Introduction
This is our first lab when we are considering 2 dimensions and
instead of calculating univariate statistics by groups (or factors) of
other variable - we will measure their common relationships based on
co-variance and correlation coefficients.
*Please be very careful when choosing the measure of correlation! In
case of different measurument scales we have to recode one of the
variables into weaker scale.
It would be nice to add some additional plots in the background. Feel
free to add your own sections and use external packages.
Data
This time we are going to use a typical credit scoring data with
predefined “default” variables and personal demografic and income data.
Please take a look closer at headers and descriptions of each
variable.
Scatterplots
First let’s visualize our quantitative relationships using
scatterplots.

You can also normalize the skewed distribution of incomes using
log:

We can add an estimated linear regression line:

Scatterplots by groups
We can finally see if there any differences between risk status:

We can also see more closely if there any differences between those
two distributions adding their estimated density plots:
We can also put those plots together:
Scatterplots with density curves
We can also see more closely if there any differences between those
two distributions adding their estimated density plots:
Correlation coefficients - Pearson’s linear correlation
Ok, let’s move to some calculations. In R, we can use the cor()
function. It takes three arguments and the method: cor(x, y, method) For
2 quantitative data, with all assumptions met, we can calculate simple
Pearson’s coefficient of linear correlation:
Ok, what about the percentage of the explained variability?
So as we can see almost ??? of total log of incomes’ variability is
explained by differences in age. The rest (???) is probably explained by
other factors.
Partial and semipartial correlation
The partial and semi-partial (also known as part) correlations are
used to express the specific portion of variance explained by
eliminating the effect of other variables when assessing the correlation
between two variables.
Partial correlation holds constant one variable when computing the
relations to others. Suppose we want to know the correlation between X
and Y holding Z constant for both X and Y. That would be the partial
correlation between X and Y controlling for Z.
Semipartial correlation holds Z constant for either X or Y, but not
both, so if we wanted to control X for Z, we could compute the
semipartial correlation between X and Y holding Z constant for X.
Suppose we want to know the correlation between the log of income and
age controlling for years of employment. How highly correlated are these
after controlling for tenure?
**There can be more than one control variable.
How can we interpret the obtained partial correlation coefficient?
What is the difference between that one and the semi-partial
coefficient:
Rank correlation
For 2 different scales - like for example this pair of variables:
income vs. education levels - we cannot use Pearson’s coefficient. The
only possibility is to rank also incomes… and lose some more detailed
information about them.
First, let’s see boxplots of income by education levels.

Now, let’s see Kendal’s coefficient of rank correlation (robust for
ties).
## [1] 0.1577567
Point-biserial correlation
Let’s try to verify if there is a significant relationship between
incomes and risk status. First, let’s take a look at the boxplot:

If you would like to compare 1 quantitative variable (income) and 1
dychotomous variable (default status - binary), then you can use
point-biserial coefficient:
##
## Pearson's product-moment correlation
##
## data: bank$income and bank$default
## t = -1.8797, df = 698, p-value = 0.06056
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.144313546 0.003149751
## sample estimates:
## cor
## -0.07096966
Nonlinear correlation - eta coefficient
If you would like to check if there are any nonlinearities between 2
variables, the only possibility (beside transformations and linear
analysis) is to calculate “eta” coefficient and compare it with the
Pearson’s linear coefficient.
Correlation matrix
We can also prepare the correlation matrix for all quantitative
variables stored in our data frame.
We can use ggcorr() function:
## Warning in ggcorr(bank): data in column(s) 'def', 'educ' are not numeric and
## were ignored

As you can see - the default correlation matrix is not the best idea
for all measurement scales (including binary variable “default”).
That’s why now we can perform our bivariate analysis with ggpair with
grouping.
Correlation matrix with scatterplots
Here is what we are about to calculate: - The correlation matrix
between age, log_income, employ, address, debtinc, creddebt, and othdebt
variable grouped by whether the person has a default status or not. -
Plot the distribution of each variable by group - Display the scatter
plot with the trend by group
Qualitative data
In case of two variables measured on nominal or ordinal&nominal
scale - we are forced to organize so called “contingency” table with
frequencies and calculate some kind of the correlation coefficient based
on them. This is so called “contingency analysis”.
Let’s consider one example based on our data: verify, if there is any
significant correlation between education level and credit risk.
table(bank$ed, bank$default)
##
## 0 1
## 1 293 79
## 2 139 59
## 3 57 30
## 4 24 14
## 5 4 1
Exercise 1. Contingency analysis.
Do you believe in the Afterlife? https://nationalpost.com/news/canada/millennials-do-you-believe-in-life-after-life
A survey was conducted and a random sample of 1091 questionnaires is
given in the form of the following contingency table:
## Believe
## Gender Yes No
## Female 435 375
## Male 147 134

Our task is to check if there is a significant relationship between
the belief in the afterlife and gender. We can perform this procedure
with the simple chi-square statistics and chosen qualitative correlation
coefficient (two-way 2x2 table).
## Call: cohen.kappa1(x = x, w = w, n.obs = n.obs, alpha = alpha, levels = levels)
##
## Cohen Kappa and Weighted Kappa correlation coefficients and confidence boundaries
## lower estimate upper
## unweighted kappa -0.043 0.011 0.065
## weighted kappa -0.043 0.011 0.065
##
## Number of subjects = 1091
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: dane
## X-squared = 0.11103, df = 1, p-value = 0.739
## Believe
## Gender Yes No
## Female 0.3987168 0.3437214
## Male 0.1347388 0.1228231
As you can see we can calculate our chi-square statistic really
quickly for two-way tables or larger. Now we can standardize this
contingency measure to see if the relationship is significant.
