Week 8 Lab Activity / Homework

## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.1     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.2     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.1     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
## Loading required package: Matrix
## 
## 
## Attaching package: 'Matrix'
## 
## 
## The following objects are masked from 'package:tidyr':
## 
##     expand, pack, unpack
## 
## 
## 
## Attaching package: 'psych'
## 
## 
## The following objects are masked from 'package:ggplot2':
## 
##     %+%, alpha
## 
## 
## 
## Attaching package: 'MASS'
## 
## 
## The following object is masked from 'package:dplyr':
## 
##     select
## 
## 
## 
## arm (Version 1.13-1, built: 2022-8-25)
## 
## 
## Working directory is /Users/user/Desktop/R - Spring
## 
## 
## 
## Attaching package: 'arm'
## 
## 
## The following objects are masked from 'package:psych':
## 
##     logit, rescale, sim
# Lets start by reading in the Radon data  

load("radon.Rdata")

# Now Read in the data and create factor variables for Haptic Search

hs_data <- read.csv("MLM_haptic_example_data.csv", header = TRUE)
hs_data <- as_tibble(hs_data) %>% mutate(Sub_Num = factor(Subject_Num))    
hs_data <- hs_data %>% mutate(Ratio = factor(Relative_Size))
hs_data <- hs_data %>% mutate(Num_Dis = factor(Distractor_Number))

We need to make the appropriate changes to the radon data

# start by creating a county sample size column 
county_n <- tibble(table(radon$county))

county_n <- county_n %>% mutate(county = 1:85) 
county_n <- county_n %>% mutate(N = table(radon$county)) 

#put all data frames into list
df_list <- list(radon, radon_county, county_n)

#merge all data frames in list
radon_full <-df_list %>% reduce(full_join, by='county')

Varying Intercept Model with 1 predictor (Chapter 12)

Just as a refresher lets go over the main model from chapter 12

Fit the varying intercept with 1 predictor model using lmer(). Fit to both data sets
vi_radon <- lmer(y ~ 1 + x + (1|county), data = radon_full)
display(vi_radon)
## lmer(formula = y ~ 1 + x + (1 | county), data = radon_full)
##             coef.est coef.se
## (Intercept)  1.46     0.05  
## x           -0.69     0.07  
## 
## Error terms:
##  Groups   Name        Std.Dev.
##  county   (Intercept) 0.33    
##  Residual             0.76    
## ---
## number of obs: 919, groups: county, 85
## AIC = 2179.3, DIC = 2156
## deviance = 2163.7
vi_haptics <- lmer(Times ~ 1 + Distractor_Lengths + (1|Distractor_Number), data = hs_data)
display(vi_haptics)
## lmer(formula = Times ~ 1 + Distractor_Lengths + (1 | Distractor_Number), 
##     data = hs_data)
##                    coef.est coef.se
## (Intercept)        12.25     0.71  
## Distractor_Lengths  2.46     0.32  
## 
## Error terms:
##  Groups            Name        Std.Dev.
##  Distractor_Number (Intercept)  1.05   
##  Residual                      10.14   
## ---
## number of obs: 3370, groups: Distractor_Number, 3
## AIC = 25191.7, DIC = 25184.2
## deviance = 25183.9
Question 1: Describe the results for each model given the data. What is the effect of group level information on individual level data?

Answer: For the radon model, when floor level is held constant the radon level is 1.46. When going from the basement to the first floor there is a .69 decrease in radon. There is a .33 change in radon across counties? For the haptics model, when holding constant the distractor lengths reaction time is 12.25 seconds. For every one unit increase in distractor length there is a 2.46 second increase in reaction time. There is a 1.05 second difference in reaction time for every one unit increase in the number of distractors?

Question 2: Pick one of the models and using the ranef() and the fixef() functions provide the coefficient estimates for at least 3 of the groups.

