#analisis de varianza desbalanceado TEMA#

#factor simple completamente al azar (FSCA)

#BALANCEADO
#variable respuesta: porcentaje de germinación
set.seed(123)
porc_germ= c(
  rnorm(40,60,6),
  rnorm(40,70,7),
  rnorm(40,80,8))

#Factor: escarificación
acido= gl(3,40,120, c("c0","c1","c2"))
#c0= sin acido 
#c1= concentracion 1
#c2= concentracion 2

datos= data.frame(acido,porc_germ)
head(datos)
##   acido porc_germ
## 1    c0  56.63715
## 2    c0  58.61894
## 3    c0  69.35225
## 4    c0  60.42305
## 5    c0  60.77573
## 6    c0  70.29039
table(datos$acido)
## 
## c0 c1 c2 
## 40 40 40
#datos desbalanceados
datos_des= datos[-c(50,111,120),]
datos_des
##     acido porc_germ
## 1      c0  56.63715
## 2      c0  58.61894
## 3      c0  69.35225
## 4      c0  60.42305
## 5      c0  60.77573
## 6      c0  70.29039
## 7      c0  62.76550
## 8      c0  52.40963
## 9      c0  55.87888
## 10     c0  57.32603
## 11     c0  67.34449
## 12     c0  62.15888
## 13     c0  62.40463
## 14     c0  60.66410
## 15     c0  56.66495
## 16     c0  70.72148
## 17     c0  62.98710
## 18     c0  48.20030
## 19     c0  64.20814
## 20     c0  57.16325
## 21     c0  53.59306
## 22     c0  58.69215
## 23     c0  53.84397
## 24     c0  55.62665
## 25     c0  56.24976
## 26     c0  49.87984
## 27     c0  65.02672
## 28     c0  60.92024
## 29     c0  53.17118
## 30     c0  67.52289
## 31     c0  62.55879
## 32     c0  58.22957
## 33     c0  65.37075
## 34     c0  65.26880
## 35     c0  64.92949
## 36     c0  64.13184
## 37     c0  63.32351
## 38     c0  59.62853
## 39     c0  58.16422
## 40     c0  57.71717
## 41     c1  65.13705
## 42     c1  68.54458
## 43     c1  61.14223
## 44     c1  85.18269
## 45     c1  78.45573
## 46     c1  62.13824
## 47     c1  67.17981
## 48     c1  66.73341
## 49     c1  75.45976
## 51     c1  71.77323
## 52     c1  69.80017
## 53     c1  69.69991
## 54     c1  79.58022
## 55     c1  68.41960
## 56     c1  80.61529
## 57     c1  59.15873
## 58     c1  74.09230
## 59     c1  70.86698
## 60     c1  71.51159
## 61     c1  72.65748
## 62     c1  66.48374
## 63     c1  67.66755
## 64     c1  62.86997
## 65     c1  62.49746
## 66     c1  72.12470
## 67     c1  73.13747
## 68     c1  70.37103
## 69     c1  76.45587
## 70     c1  84.35059
## 71     c1  66.56278
## 72     c1  53.83582
## 73     c1  77.04017
## 74     c1  65.03559
## 75     c1  65.18394
## 76     c1  77.17900
## 77     c1  68.00659
## 78     c1  61.45498
## 79     c1  71.26912
## 80     c1  69.02776
## 81     c2  80.04611
## 82     c2  83.08224
## 83     c2  77.03472
## 84     c2  85.15501
## 85     c2  78.23611
## 86     c2  82.65426
## 87     c2  88.77471
## 88     c2  83.48145
## 89     c2  77.39255
## 90     c2  89.19046
## 91     c2  87.94803
## 92     c2  84.38718
## 93     c2  81.90985
## 94     c2  74.97675
## 95     c2  90.88522
## 96     c2  75.19792
## 97     c2  97.49866
## 98     c2  92.26089
## 99     c2  78.11440
## 100    c2  71.78863
## 101    c2  74.31675
## 102    c2  82.05507
## 103    c2  78.02646
## 104    c2  77.21966
## 105    c2  72.38705
## 106    c2  79.63978
## 107    c2  73.72076
## 108    c2  66.65646
## 109    c2  76.95819
## 110    c2  87.35197
## 112    c2  84.86371
## 113    c2  67.05694
## 114    c2  79.55550
## 115    c2  84.15526
## 116    c2  82.40923
## 117    c2  80.84541
## 118    c2  74.87435
## 119    c2  73.20237

\[H_0: \mu_{c0}=\mu_{c1}=\mu_{c2}\] #analisis de varianza balanceado

mod1= aov(porc_germ~acido, datos)
summary(mod1)
##              Df Sum Sq Mean Sq F value Pr(>F)    
## acido         2   7835    3918   98.15 <2e-16 ***
## Residuals   117   4670      40                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Normalmente se usa la funcion "aov" y summary para el analisis de varianza.  