## [1] 0.01218871


Exercise 2. Contingency analysis for the ‘Titanic’ data.
Let’s consider the titanic dataset which contains a complete list of
passengers and crew members on the RMS Titanic. It includes a variable
indicating whether a person did survive the sinking of the RMS Titanic
on April 15, 1912. A data frame contains 2456 observations on 14
variables.
The website http://www.encyclopedia-titanica.org/ offers detailed
information about passengers and crew members on the RMS Titanic.
According to the website 1317 passengers and 890 crew member were
aboard.
8 musicians and 9 employees of the shipyard company are listed as
passengers, but travelled with a free ticket, which is why they have NA
values in fare. In addition to that, fare is truely missing for a few
regular passengers.
# your answer here
femSCount <- titanic %>% filter(Gender == "Female" & Status == "Survivor") %>% count()
femVCount <- titanic %>% filter(Gender == "Female" & Status == "Victim") %>% count()
malSCount <- titanic %>% filter(Gender == "Male" & Status == "Survivor") %>% count()
malVCount <- titanic %>% filter(Gender == "Male" & Status == "Victim") %>% count()
z=c(as.integer(femSCount),as.integer(femVCount), as.integer(malSCount), as.integer(malVCount))
dim(z) = c(2,2)
data <- as.table(z)
dimnames(data) = list(Gender=c('Female', 'Male'), Survived=c('Yes', 'No'))
mosaicplot(data)

LS0tDQp0aXRsZTogJ0Rlc2NyaXB0aXZlIFN0YXRpc3RpY3MnDQpzdWJ0aXRsZTogJ0JpdmFyaWF0ZSBBbmFseXNpcycNCmRhdGU6ICJgciBTeXMuRGF0ZSgpYCINCmF1dGhvcjogIkpha3ViIFN6dXJtYWsiDQpvdXRwdXQ6DQogIGh0bWxfZG9jdW1lbnQ6IA0KICAgIHRoZW1lOiBjZXJ1bGVhbg0KICAgIGhpZ2hsaWdodDogdGV4dG1hdGUNCiAgICBmb250c2l6ZTogMTBwdA0KICAgIHRvYzogeWVzDQogICAgY29kZV9kb3dubG9hZDogeWVzDQogICAgdG9jX2Zsb2F0Og0KICAgICAgY29sbGFwc2VkOiBubw0KICAgIGRmX3ByaW50OiBkZWZhdWx0DQogICAgdG9jX2RlcHRoOiA1DQplZGl0b3Jfb3B0aW9uczogDQogIG1hcmtkb3duOiANCiAgICB3cmFwOiA3Mg0KLS0tDQoNCmBgYHtyIHNldHVwLAltZXNzYWdlID0gRkFMU0UsCXdhcm5pbmcgPSBGQUxTRSwJaW5jbHVkZSA9IEZBTFNFfQ0KbGlicmFyeShkcGx5cikNCmxpYnJhcnkodGlkeXZlcnNlKQ0KbGlicmFyeShIU0FVUjMpDQpsaWJyYXJ5KGhhdmVuKQ0KbGlicmFyeShnZ3Bsb3QyKQ0KbGlicmFyeShncmlkRXh0cmEpDQpsaWJyYXJ5KHBwY29yKSAjIHRoaXMgcGFja2FnZSBjb21wdXRlcyBwYXJ0aWFsIGFuZCBzZW1pcGFydGlhbCBjb3JyZWxhdGlvbnMuDQpsaWJyYXJ5KGx0bSkgIyB0aGlzIHBhY2thZ2UgY29tcHV0ZXMgcG9pbnQtYmlzZXJpYWwgY29ycmVsYXRpb25zLg0KbGlicmFyeShkZXZ0b29scykgDQojaW5zdGFsbF9naXRodWIoIm1hcmtoZWNrbWFubi9yeW91cmVhZHkiKSAjIHBsZWFzZSBpbnN0YWxsIHBhY2thZ2UgInJ5b3VyZWFkeSIgZnJvbSBnaXRodWIhICh0aGVuICMgaXQpDQpsaWJyYXJ5KHJ5b3VyZWFkeSkgIyB0aGlzIHBhY2thZ2UgY29tcHV0ZXMgbm9ubGluZWFyICJldGEiIGNvcnJlbGF0aW9ucy4NCmxpYnJhcnkoR0dhbGx5KSAjIHRoaXMgcGFja2FnZSBjb21wdXRlcyBjb3JyZWxhdGlvbiBtYXRyaXguDQpsaWJyYXJ5KHBzeWNoKSAjIHRoaXMgcGFja2FnZSBjb21wdXRlcyBxdWFsaXRhdGl2ZSBjb3JyZWxhdGlvbnMuDQpsaWJyYXJ5KERlc2NUb29scykgIyB0aGlzIHBhY2thZ2UgY29tcHV0ZXMgcXVhbGl0YXRpdmUgY29ycmVsYXRpb25zLg0KYGBgDQoNCg0KIyMgSW50cm9kdWN0aW9uDQoNClRoaXMgaXMgb3VyIGZpcnN0IGxhYiB3aGVuIHdlIGFyZSBjb25zaWRlcmluZyAyIGRpbWVuc2lvbnMgYW5kIGluc3RlYWQgb2YgY2FsY3VsYXRpbmcgdW5pdmFyaWF0ZSBzdGF0aXN0aWNzIGJ5IGdyb3VwcyAob3IgZmFjdG9ycykgb2Ygb3RoZXIgdmFyaWFibGUgLSB3ZSB3aWxsIG1lYXN1cmUgdGhlaXIgY29tbW9uIHJlbGF0aW9uc2hpcHMgYmFzZWQgb24gY28tdmFyaWFuY2UgYW5kIGNvcnJlbGF0aW9uIGNvZWZmaWNpZW50cy4gDQoNCipQbGVhc2UgYmUgdmVyeSBjYXJlZnVsIHdoZW4gY2hvb3NpbmcgdGhlIG1lYXN1cmUgb2YgY29ycmVsYXRpb24hIEluIGNhc2Ugb2YgZGlmZmVyZW50IG1lYXN1cnVtZW50IHNjYWxlcyB3ZSBoYXZlIHRvIHJlY29kZSBvbmUgb2YgdGhlIHZhcmlhYmxlcyBpbnRvIHdlYWtlciBzY2FsZS4NCg0KSXQgd291bGQgYmUgbmljZSB0byBhZGQgc29tZSBhZGRpdGlvbmFsIHBsb3RzIGluIHRoZSBiYWNrZ3JvdW5kLiBGZWVsIGZyZWUgdG8gYWRkIHlvdXIgb3duIHNlY3Rpb25zIGFuZCB1c2UgZXh0ZXJuYWwgcGFja2FnZXMuDQoNCiMjIERhdGENCg0KVGhpcyB0aW1lIHdlIGFyZSBnb2luZyB0byB1c2UgYSB0eXBpY2FsIGNyZWRpdCBzY29yaW5nIGRhdGEgd2l0aCBwcmVkZWZpbmVkICJkZWZhdWx0IiB2YXJpYWJsZXMgYW5kIHBlcnNvbmFsIGRlbW9ncmFmaWMgYW5kIGluY29tZSBkYXRhLiBQbGVhc2UgdGFrZSBhIGxvb2sgY2xvc2VyIGF0IGhlYWRlcnMgYW5kIGRlc2NyaXB0aW9ucyBvZiBlYWNoIHZhcmlhYmxlLg0KDQpgYGB7ciBsb2FkLWRhdGEsIHdhcm5pbmc9VFJVRSwgaW5jbHVkZT1GQUxTRX0NCmRvd25sb2FkLmZpbGUoImh0dHBzOi8vZ2l0aHViLmNvbS9rZmxpc2lrb3dza2kvZHMvYmxvYi9tYXN0ZXIvYmFua19kZWZhdWx0cy5zYXY/cmF3PXRydWUiLCBkZXN0ZmlsZSA9ImJhbmtfZGVmYXVsdHMuc2F2Iixtb2RlPSJ3YiIpDQpiYW5rX2RlZmF1bHRzIDwtIHJlYWRfc2F2KCJiYW5rX2RlZmF1bHRzLnNhdiIpDQpiYW5rPC1uYS5vbWl0KGJhbmtfZGVmYXVsdHMpDQpiYW5rJGRlZjwtYXMuZmFjdG9yKGJhbmskZGVmYXVsdCkNCmJhbmskZWR1YzwtYXMuZmFjdG9yKGJhbmskZWQpDQpgYGANCg0KIyMgU2NhdHRlcnBsb3RzDQoNCkZpcnN0IGxldCdzIHZpc3VhbGl6ZSBvdXIgcXVhbnRpdGF0aXZlIHJlbGF0aW9uc2hpcHMgdXNpbmcgc2NhdHRlcnBsb3RzLiANCg0KYGBge3IgZWNobz1GQUxTRSwgd2FybmluZz1UUlVFfQ0KIyBCYXNpYyBzY2F0dGVyIHBsb3QNCmJhbmsgJT4lIGdncGxvdChhZXMoeSA9IGluY29tZSwgeCA9IGFnZSkpICsgZ2VvbV9wb2ludCgpDQojIENoYW5nZSB0aGUgcG9pbnQgc2l6ZSwgYW5kIHNoYXBlDQoNCg0KYGBgDQoNCllvdSBjYW4gYWxzbyBub3JtYWxpemUgdGhlIHNrZXdlZCBkaXN0cmlidXRpb24gb2YgaW5jb21lcyB1c2luZyBsb2c6DQoNCmBgYHtyIGVjaG89RkFMU0UsIHdhcm5pbmc9VFJVRX0NCiMgQmFzaWMgc2NhdHRlciBwbG90IHdpdGggdGhlIGxvZyBvZiBpbmNvbWUNCmJhbmsgJT4lIGdncGxvdChhZXMoeCA9IGxvZyhpbmNvbWUpKSkgKyBnZW9tX2hpc3RvZ3JhbShiaW5zID0gMjApDQoNCmBgYA0KDQpXZSBjYW4gYWRkIGFuIGVzdGltYXRlZCBsaW5lYXIgcmVncmVzc2lvbiBsaW5lOg0KDQpgYGB7ciBlY2hvPUZBTFNFLCB3YXJuaW5nPVRSVUV9DQoNCnBsb3QobG9nKGJhbmskaW5jb21lKSwgYmFuayRhZ2UsIHhsYWIgPSAiTG9nVHJhbnNmb3JtT2ZJbmNvbWUiLCB5bGFiID0gIkFnZSIpDQptb2RlbCA8LSBsbShiYW5rJGFnZSB+IGxvZyhiYW5rJGluY29tZSkpDQoNCmludGVyY2VwdCA8LSBjb2VmKG1vZGVsKVsxXQ0Kc2xvcGUgPC0gY29lZihtb2RlbClbMl0NCg0KYWJsaW5lKGludGVyY2VwdCwgc2xvcGUsIGNvbD0icmVkIikNCg0KYGBgDQoNCiMjIFNjYXR0ZXJwbG90cyBieSBncm91cHMgDQoNCldlIGNhbiBmaW5hbGx5IHNlZSBpZiB0aGVyZSBhbnkgZGlmZmVyZW5jZXMgYmV0d2VlbiByaXNrIHN0YXR1czoNCg0KYGBge3IgZWNobz1GQUxTRSwgd2FybmluZz1UUlVFfQ0KDQpiYW5rICU+JSBnZ3Bsb3QoYWVzKHggPSBhZ2UpKSArIGdlb21faGlzdG9ncmFtKGJpbnMgPSAzNSkgKyBmYWNldF93cmFwKH5kZWZhdWx0KQ0KDQoNCg0KYGBgDQoNCldlIGNhbiBhbHNvIHNlZSBtb3JlIGNsb3NlbHkgaWYgdGhlcmUgYW55IGRpZmZlcmVuY2VzIGJldHdlZW4gdGhvc2UgdHdvIGRpc3RyaWJ1dGlvbnMgYWRkaW5nIHRoZWlyIGVzdGltYXRlZCBkZW5zaXR5IHBsb3RzOg0KDQpgYGB7ciBlY2hvPUZBTFNFLCB3YXJuaW5nPVRSVUV9DQojIHNjYXR0ZXIgcGxvdCBvZiB4IGFuZCB5IHZhcmlhYmxlcw0KIyBjb2xvdXIgYnkgZ3JvdXBzDQoNCg0KDQojIE1hcmdpbmFsIGRlbnNpdHkgcGxvdCBvZiBhZ2UgKHRvcCBwYW5lbCkNCg0KDQoNCiMgTWFyZ2luYWwgZGVuc2l0eSBwbG90IG9mIHkgKHJpZ2h0IHBhbmVsKQ0KDQpgYGANCg0KV2UgY2FuIGFsc28gcHV0IHRob3NlIHBsb3RzIHRvZ2V0aGVyOg0KDQpgYGB7ciBlY2hvPUZBTFNFLCB3YXJuaW5nPVRSVUV9DQoNCg0KDQoNCmBgYA0KDQojIyBTY2F0dGVycGxvdHMgd2l0aCBkZW5zaXR5IGN1cnZlcyANCg0KV2UgY2FuIGFsc28gc2VlIG1vcmUgY2xvc2VseSBpZiB0aGVyZSBhbnkgZGlmZmVyZW5jZXMgYmV0d2VlbiB0aG9zZSB0d28gZGlzdHJpYnV0aW9ucyBhZGRpbmcgdGhlaXIgZXN0aW1hdGVkIGRlbnNpdHkgcGxvdHM6DQoNCmBgYHtyIGVjaG89RkFMU0UsIHdhcm5pbmc9VFJVRX0NCg0KDQoNCmBgYA0KDQojIyBDb3JyZWxhdGlvbiBjb2VmZmljaWVudHMgLSBQZWFyc29uJ3MgbGluZWFyIGNvcnJlbGF0aW9uDQoNCk9rLCBsZXQncyBtb3ZlIHRvIHNvbWUgY2FsY3VsYXRpb25zLg0KSW4gUiwgd2UgY2FuIHVzZSB0aGUgY29yKCkgZnVuY3Rpb24uIEl0IHRha2VzIHRocmVlIGFyZ3VtZW50cyBhbmQgdGhlIG1ldGhvZDogY29yKHgsIHksIG1ldGhvZCkNCkZvciAyIHF1YW50aXRhdGl2ZSBkYXRhLCB3aXRoIGFsbCBhc3N1bXB0aW9ucyBtZXQsIHdlIGNhbiBjYWxjdWxhdGUgc2ltcGxlIFBlYXJzb24ncyBjb2VmZmljaWVudCBvZiBsaW5lYXIgY29ycmVsYXRpb246DQoNCmBgYHtyIGVjaG89RkFMU0UsIHdhcm5pbmc9VFJVRX0NCg0KDQoNCmBgYA0KDQpPaywgd2hhdCBhYm91dCB0aGUgcGVyY2VudGFnZSBvZiB0aGUgZXhwbGFpbmVkIHZhcmlhYmlsaXR5Pw0KDQpgYGB7ciBlY2hvPUZBTFNFLCB3YXJuaW5nPVRSVUV9DQoNCg0KDQpgYGANClNvIGFzIHdlIGNhbiBzZWUgYWxtb3N0ID8/PyBvZiB0b3RhbCBsb2cgb2YgaW5jb21lcycgdmFyaWFiaWxpdHkgaXMgZXhwbGFpbmVkIGJ5IGRpZmZlcmVuY2VzIGluIGFnZS4gVGhlIHJlc3QgKD8/PykgaXMgcHJvYmFibHkgZXhwbGFpbmVkIGJ5IG90aGVyIGZhY3RvcnMuDQoNCiMjIFBhcnRpYWwgYW5kIHNlbWlwYXJ0aWFsIGNvcnJlbGF0aW9uIA0KDQpUaGUgcGFydGlhbCBhbmQgc2VtaS1wYXJ0aWFsIChhbHNvIGtub3duIGFzIHBhcnQpIGNvcnJlbGF0aW9ucyBhcmUgdXNlZCB0byBleHByZXNzIHRoZSBzcGVjaWZpYyBwb3J0aW9uIG9mIHZhcmlhbmNlIGV4cGxhaW5lZCBieSBlbGltaW5hdGluZyB0aGUgZWZmZWN0IG9mIG90aGVyIHZhcmlhYmxlcyB3aGVuIGFzc2Vzc2luZyB0aGUgY29ycmVsYXRpb24gYmV0d2VlbiB0d28gdmFyaWFibGVzLg0KDQpQYXJ0aWFsIGNvcnJlbGF0aW9uIGhvbGRzIGNvbnN0YW50IG9uZSB2YXJpYWJsZSB3aGVuIGNvbXB1dGluZyB0aGUgcmVsYXRpb25zIHRvIG90aGVycy4gU3VwcG9zZSB3ZSB3YW50IHRvIGtub3cgdGhlIGNvcnJlbGF0aW9uIGJldHdlZW4gWCBhbmQgWSBob2xkaW5nIFogY29uc3RhbnQgZm9yIGJvdGggWCBhbmQgWS4gVGhhdCB3b3VsZCBiZSB0aGUgcGFydGlhbCBjb3JyZWxhdGlvbiBiZXR3ZWVuIFggYW5kIFkgY29udHJvbGxpbmcgZm9yIFouIA0KDQpTZW1pcGFydGlhbCBjb3JyZWxhdGlvbiBob2xkcyBaIGNvbnN0YW50IGZvciBlaXRoZXIgWCBvciBZLCBidXQgbm90IGJvdGgsIHNvIGlmIHdlIHdhbnRlZCB0byBjb250cm9sIFggZm9yIFosIHdlIGNvdWxkIGNvbXB1dGUgdGhlIHNlbWlwYXJ0aWFsIGNvcnJlbGF0aW9uIGJldHdlZW4gWCBhbmQgWSBob2xkaW5nIFogY29uc3RhbnQgZm9yIFguDQoNClN1cHBvc2Ugd2Ugd2FudCB0byBrbm93IHRoZSBjb3JyZWxhdGlvbiBiZXR3ZWVuIHRoZSBsb2cgb2YgaW5jb21lIGFuZCBhZ2UgY29udHJvbGxpbmcgZm9yIHllYXJzIG9mIGVtcGxveW1lbnQuIEhvdyBoaWdobHkgY29ycmVsYXRlZCBhcmUgdGhlc2UgYWZ0ZXIgY29udHJvbGxpbmcgZm9yIHRlbnVyZT8gDQoNCioqVGhlcmUgY2FuIGJlIG1vcmUgdGhhbiBvbmUgY29udHJvbCB2YXJpYWJsZS4NCg0KYGBge3IgZWNobz1GQUxTRSwgd2FybmluZz1GQUxTRX0NCg0KDQpgYGANCg0KSG93IGNhbiB3ZSBpbnRlcnByZXQgdGhlIG9idGFpbmVkIHBhcnRpYWwgY29ycmVsYXRpb24gY29lZmZpY2llbnQ/IFdoYXQgaXMgdGhlIGRpZmZlcmVuY2UgYmV0d2VlbiB0aGF0IG9uZSBhbmQgdGhlIHNlbWktcGFydGlhbCBjb2VmZmljaWVudDoNCg0KYGBge3IgZWNobz1GQUxTRSwgd2FybmluZz1GQUxTRX0NCg0KDQoNCmBgYA0KDQojIyBSYW5rIGNvcnJlbGF0aW9uIA0KDQpGb3IgMiBkaWZmZXJlbnQgc2NhbGVzIC0gbGlrZSBmb3IgZXhhbXBsZSB0aGlzIHBhaXIgb2YgdmFyaWFibGVzOiBpbmNvbWUgdnMuIGVkdWNhdGlvbiBsZXZlbHMgLSB3ZSBjYW5ub3QgdXNlIFBlYXJzb24ncyBjb2VmZmljaWVudC4gVGhlIG9ubHkgcG9zc2liaWxpdHkgaXMgdG8gcmFuayBhbHNvIGluY29tZXMuLi4gYW5kIGxvc2Ugc29tZSBtb3JlIGRldGFpbGVkIGluZm9ybWF0aW9uIGFib3V0IHRoZW0uIA0KDQpGaXJzdCwgbGV0J3Mgc2VlIGJveHBsb3RzIG9mIGluY29tZSBieSBlZHVjYXRpb24gbGV2ZWxzLg0KDQpgYGB7ciBlY2hvPUZBTFNFLCBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPVRSVUV9DQpiYW5rICU+JSBnZ3Bsb3QoYWVzKGdyb3VwID0gZWQsIHggPSBlZCwgeSA9IGluY29tZSkpICsgZ2VvbV9ib3hwbG90KCkNCg0KDQoNCmBgYA0KDQpOb3csIGxldCdzIHNlZSBLZW5kYWwncyBjb2VmZmljaWVudCBvZiByYW5rIGNvcnJlbGF0aW9uIChyb2J1c3QgZm9yIHRpZXMpLg0KDQpgYGB7ciBlY2hvPUZBTFNFLCB3YXJuaW5nPVRSVUV9DQpjb3IoYmFuayRpbmNvbWUsIGJhbmskZWQsIG1ldGhvZCA9ICJrZW5kYWxsIikNCg0KDQpgYGANCg0KDQojIyBQb2ludC1iaXNlcmlhbCBjb3JyZWxhdGlvbg0KDQpMZXQncyB0cnkgdG8gdmVyaWZ5IGlmIHRoZXJlIGlzIGEgc2lnbmlmaWNhbnQgcmVsYXRpb25zaGlwIGJldHdlZW4gaW5jb21lcyBhbmQgcmlzayBzdGF0dXMuIEZpcnN0LCBsZXQncyB0YWtlIGEgbG9vayBhdCB0aGUgYm94cGxvdDoNCg0KYGBge3IgZWNobz1GQUxTRSwgbWVzc2FnZT1GQUxTRX0NCmJhbmsgJT4lIGdncGxvdChhZXMoZ3JvdXAgPSBkZWZhdWx0LCB4ID0gZGVmYXVsdCwgeSA9IGluY29tZSkpICsgZ2VvbV9ib3hwbG90KCkNCg0KYGBgDQoNCklmIHlvdSB3b3VsZCBsaWtlIHRvIGNvbXBhcmUgMSBxdWFudGl0YXRpdmUgdmFyaWFibGUgKGluY29tZSkgYW5kIDEgZHljaG90b21vdXMgdmFyaWFibGUgKGRlZmF1bHQgc3RhdHVzIC0gYmluYXJ5KSwgdGhlbiB5b3UgY2FuIHVzZSBwb2ludC1iaXNlcmlhbCBjb2VmZmljaWVudDoNCg0KYGBge3IgZWNobz1GQUxTRSwgd2FybmluZz1GQUxTRX0NCmNvci50ZXN0KGJhbmskaW5jb21lLCBiYW5rJGRlZmF1bHQpDQpgYGANCg0KDQojIyBOb25saW5lYXIgY29ycmVsYXRpb24gLSBldGEgY29lZmZpY2llbnQNCg0KSWYgeW91IHdvdWxkIGxpa2UgdG8gY2hlY2sgaWYgdGhlcmUgYXJlIGFueSBub25saW5lYXJpdGllcyBiZXR3ZWVuIDIgdmFyaWFibGVzLCB0aGUgb25seSBwb3NzaWJpbGl0eSAoYmVzaWRlIHRyYW5zZm9ybWF0aW9ucyBhbmQgbGluZWFyIGFuYWx5c2lzKSBpcyB0byBjYWxjdWxhdGUgImV0YSIgY29lZmZpY2llbnQgYW5kIGNvbXBhcmUgaXQgd2l0aCB0aGUgUGVhcnNvbidzIGxpbmVhciBjb2VmZmljaWVudC4gDQoNCmBgYHtyIGVjaG89RkFMU0UsIHdhcm5pbmc9RkFMU0V9DQoNCmBgYA0KDQojIyBDb3JyZWxhdGlvbiBtYXRyaXgNCg0KV2UgY2FuIGFsc28gcHJlcGFyZSB0aGUgY29ycmVsYXRpb24gbWF0cml4IGZvciBhbGwgcXVhbnRpdGF0aXZlIHZhcmlhYmxlcyBzdG9yZWQgaW4gb3VyIGRhdGEgZnJhbWUuIA0KDQpXZSBjYW4gdXNlIGdnY29ycigpIGZ1bmN0aW9uOg0KDQpgYGB7ciBlY2hvPUZBTFNFLCB3YXJuaW5nPVRSVUV9DQpnZ2NvcnIoYmFuaykNCg0KYGBgDQogIA0KQXMgeW91IGNhbiBzZWUgLSB0aGUgZGVmYXVsdCBjb3JyZWxhdGlvbiBtYXRyaXggaXMgbm90IHRoZSBiZXN0IGlkZWEgZm9yIGFsbCBtZWFzdXJlbWVudCBzY2FsZXMgKGluY2x1ZGluZyBiaW5hcnkgdmFyaWFibGUgImRlZmF1bHQiKS4gDQoNClRoYXQncyB3aHkgbm93IHdlIGNhbiBwZXJmb3JtIG91ciBiaXZhcmlhdGUgYW5hbHlzaXMgd2l0aCBnZ3BhaXIgd2l0aCBncm91cGluZy4NCg0KIyMgQ29ycmVsYXRpb24gbWF0cml4IHdpdGggc2NhdHRlcnBsb3RzIA0KDQpIZXJlIGlzIHdoYXQgd2UgYXJlIGFib3V0IHRvIGNhbGN1bGF0ZToNCi0gVGhlIGNvcnJlbGF0aW9uIG1hdHJpeCBiZXR3ZWVuIGFnZSwgbG9nX2luY29tZSwgZW1wbG95LCBhZGRyZXNzLCBkZWJ0aW5jLCBjcmVkZGVidCwgYW5kIG90aGRlYnQgdmFyaWFibGUgZ3JvdXBlZCBieSB3aGV0aGVyIHRoZSBwZXJzb24gaGFzIGEgZGVmYXVsdCBzdGF0dXMgb3Igbm90Lg0KLSBQbG90IHRoZSBkaXN0cmlidXRpb24gb2YgZWFjaCB2YXJpYWJsZSBieSBncm91cA0KLSBEaXNwbGF5IHRoZSBzY2F0dGVyIHBsb3Qgd2l0aCB0aGUgdHJlbmQgYnkgZ3JvdXANCg0KYGBge3IgZWNobz1GQUxTRSwgd2FybmluZz1UUlVFfQ0KDQpgYGANCg0KDQojIyBRdWFsaXRhdGl2ZSBkYXRhDQoNCkluIGNhc2Ugb2YgdHdvIHZhcmlhYmxlcyBtZWFzdXJlZCBvbiBub21pbmFsIG9yIG9yZGluYWwmbm9taW5hbCBzY2FsZSAtIHdlIGFyZSBmb3JjZWQgdG8gb3JnYW5pemUgc28gY2FsbGVkICJjb250aW5nZW5jeSIgdGFibGUgd2l0aCBmcmVxdWVuY2llcyBhbmQgY2FsY3VsYXRlIHNvbWUga2luZCBvZiB0aGUgY29ycmVsYXRpb24gY29lZmZpY2llbnQgYmFzZWQgb24gdGhlbS4gVGhpcyBpcyBzbyBjYWxsZWQgImNvbnRpbmdlbmN5IGFuYWx5c2lzIi4gDQoNCkxldCdzIGNvbnNpZGVyIG9uZSBleGFtcGxlIGJhc2VkIG9uIG91ciBkYXRhOiB2ZXJpZnksIGlmIHRoZXJlIGlzIGFueSBzaWduaWZpY2FudCBjb3JyZWxhdGlvbiBiZXR3ZWVuIGVkdWNhdGlvbiBsZXZlbCBhbmQgY3JlZGl0IHJpc2suDQoNCmBgYHtyfQ0KdGFibGUoYmFuayRlZCwgYmFuayRkZWZhdWx0KSANCg0KYGBgDQoNCg0KIyMgRXhlcmNpc2UgMS4gQ29udGluZ2VuY3kgYW5hbHlzaXMuDQoNCkRvIHlvdSBiZWxpZXZlIGluIHRoZSBBZnRlcmxpZmU/DQpodHRwczovL25hdGlvbmFscG9zdC5jb20vbmV3cy9jYW5hZGEvbWlsbGVubmlhbHMtZG8teW91LWJlbGlldmUtaW4tbGlmZS1hZnRlci1saWZlDQpBIHN1cnZleSB3YXMgY29uZHVjdGVkIGFuZCBhIHJhbmRvbSBzYW1wbGUgb2YgMTA5MSBxdWVzdGlvbm5haXJlcyBpcyBnaXZlbiBpbiB0aGUgZm9ybSBvZiB0aGUgZm9sbG93aW5nIGNvbnRpbmdlbmN5IHRhYmxlOg0KDQpgYGB7ciBlY2hvPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQ0KeD1jKDQzNSwxNDcsMzc1LDEzNCkNCmRpbSh4KT1jKDIsMikNCmRhbmU8LWFzLnRhYmxlKHgpDQpkaW1uYW1lcyhkYW5lKT1saXN0KEdlbmRlcj1jKCdGZW1hbGUnLCdNYWxlJyksQmVsaWV2ZT1jKCdZZXMnLCdObycpKQ0KZGFuZQ0KZm91cmZvbGRwbG90KGRhbmUpDQpgYGANCg0KT3VyIHRhc2sgaXMgdG8gY2hlY2sgaWYgdGhlcmUgaXMgYSBzaWduaWZpY2FudCByZWxhdGlvbnNoaXAgYmV0d2VlbiB0aGUgYmVsaWVmIGluIHRoZSBhZnRlcmxpZmUgYW5kIGdlbmRlci4gV2UgY2FuIHBlcmZvcm0gdGhpcyBwcm9jZWR1cmUgd2l0aCB0aGUgc2ltcGxlIGNoaS1zcXVhcmUgc3RhdGlzdGljcyBhbmQgY2hvc2VuIHF1YWxpdGF0aXZlIGNvcnJlbGF0aW9uIGNvZWZmaWNpZW50ICh0d28td2F5IDJ4MiB0YWJsZSkuDQoNCmBgYHtyIGVjaG89RkFMU0UsIHdhcm5pbmc9RkFMU0V9DQp5ZXM8LWMoNDM1LDE0NykNCm5vPC1jKDM3NSwxMzQpDQpjb2hlbi5rYXBwYShjYmluZCh5ZXMsbm8pKQ0KY2hpc3EudGVzdChkYW5lKQ0KcHJvcC50YWJsZShkYW5lKQ0KYGBgDQoNCkFzIHlvdSBjYW4gc2VlIHdlIGNhbiBjYWxjdWxhdGUgb3VyIGNoaS1zcXVhcmUgc3RhdGlzdGljIHJlYWxseSBxdWlja2x5IGZvciB0d28td2F5IHRhYmxlcyBvciBsYXJnZXIuIA0KTm93IHdlIGNhbiBzdGFuZGFyZGl6ZSB0aGlzIGNvbnRpbmdlbmN5IG1lYXN1cmUgdG8gc2VlIGlmIHRoZSByZWxhdGlvbnNoaXAgaXMgc2lnbmlmaWNhbnQuDQoNCmBgYHtyIGVjaG89RkFMU0UsIHdhcm5pbmc9RkFMU0V9DQpQaGkoZGFuZSkNCiM/Q29udENvZWYNCiNDb250Q29lZihkYW5lKQ0KI0NyYW1lclYoZGFuZSkNCiNUc2NodXByb3dUKGRhbmUpDQptb3NhaWNwbG90KGRhbmUpDQpiYXJwbG90KGRhbmUpDQpgYGANCg0KDQojIyBFeGVyY2lzZSAyLiBDb250aW5nZW5jeSBhbmFseXNpcyBmb3IgdGhlICdUaXRhbmljJyBkYXRhLg0KDQpMZXQncyBjb25zaWRlciB0aGUgdGl0YW5pYyBkYXRhc2V0IHdoaWNoIGNvbnRhaW5zIGEgY29tcGxldGUgbGlzdCBvZiBwYXNzZW5nZXJzIGFuZCBjcmV3IG1lbWJlcnMgb24gdGhlIFJNUyBUaXRhbmljLiBJdCBpbmNsdWRlcyBhIHZhcmlhYmxlIGluZGljYXRpbmcgd2hldGhlciBhIHBlcnNvbiBkaWQgc3Vydml2ZSB0aGUgc2lua2luZyBvZiB0aGUgUk1TIFRpdGFuaWMgb24gQXByaWwgMTUsIDE5MTIuDQpBIGRhdGEgZnJhbWUgY29udGFpbnMgMjQ1NiBvYnNlcnZhdGlvbnMgb24gMTQgdmFyaWFibGVzLg0KDQpgYGB7ciBsb2FkLWRhdGEyLCB3YXJuaW5nPVRSVUUsIGluY2x1ZGU9RkFMU0V9DQpkb3dubG9hZC5maWxlKCJodHRwczovL2dpdGh1Yi5jb20va2ZsaXNpa293c2tpL2RzL2Jsb2IvbWFzdGVyL3RpdGFuaWMuY3N2P3Jhdz10cnVlIiwgZGVzdGZpbGUgPSJ0aXRhbmljLmNzdiIsbW9kZT0id2IiKQ0KdGl0YW5pYyA8LSByZWFkLmNzdigidGl0YW5pYy5jc3YiLHJvdy5uYW1lcz0xLHNlcD0iOyIpDQpgYGANCg0KVGhlIHdlYnNpdGUgaHR0cDovL3d3dy5lbmN5Y2xvcGVkaWEtdGl0YW5pY2Eub3JnLyBvZmZlcnMgZGV0YWlsZWQgaW5mb3JtYXRpb24gYWJvdXQgcGFzc2VuZ2VycyBhbmQgY3JldyBtZW1iZXJzIG9uIHRoZSBSTVMgVGl0YW5pYy4gQWNjb3JkaW5nIHRvIHRoZSB3ZWJzaXRlIDEzMTcgcGFzc2VuZ2VycyBhbmQgODkwIGNyZXcgbWVtYmVyIHdlcmUgYWJvYXJkLg0KDQo4IG11c2ljaWFucyBhbmQgOSBlbXBsb3llZXMgb2YgdGhlIHNoaXB5YXJkIGNvbXBhbnkgYXJlIGxpc3RlZCBhcyBwYXNzZW5nZXJzLCBidXQgdHJhdmVsbGVkIHdpdGggYSBmcmVlIHRpY2tldCwgd2hpY2ggaXMgd2h5IHRoZXkgaGF2ZSBOQSB2YWx1ZXMgaW4gZmFyZS4gSW4gYWRkaXRpb24gdG8gdGhhdCwgZmFyZSBpcyB0cnVlbHkgbWlzc2luZyBmb3IgYSBmZXcgcmVndWxhciBwYXNzZW5nZXJzLiANCg0KYGBge3J9DQojIHlvdXIgYW5zd2VyIGhlcmUNCg0KZmVtU0NvdW50IDwtIHRpdGFuaWMgJT4lIGZpbHRlcihHZW5kZXIgPT0gIkZlbWFsZSIgJiBTdGF0dXMgPT0gIlN1cnZpdm9yIikgJT4lIGNvdW50KCkNCmZlbVZDb3VudCA8LSB0aXRhbmljICU+JSBmaWx0ZXIoR2VuZGVyID09ICJGZW1hbGUiICYgU3RhdHVzID09ICJWaWN0aW0iKSAlPiUgY291bnQoKQ0KbWFsU0NvdW50IDwtIHRpdGFuaWMgJT4lIGZpbHRlcihHZW5kZXIgPT0gIk1hbGUiICYgU3RhdHVzID09ICJTdXJ2aXZvciIpICU+JSBjb3VudCgpDQptYWxWQ291bnQgPC0gdGl0YW5pYyAlPiUgZmlsdGVyKEdlbmRlciA9PSAiTWFsZSIgJiBTdGF0dXMgPT0gIlZpY3RpbSIpICU+JSBjb3VudCgpDQp6PWMoYXMuaW50ZWdlcihmZW1TQ291bnQpLGFzLmludGVnZXIoZmVtVkNvdW50KSwgYXMuaW50ZWdlcihtYWxTQ291bnQpLCBhcy5pbnRlZ2VyKG1hbFZDb3VudCkpDQoNCmRpbSh6KSA9IGMoMiwyKQ0KZGF0YSA8LSBhcy50YWJsZSh6KQ0KZGltbmFtZXMoZGF0YSkgPSBsaXN0KEdlbmRlcj1jKCdGZW1hbGUnLCAnTWFsZScpLCBTdXJ2aXZlZD1jKCdZZXMnLCAnTm8nKSkNCm1vc2FpY3Bsb3QoZGF0YSkNCg0KYGBgDQoNCg0K