Answer:

ranef(vi_radon)
## $county
##    (Intercept)
## 1  -0.27009750
## 2  -0.53395107
## 3   0.01761646
## 4   0.04290331
## 5  -0.01544759
## 6   0.01858386
## 7   0.39652761
## 8   0.22117571
## 9  -0.30152320
## 10  0.04701206
## 11 -0.02935302
## 12  0.11555412
## 13 -0.22454606
## 14  0.37642528
## 15 -0.05909970
## 16 -0.21829868
## 17 -0.08923455
## 18 -0.24065633
## 19 -0.11533676
## 20  0.12243536
## 21  0.16951571
## 22 -0.44040759
## 23 -0.02065353
## 24  0.39897419
## 25  0.35196058
## 26 -0.09891042
## 27  0.16066845
## 28 -0.11482866
## 29 -0.14661001
## 30 -0.36162037
## 31  0.27135836
## 32 -0.09691159
## 33  0.25819715
## 34  0.03993398
## 35 -0.37456628
## 36  0.40649202
## 37 -0.66877366
## 38  0.16875953
## 39  0.13639435
## 40  0.36445852
## 41  0.30203292
## 42 -0.01597290
## 43  0.07888623
## 44 -0.24162113
## 45 -0.12407819
## 46 -0.11990235
## 47 -0.16204982
## 48 -0.19922711
## 49  0.16784892
## 50  0.16376017
## 51  0.30257145
## 52  0.16847763
## 53 -0.07951423
## 54 -0.12876622
## 55  0.08786324
## 56 -0.13694655
## 57 -0.37382399
## 58  0.16880050
## 59  0.10598884
## 60 -0.04992385
## 61 -0.26205479
## 62  0.25045135
## 63  0.07226395
## 64  0.25896934
## 65 -0.04451816
## 66  0.13666918
## 67  0.23659674
## 68 -0.22351243
## 69 -0.09426076
## 70 -0.57164915
## 71  0.02131895
## 72  0.07732481
## 73  0.09046140
## 74 -0.20412162
## 75  0.09142952
## 76  0.23225113
## 77  0.20269435
## 78 -0.09074583
## 79 -0.36716012
## 80 -0.12111867
## 81  0.44445030
## 82  0.12198051
## 83  0.11008961
## 84  0.12903524
## 85 -0.07536845
## 
## with conditional variances for "county"
fixef(vi_radon)
## (Intercept)           x 
##   1.4615979  -0.6929937

group 1 : 1.4615979 + -0.27009750 group 71 : 1.4615979 + 0.02131895 group 85 : 1.4615979 + -0.07536845