#conclusion: el p_valor es <5% se rechaza H_0, no se cumple la igualdad de medias

mu=mean(datos$porc_germ)
boxplot(datos$porc_germ ~ datos$acido)
abline(h=mu, lty=2, col="red")

#las medias efectivamente son diferentes

#analisis de varianza desbalanceado

mod2=aov(porc_germ~acido, datos_des)
summary(mod2)
##              Df Sum Sq Mean Sq F value Pr(>F)    
## acido         2   7898    3949   98.39 <2e-16 ***
## Residuals   114   4576      40                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
x=hist(mod2$residuals)

y=hist(mod1$residuals)

x;y
## $breaks
## [1] -20 -15 -10  -5   0   5  10  15  20
## 
## $counts
## [1]  1  5 17 37 35 14  6  2
## 
## $density
## [1] 0.001709402 0.008547009 0.029059829 0.063247863 0.059829060 0.023931624
## [7] 0.010256410 0.003418803
## 
## $mids
## [1] -17.5 -12.5  -7.5  -2.5   2.5   7.5  12.5  17.5
## 
## $xname
## [1] "mod2$residuals"
## 
## $equidist
## [1] TRUE
## 
## attr(,"class")
## [1] "histogram"
## $breaks
## [1] -20 -15 -10  -5   0   5  10  15  20
## 
## $counts
## [1]  1  5 17 40 34 15  6  2
## 
## $density
## [1] 0.001666667 0.008333333 0.028333333 0.066666667 0.056666667 0.025000000
## [7] 0.010000000 0.003333333
## 
## $mids
## [1] -17.5 -12.5  -7.5  -2.5   2.5   7.5  12.5  17.5
## 
## $xname
## [1] "mod1$residuals"
## 
## $equidist
## [1] TRUE
## 
## attr(,"class")
## [1] "histogram"
#conclusión: el p_valor <5%: se rechaza la H_0, son diferentes, este metodo sirve SIEMPRE Y CUANDO sea de un factor y son bloqueo, ademÔs porque la perdida de datos no hice gran efecto el las medias, no sirve para datos desbalanceados 
#los dos histogramas presentan normalidad en los residuos.


mod3= lm(porc_germ~acido, datos_des);mod3
## 
## Call:
## lm(formula = porc_germ ~ acido, data = datos_des)
## 
## Coefficients:
## (Intercept)      acidoc1      acidoc2  
##      60.271        9.696       20.132
library(car) # se instala una libreria que se adapte a la anormalidad de los datos(desbalanceados)
## Loading required package: carData
mm= Anova(mod3, type="II")
summary(mod1);summary(mod2);mm
##              Df Sum Sq Mean Sq F value Pr(>F)    
## acido         2   7835    3918   98.15 <2e-16 ***
## Residuals   117   4670      40                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##              Df Sum Sq Mean Sq F value Pr(>F)    
## acido         2   7898    3949   98.39 <2e-16 ***
## Residuals   114   4576      40                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Anova Table (Type II tests)
## 
## Response: porc_germ
##           Sum Sq  Df F value    Pr(>F)    
## acido     7898.3   2  98.392 < 2.2e-16 ***
## Residuals 4575.6 114                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#normalmente el codigo "aov" nos ayuda a calcuclar el analisis de varianzas tipo I, que son datos balanceados
#el uso del codigo "lm()" es para darle un comportamiento mas adecuado a los datos desbalanceados, ajuste de los datos a un modelo de regresion lineal. 
#en este caso "Anova" es un modelo de analisis de varianza de tipo "I","II","III", (no hay necesidad del "I" por obvias razones -existe un modelo para ellos-)

#para el caso de un diseƱo facor simple, no importa la metodologia, si son balanceados o desbalanceados

