##Diseño desbalanciado (FS-BG-CA)
\[Y_{ijk} = \mu + \tau_i + \beta_{j} + \tau\beta_{ij} + \epsilon_{ijk} \\ i = 1,2, \dots, a \\ j = 1,2, \dots, b \\ k = 1,2, \dots, r_1 \] \(a\) número de niveles del facto \(b\) número de bloques \(r_1\) repetición de cada tratamiento
set.seed(123)
aceite = c(
rnorm(12, 10, 0.8),
rnorm(12, 11, 0.78),
rnorm(11, 9, 0.70),
rnorm(12, 10, 0.8),
rnorm(12, 11, 0.78),
rnorm(11, 9, 0.70)
)
bloque= gl (2,35, 70, c('b1', 'b2'))
metodo = rep(rep(c('t1', 't2', 't3'),
c(12,12,11)), 2)
datos= data.frame(metodo, bloque, aceite)
head(datos)
## metodo bloque aceite
## 1 t1 b1 9.551619
## 2 t1 b1 9.815858
## 3 t1 b1 11.246967
## 4 t1 b1 10.056407
## 5 t1 b1 10.103430
## 6 t1 b1 11.372052
Corriendo como si fuera balanceado
mod1=aov(aceite~bloque*metodo,datos)
summary(mod1)
## Df Sum Sq Mean Sq F value Pr(>F)
## bloque 1 0.05 0.054 0.107 0.745
## metodo 2 41.24 20.622 40.834 3.72e-12 ***
## bloque:metodo 2 0.65 0.323 0.640 0.531
## Residuals 64 32.32 0.505
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Corriendo desbalanceado
mod2 = anova(lm(aceite ~ bloque * metodo, datos))
mod2
## Analysis of Variance Table
##
## Response: aceite
## Df Sum Sq Mean Sq F value Pr(>F)
## bloque 1 0.054 0.0541 0.1071 0.7446
## metodo 2 41.243 20.6217 40.8342 3.716e-12 ***
## bloque:metodo 2 0.646 0.3231 0.6399 0.5307
## Residuals 64 32.321 0.5050
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
lote <- c(rep("lote1", 1),
rep("lote2", 1),
rep("lote3", 1),
rep("lote4", 1),
rep("lote5", 1))
genot <- c(rep("genotA", 5),
rep("genotB", 5),
rep("genotC", 5),
rep("genotD", 5),
rep("genotE", 5))
proc_sem <- c("A","E","C","B","D",
"C","B","A","D","E",
"B","C","D","E","A",
"D","A","E","C","B",
"E","D","B","A","C")
biomasa <- c(42, 45, 41, 56, 47,
47, 54, 46, 52, 49,
55, 52, 57, 49, 45,
51, 44, 47, 50, 54,
44, 50, 48, 43, 46)
mydata = data.frame(lote, genot, proc_sem, biomasa)
mydata
## lote genot proc_sem biomasa
## 1 lote1 genotA A 42
## 2 lote2 genotA E 45
## 3 lote3 genotA C 41
## 4 lote4 genotA B 56
## 5 lote5 genotA D 47
## 6 lote1 genotB C 47
## 7 lote2 genotB B 54
## 8 lote3 genotB A 46
## 9 lote4 genotB D 52
## 10 lote5 genotB E 49
## 11 lote1 genotC B 55
## 12 lote2 genotC C 52
## 13 lote3 genotC D 57
## 14 lote4 genotC E 49
## 15 lote5 genotC A 45
## 16 lote1 genotD D 51
## 17 lote2 genotD A 44
## 18 lote3 genotD E 47
## 19 lote4 genotD C 50
## 20 lote5 genotD B 54
## 21 lote1 genotE E 44
## 22 lote2 genotE D 50
## 23 lote3 genotE B 48
## 24 lote4 genotE A 43
## 25 lote5 genotE C 46
library(collapsibleTree)
collapsibleTree(mydata, c('lote', 'proc_sem', 'genot'),
collapsed = FALSE)
library(ggplot2)
ggplot(mydata)+
aes(biomasa, genot)+
geom_point(size=5, shape= 15)+
facet_grid(lote ~ proc_sem)
ggplot(mydata)+
aes(lote, genot, fill=biomasa)+
geom_tile()+
facet_wrap( ~ proc_sem, nrow=1)+
theme(axis.text.x = element_text(angle = 90) )