coef(vi_radon)
## $county
##    (Intercept)          x
## 1    1.1915004 -0.6929937
## 2    0.9276468 -0.6929937
## 3    1.4792143 -0.6929937
## 4    1.5045012 -0.6929937
## 5    1.4461503 -0.6929937
## 6    1.4801817 -0.6929937
## 7    1.8581255 -0.6929937
## 8    1.6827736 -0.6929937
## 9    1.1600747 -0.6929937
## 10   1.5086099 -0.6929937
## 11   1.4322449 -0.6929937
## 12   1.5771520 -0.6929937
## 13   1.2370518 -0.6929937
## 14   1.8380232 -0.6929937
## 15   1.4024982 -0.6929937
## 16   1.2432992 -0.6929937
## 17   1.3723633 -0.6929937
## 18   1.2209415 -0.6929937
## 19   1.3462611 -0.6929937
## 20   1.5840332 -0.6929937
## 21   1.6311136 -0.6929937
## 22   1.0211903 -0.6929937
## 23   1.4409443 -0.6929937
## 24   1.8605721 -0.6929937
## 25   1.8135585 -0.6929937
## 26   1.3626875 -0.6929937
## 27   1.6222663 -0.6929937
## 28   1.3467692 -0.6929937
## 29   1.3149879 -0.6929937
## 30   1.0999775 -0.6929937
## 31   1.7329562 -0.6929937
## 32   1.3646863 -0.6929937
## 33   1.7197950 -0.6929937
## 34   1.5015319 -0.6929937
## 35   1.0870316 -0.6929937
## 36   1.8680899 -0.6929937
## 37   0.7928242 -0.6929937
## 38   1.6303574 -0.6929937
## 39   1.5979922 -0.6929937
## 40   1.8260564 -0.6929937
## 41   1.7636308 -0.6929937
## 42   1.4456250 -0.6929937
## 43   1.5404841 -0.6929937
## 44   1.2199767 -0.6929937
## 45   1.3375197 -0.6929937
## 46   1.3416955 -0.6929937
## 47   1.2995481 -0.6929937
## 48   1.2623708 -0.6929937
## 49   1.6294468 -0.6929937
## 50   1.6253580 -0.6929937
## 51   1.7641693 -0.6929937
## 52   1.6300755 -0.6929937
## 53   1.3820836 -0.6929937
## 54   1.3328317 -0.6929937
## 55   1.5494611 -0.6929937
## 56   1.3246513 -0.6929937
## 57   1.0877739 -0.6929937
## 58   1.6303984 -0.6929937
## 59   1.5675867 -0.6929937
## 60   1.4116740 -0.6929937
## 61   1.1995431 -0.6929937
## 62   1.7120492 -0.6929937
## 63   1.5338618 -0.6929937
## 64   1.7205672 -0.6929937
## 65   1.4170797 -0.6929937
## 66   1.5982671 -0.6929937
## 67   1.6981946 -0.6929937
## 68   1.2380854 -0.6929937
## 69   1.3673371 -0.6929937
## 70   0.8899487 -0.6929937
## 71   1.4829168 -0.6929937
## 72   1.5389227 -0.6929937
## 73   1.5520593 -0.6929937
## 74   1.2574763 -0.6929937
## 75   1.5530274 -0.6929937
## 76   1.6938490 -0.6929937
## 77   1.6642922 -0.6929937
## 78   1.3708520 -0.6929937
## 79   1.0944378 -0.6929937
## 80   1.3404792 -0.6929937
## 81   1.9060482 -0.6929937
## 82   1.5835784 -0.6929937
## 83   1.5716875 -0.6929937
## 84   1.5906331 -0.6929937
## 85   1.3862294 -0.6929937
## 
## attr(,"class")
## [1] "coef.mer"
radon_coef <- fixef(vi_radon) [[1]] + ranef(vi_radon) [[1]]
radon_coef
##    (Intercept)
## 1    1.1915004
## 2    0.9276468
## 3    1.4792143
## 4    1.5045012
## 5    1.4461503
## 6    1.4801817
## 7    1.8581255
## 8    1.6827736
## 9    1.1600747
## 10   1.5086099
## 11   1.4322449
## 12   1.5771520
## 13   1.2370518
## 14   1.8380232
## 15   1.4024982
## 16   1.2432992
## 17   1.3723633
## 18   1.2209415
## 19   1.3462611
## 20   1.5840332
## 21   1.6311136
## 22   1.0211903
## 23   1.4409443
## 24   1.8605721
## 25   1.8135585
## 26   1.3626875
## 27   1.6222663
## 28   1.3467692
## 29   1.3149879
## 30   1.0999775
## 31   1.7329562
## 32   1.3646863
## 33   1.7197950
## 34   1.5015319
## 35   1.0870316
## 36   1.8680899
## 37   0.7928242
## 38   1.6303574
## 39   1.5979922
## 40   1.8260564
## 41   1.7636308
## 42   1.4456250
## 43   1.5404841
## 44   1.2199767
## 45   1.3375197
## 46   1.3416955
## 47   1.2995481
## 48   1.2623708
## 49   1.6294468
## 50   1.6253580
## 51   1.7641693
## 52   1.6300755
## 53   1.3820836
## 54   1.3328317
## 55   1.5494611
## 56   1.3246513
## 57   1.0877739
## 58   1.6303984
## 59   1.5675867
## 60   1.4116740
## 61   1.1995431
## 62   1.7120492
## 63   1.5338618
## 64   1.7205672
## 65   1.4170797
## 66   1.5982671
## 67   1.6981946
## 68   1.2380854
## 69   1.3673371
## 70   0.8899487
## 71   1.4829168
## 72   1.5389227
## 73   1.5520593
## 74   1.2574763
## 75   1.5530274
## 76   1.6938490
## 77   1.6642922
## 78   1.3708520
## 79   1.0944378
## 80   1.3404792
## 81   1.9060482
## 82   1.5835784
## 83   1.5716875
## 84   1.5906331
## 85   1.3862294

Chapter 13 Varying intercepts and varying slopes

Question 3: Fit a model with varying intercepts and varying slopes that does not include a group level predictor.