#analisis con bloqueo simple desbalanceado

set.seed(123)
#respuesta
porc_germ= c(
  rnorm(40,60,6),
  rnorm(40,70,7),
  rnorm(40,80,8)
)
#bloqueo
bloque= gl(3,40,120, c("B0","B1","B2"))
#factor
acido=gl(4,10,120, c("C0","C1","C2","C3"))


datos= data.frame(acido,bloque,porc_germ)

#datos_des= datos[-c(50,111,120),]
datos_des= datos[-sample(120, 5),]
#datos desbalanceados: se han perdido 5 variables recolectadas(respuesta,bloqueo,factor-la fila de la tabla-)
datos_des
##     acido bloque porc_germ
## 1      C0     B0  56.63715
## 2      C0     B0  58.61894
## 3      C0     B0  69.35225
## 4      C0     B0  60.42305
## 5      C0     B0  60.77573
## 6      C0     B0  70.29039
## 7      C0     B0  62.76550
## 8      C0     B0  52.40963
## 9      C0     B0  55.87888
## 10     C0     B0  57.32603
## 11     C1     B0  67.34449
## 12     C1     B0  62.15888
## 13     C1     B0  62.40463
## 15     C1     B0  56.66495
## 17     C1     B0  62.98710
## 18     C1     B0  48.20030
## 19     C1     B0  64.20814
## 20     C1     B0  57.16325
## 21     C2     B0  53.59306
## 22     C2     B0  58.69215
## 23     C2     B0  53.84397
## 24     C2     B0  55.62665
## 25     C2     B0  56.24976
## 26     C2     B0  49.87984
## 27     C2     B0  65.02672
## 28     C2     B0  60.92024
## 29     C2     B0  53.17118
## 30     C2     B0  67.52289
## 31     C3     B0  62.55879
## 32     C3     B0  58.22957
## 34     C3     B0  65.26880
## 35     C3     B0  64.92949
## 36     C3     B0  64.13184
## 37     C3     B0  63.32351
## 38     C3     B0  59.62853
## 39     C3     B0  58.16422
## 40     C3     B0  57.71717
## 41     C0     B1  65.13705
## 42     C0     B1  68.54458
## 43     C0     B1  61.14223
## 44     C0     B1  85.18269
## 45     C0     B1  78.45573
## 46     C0     B1  62.13824
## 47     C0     B1  67.17981
## 48     C0     B1  66.73341
## 49     C0     B1  75.45976
## 50     C0     B1  69.41642
## 51     C1     B1  71.77323
## 52     C1     B1  69.80017
## 53     C1     B1  69.69991
## 54     C1     B1  79.58022
## 55     C1     B1  68.41960
## 56     C1     B1  80.61529
## 57     C1     B1  59.15873
## 58     C1     B1  74.09230
## 59     C1     B1  70.86698
## 60     C1     B1  71.51159
## 61     C2     B1  72.65748
## 62     C2     B1  66.48374
## 63     C2     B1  67.66755
## 64     C2     B1  62.86997
## 65     C2     B1  62.49746
## 66     C2     B1  72.12470
## 67     C2     B1  73.13747
## 68     C2     B1  70.37103
## 69     C2     B1  76.45587
## 70     C2     B1  84.35059
## 71     C3     B1  66.56278
## 72     C3     B1  53.83582
## 73     C3     B1  77.04017
## 74     C3     B1  65.03559
## 75     C3     B1  65.18394
## 76     C3     B1  77.17900
## 77     C3     B1  68.00659
## 78     C3     B1  61.45498
## 79     C3     B1  71.26912
## 80     C3     B1  69.02776
## 81     C0     B2  80.04611
## 82     C0     B2  83.08224
## 83     C0     B2  77.03472
## 84     C0     B2  85.15501
## 85     C0     B2  78.23611
## 86     C0     B2  82.65426
## 88     C0     B2  83.48145
## 89     C0     B2  77.39255
## 90     C0     B2  89.19046
## 91     C1     B2  87.94803
## 92     C1     B2  84.38718
## 93     C1     B2  81.90985
## 94     C1     B2  74.97675
## 95     C1     B2  90.88522
## 96     C1     B2  75.19792
## 97     C1     B2  97.49866
## 98     C1     B2  92.26089
## 99     C1     B2  78.11440
## 100    C1     B2  71.78863
## 101    C2     B2  74.31675
## 102    C2     B2  82.05507
## 103    C2     B2  78.02646
## 104    C2     B2  77.21966
## 105    C2     B2  72.38705
## 106    C2     B2  79.63978
## 107    C2     B2  73.72076
## 108    C2     B2  66.65646
## 109    C2     B2  76.95819
## 110    C2     B2  87.35197
## 111    C3     B2  75.39722
## 112    C3     B2  84.86371
## 113    C3     B2  67.05694
## 114    C3     B2  79.55550
## 115    C3     B2  84.15526
## 116    C3     B2  82.40923
## 118    C3     B2  74.87435
## 119    C3     B2  73.20237
## 120    C3     B2  71.80697
table(datos_des$bloque, datos_des$acido)
##     
##      C0 C1 C2 C3
##   B0 10  8 10  9
##   B1 10 10 10 10
##   B2  9 10 10  9
#meter primero los bloques luego los factores al data.frame
#lo que todo el munod haria (mal), esta desbalanceado y hay bloqueo, se recomienda el uso de "lm()"
mod1= aov(porc_germ~bloque*acido, datos_des)
summary(mod1)
##               Df Sum Sq Mean Sq F value Pr(>F)    
## bloque         2   7478    3739  97.858 <2e-16 ***
## acido          3    238      79   2.073  0.108    
## bloque:acido   6    276      46   1.203  0.311    
## Residuals    103   3936      38                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#este codigo en estas condiciones no debe analizar si hay o no interacion entre el bloqueo y factor
#forma correcta
mod2=lm(porc_germ~bloque*acido, datos_des)
mod2_res=Anova(mod2, type= "II")
mod2_res
## Anova Table (Type II tests)
## 
## Response: porc_germ
##              Sum Sq  Df F value Pr(>F)    
## bloque       7399.0   2 96.8208 <2e-16 ***
## acido         237.7   3  2.0734 0.1083    
## bloque:acido  275.8   6  1.2030 0.3108    
## Residuals    3935.6 103                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(mod1);mod2_res
##               Df Sum Sq Mean Sq F value Pr(>F)    
## bloque         2   7478    3739  97.858 <2e-16 ***
## acido          3    238      79   2.073  0.108    
## bloque:acido   6    276      46   1.203  0.311    
## Residuals    103   3936      38                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Anova Table (Type II tests)
## 
## Response: porc_germ
##              Sum Sq  Df F value Pr(>F)    
## bloque       7399.0   2 96.8208 <2e-16 ***
## acido         237.7   3  2.0734 0.1083    
## bloque:acido  275.8   6  1.2030 0.3108    
## Residuals    3935.6 103                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
plot(mod2$residuals, pch=16)

