX MSA                               60837
## 4 2000     1 2000-1    OH   Akron, OH MSA                              311730
## 5 2000     2 2000-2    OH   Akron, OH MSA                              312147
## 6 2000     3 2000-3    OH   Akron, OH MSA                              315534
##   Federal Government Total, all industries Private Total, all industries
## 1                                     1618                         46662
## 2                                     1625                         46817
## 3                                     1635                         47258
## 4                                     2924                        270180
## 5                                     2944                        269622
## 6                                     2987                        272837
##   Private Goods-producing Private Natural resources and mining
## 1                    7503                                 1387
## 2                    7466                                 1371
## 3                    7607                                 1537
## 4                   74736                                  765
## 5                   74705                                  771
## 6                   75356                                  823
##   Private Construction Private Manufacturing Private Service-providing
## 1                 2526                  3590                     39159
## 2                 2541                  3554                     39351
## 3                 2537                  3533                     39651
## 4                12185                 61786                    195444
## 5                12185                 61749                    194917
## 6                12937                 61596                    197481
##   Private Trade, transportation, and utilities Private Financial activities
## 1                                        12313                         2893
## 2                                        12244                         2892
## 3                                        12157                         2928
## 4                                        65153                        13324
## 5                                        64526                        13342
## 6                                        64846                        13539
##   Private Professional and business services
## 1                                       3971
## 2                                       4145
## 3                                       4225
## 4                                      35999
## 5                                      35779
## 6                                      36672
##   Private Education and health services Private Leisure and hospitality
## 1                                 10622                            5974
## 2                                 10628                            6012
## 3                                 10731                            6168
## 4                                 37280                           28249
## 5                                 37441                           28246
## 6                                 37789                           28940
##   State Government Total, all industries Local Government Total, all industries
## 1                                     NA                                     NA
## 2                                     NA                                     NA
## 3                                     NA                                     NA
## 4                                   7613                                  31013
## 5                                   8344                                  31237
## 6                                   8409                                  31301
##   Private Information Private Other services Private Unclassified
## 1                  NA                     NA                   NA
## 2                  NA                     NA                   NA
## 3                  NA                     NA                   NA
## 4                4854                  10436                   NA
## 5                4907                  10502                   NA
## 6                4919                  10592                   NA