coefficient estimate instead of calling it slope

lm_radon_1 <- lmer(y ~ 1 + x + (1 + x | county), data = radon_full)
display(lm_radon_1)
## lmer(formula = y ~ 1 + x + (1 + x | county), data = radon_full)
##             coef.est coef.se
## (Intercept)  1.46     0.05  
## x           -0.68     0.09  
## 
## Error terms:
##  Groups   Name        Std.Dev. Corr  
##  county   (Intercept) 0.35           
##           x           0.34     -0.34 
##  Residual             0.75           
## ---
## number of obs: 919, groups: county, 85
## AIC = 2180.3, DIC = 2153.9
## deviance = 2161.1
(a) Interpret your results

Answer: When measured at basement level radon is 1.46 and when measuring on the first floor there is a .68 decrease in radon level. There is a .35 change in radon across counties. There is a .34 decrease in radon … I am getting confused.

lm_haptics_1 <- lmer(Times ~ 1 + Distractor_Lengths + (1 + Distractor_Lengths|Distractor_Number), data = hs_data)
## boundary (singular) fit: see help('isSingular')
display(lm_haptics_1)
## lmer(formula = Times ~ 1 + Distractor_Lengths + (1 + Distractor_Lengths | 
##     Distractor_Number), data = hs_data)
##                    coef.est coef.se
## (Intercept)        12.25     0.39  
## Distractor_Lengths  2.45     0.58  
## 
## Error terms:
##  Groups            Name               Std.Dev. Corr 
##  Distractor_Number (Intercept)         0.22         
##                    Distractor_Lengths  0.84    1.00 
##  Residual                             10.14         
## ---
## number of obs: 3370, groups: Distractor_Number, 3
## AIC = 25191.2, DIC = 25180.1
## deviance = 25179.6
(b) Interpret your results

Answer: I am not sure if I did the above model correctly. When distactor length is held constant reaction time is average is 12.25 seconds. For every one unit increase in distractor length there is a 2.45 increase in reaction time.

Question 4: Fit a model with varying intercepts and varying slopes that includes a group level predictor.
lm_radon_2 <- lmer(y ~ x + u + x:u + (1 + x | county), data = radon_full, start = list(theta = c(1,2,3)))
display(lm_radon_2)
## lmer(formula = y ~ x + u + x:u + (1 + x | county), data = radon_full, 
##     start = list(theta = c(1, 2, 3)))
##             coef.est coef.se
## (Intercept)  1.47     0.04  
## x           -0.67     0.08  
## u            0.81     0.09  
## x:u         -0.42     0.23  
## 
## Error terms:
##  Groups   Name        Std.Dev. Corr 
##  county   (Intercept) 0.12          
##           x           0.31     0.41 
##  Residual             0.75          
## ---
## number of obs: 919, groups: county, 85
## AIC = 2142.6, DIC = 2101.9
## deviance = 2114.2

the individual level has group level info now (u) so that may be why the correlations is positive and not negative anymore

ranef(lm_radon_2)
## $county
##      (Intercept)            x
## 1  -0.0099262107  0.024065420
## 2   0.0270474560 -0.218049019
## 3   0.0083394466  0.024347067
## 4   0.0589572534  0.071979801
## 5   0.0106302462  0.047659391
## 6  -0.0204904632 -0.020755635
## 7   0.1128314354  0.349713030
## 8   0.0359035472  0.074232215
## 9  -0.0276578946  0.107934642
## 10 -0.0033557994 -0.057670414
## 11  0.0513478982  0.052012404
## 12  0.0040184236  0.004070427
## 13  0.0233179570  0.023619720
## 14  0.0678184369  0.043988135
## 15 -0.0118190294 -0.016111738
## 16 -0.0206631195 -0.020930526
## 17 -0.0509104094 -0.195282818
## 18  0.0282085837  0.126322476
## 19 -0.0723718125 -0.153633672
## 20  0.0090466619  0.009163737
## 21  0.0337892319  0.081034669
## 22 -0.1526301833 -0.196581462
## 23 -0.0175281654 -0.018651614
## 24  0.0923044696  0.133879112
## 25  0.1099358693  0.332129462
## 26 -0.0245021854 -0.133596012
## 27 -0.0016548424  0.039469700
## 28 -0.0019245124  0.017778378
## 29  0.0148897040  0.015082395
## 30 -0.0015726630 -0.001593015
## 31  0.0365975053  0.037071123
## 32 -0.0187784624 -0.019021479
## 33  0.0500930327  0.050741299
## 34  0.0038833716 -0.018561721
## 35 -0.0238909657  0.007837547
## 36  0.0909039660  0.254164461
## 37 -0.1068452939 -0.114529268
## 38  0.0888506955  0.210051006
## 39  0.0244988568  0.087596051
## 40  0.0537707333  0.075776177
## 41  0.0491772868  0.157781735
## 42 -0.0061275363 -0.006206834
## 43  0.0048802901 -0.277654343
## 44 -0.1113107792 -0.275802654
## 45 -0.0762552578 -0.193453950
## 46 -0.0330973853 -0.033525707
## 47 -0.0501239459 -0.211016030
## 48 -0.0425612009  0.008682654
## 49 -0.0076852839 -0.161588149
## 50  0.0188315470  0.019075251
## 51  0.0492381441  0.049875347
## 52  0.0100351650  0.010165033
## 53 -0.0373918869 -0.081413084
## 54 -0.1411824539 -0.311122356
## 55  0.0525844550  0.141725090
## 56 -0.0437002473 -0.181480642
## 57 -0.0889151044 -0.135739218
## 58  0.0125420515  0.067788786
## 59 -0.0008631441 -0.060442185
## 60 -0.0217486460 -0.022030100
## 61  0.0137937760  0.193355842
## 62  0.0638062351  0.304909288
## 63  0.0099463029  0.107118312
## 64  0.0499157040  0.038592485
## 65 -0.0311383306 -0.031541299
## 66  0.0683792127  0.146769894
## 67  0.0818816631  0.320794936
## 68  0.0313794753  0.031785565
## 69 -0.0414800691 -0.042016873
## 70 -0.1739320519 -0.163149730
## 71 -0.0314643321 -0.118644796
## 72 -0.0230558207 -0.023354192
## 73 -0.0029920249 -0.003030745
## 74 -0.0731586843 -0.074105449
## 75  0.0378867152  0.153029037
## 76  0.0178887706  0.022735055
## 77  0.0229669722 -0.075568657
## 78  0.0215875982 -0.016696628
## 79 -0.1124254069 -0.206877638
## 80 -0.0208938136 -0.177603529
## 81  0.1069696350  0.315079584
## 82  0.0153023275  0.015500359
## 83 -0.0701376586 -0.363391197
## 84  0.0619131455  0.056053178
## 85 -0.0297281779 -0.030112897
## 
## with conditional variances for "county"
fixef(lm_radon_2)
## (Intercept)           x           u         x:u 
##   1.4685942  -0.6709437   0.8081345  -0.4195150
coef(lm_radon_2)
## $county
##    (Intercept)          x         u       x:u
## 1     1.458668 -0.6468783 0.8081345 -0.419515
## 2     1.495642 -0.8889927 0.8081345 -0.419515
## 3     1.476934 -0.6465966 0.8081345 -0.419515
## 4     1.527551 -0.5989639 0.8081345 -0.419515
## 5     1.479224 -0.6232843 0.8081345 -0.419515
## 6     1.448104 -0.6916993 0.8081345 -0.419515
## 7     1.581426 -0.3212306 0.8081345 -0.419515
## 8     1.504498 -0.5967115 0.8081345 -0.419515
## 9     1.440936 -0.5630090 0.8081345 -0.419515
## 10    1.465238 -0.7286141 0.8081345 -0.419515
## 11    1.519942 -0.6189313 0.8081345 -0.419515
## 12    1.472613 -0.6668732 0.8081345 -0.419515
## 13    1.491912 -0.6473240 0.8081345 -0.419515
## 14    1.536413 -0.6269555 0.8081345 -0.419515
## 15    1.456775 -0.6870554 0.8081345 -0.419515
## 16    1.447931 -0.6918742 0.8081345 -0.419515
## 17    1.417684 -0.8662265 0.8081345 -0.419515
## 18    1.496803 -0.5446212 0.8081345 -0.419515
## 19    1.396222 -0.8245773 0.8081345 -0.419515
## 20    1.477641 -0.6617799 0.8081345 -0.419515
## 21    1.502383 -0.5899090 0.8081345 -0.419515
## 22    1.315964 -0.8675251 0.8081345 -0.419515
## 23    1.451066 -0.6895953 0.8081345 -0.419515
## 24    1.560899 -0.5370646 0.8081345 -0.419515
## 25    1.578530 -0.3388142 0.8081345 -0.419515
## 26    1.444092 -0.8045397 0.8081345 -0.419515
## 27    1.466939 -0.6314740 0.8081345 -0.419515
## 28    1.466670 -0.6531653 0.8081345 -0.419515
## 29    1.483484 -0.6558613 0.8081345 -0.419515
## 30    1.467022 -0.6725367 0.8081345 -0.419515
## 31    1.505192 -0.6338726 0.8081345 -0.419515
## 32    1.449816 -0.6899652 0.8081345 -0.419515
## 33    1.518687 -0.6202024 0.8081345 -0.419515
## 34    1.472478 -0.6895054 0.8081345 -0.419515
## 35    1.444703 -0.6631061 0.8081345 -0.419515
## 36    1.559498 -0.4167792 0.8081345 -0.419515
## 37    1.361749 -0.7854729 0.8081345 -0.419515
## 38    1.557445 -0.4608927 0.8081345 -0.419515
## 39    1.493093 -0.5833476 0.8081345 -0.419515
## 40    1.522365 -0.5951675 0.8081345 -0.419515
## 41    1.517771 -0.5131619 0.8081345 -0.419515
## 42    1.462467 -0.6771505 0.8081345 -0.419515
## 43    1.473474 -0.9485980 0.8081345 -0.419515
## 44    1.357283 -0.9467463 0.8081345 -0.419515
## 45    1.392339 -0.8643976 0.8081345 -0.419515
## 46    1.435497 -0.7044694 0.8081345 -0.419515
## 47    1.418470 -0.8819597 0.8081345 -0.419515
## 48    1.426033 -0.6622610 0.8081345 -0.419515
## 49    1.460909 -0.8325318 0.8081345 -0.419515
## 50    1.487426 -0.6518684 0.8081345 -0.419515
## 51    1.517832 -0.6210683 0.8081345 -0.419515
## 52    1.478629 -0.6607786 0.8081345 -0.419515
## 53    1.431202 -0.7523568 0.8081345 -0.419515
## 54    1.327412 -0.9820660 0.8081345 -0.419515
## 55    1.521179 -0.5292186 0.8081345 -0.419515
## 56    1.424894 -0.8524243 0.8081345 -0.419515
## 57    1.379679 -0.8066829 0.8081345 -0.419515
## 58    1.481136 -0.6031549 0.8081345 -0.419515
## 59    1.467731 -0.7313859 0.8081345 -0.419515
## 60    1.446846 -0.6929738 0.8081345 -0.419515
## 61    1.482388 -0.4775878 0.8081345 -0.419515
## 62    1.532400 -0.3660344 0.8081345 -0.419515
## 63    1.478540 -0.5638254 0.8081345 -0.419515
## 64    1.518510 -0.6323512 0.8081345 -0.419515
## 65    1.437456 -0.7024850 0.8081345 -0.419515
## 66    1.536973 -0.5241738 0.8081345 -0.419515
## 67    1.550476 -0.3501487 0.8081345 -0.419515
## 68    1.499974 -0.6391581 0.8081345 -0.419515
## 69    1.427114 -0.7129605 0.8081345 -0.419515
## 70    1.294662 -0.8340934 0.8081345 -0.419515
## 71    1.437130 -0.7895885 0.8081345 -0.419515
## 72    1.445538 -0.6942979 0.8081345 -0.419515
## 73    1.465602 -0.6739744 0.8081345 -0.419515
## 74    1.395436 -0.7450491 0.8081345 -0.419515
## 75    1.506481 -0.5179146 0.8081345 -0.419515
## 76    1.486483 -0.6482086 0.8081345 -0.419515
## 77    1.491561 -0.7465123 0.8081345 -0.419515
## 78    1.490182 -0.6876403 0.8081345 -0.419515
## 79    1.356169 -0.8778213 0.8081345 -0.419515
## 80    1.447700 -0.8485472 0.8081345 -0.419515
## 81    1.575564 -0.3558641 0.8081345 -0.419515
## 82    1.483897 -0.6554433 0.8081345 -0.419515
## 83    1.398457 -1.0343349 0.8081345 -0.419515
## 84    1.530507 -0.6148905 0.8081345 -0.419515
## 85    1.438866 -0.7010566 0.8081345 -0.419515
## 
## attr(,"class")
## [1] "coef.mer"