#los residuales tienen un comportamiento adecuado 
#uso correcto es mod2= desbalanceado funcion lm (se ve verdaderamente si existe o no intecaccion), tambien gracias al Anova, que permite analizar precisamente esta funcion "lm()"

#conclusión: INTERACCIƓN: >5%, NO rechazo H_0.no hay interración
#el valor H del bloqueo es >1, si valio la pena realizar el bloqueo
#el p_valor del acido es >5%, los efectos son nuelos sobre nuestra respuesta, el acido no es un problema para el diametro geometrio de las semillas

#analisis con diferentes ordenes #comparacion del orden, para ver si afecta a la hora de realizar el analisis

mod3=lm(porc_germ~bloque+acido+ bloque:acido, datos_des)
mod3_res=Anova(mod2, type= "II")


mod4=lm(porc_germ~acido+bloque+ bloque:acido, datos_des)
mod4_res=Anova(mod2, type= "II")

mod6=lm(porc_germ~bloque:acido+acido+bloque, datos_des)
mod6_res=Anova(mod2, type= "II")


mod6=lm(porc_germ~bloque:acido+bloque+acido, datos_des)
mod6_res=Anova(mod2, type= "II")


mod3_res;mod4_res
## Anova Table (Type II tests)
## 
## Response: porc_germ
##              Sum Sq  Df F value Pr(>F)    
## bloque       7399.0   2 96.8208 <2e-16 ***
## acido         237.7   3  2.0734 0.1083    
## bloque:acido  275.8   6  1.2030 0.3108    
## Residuals    3935.6 103                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Anova Table (Type II tests)
## 
## Response: porc_germ
##              Sum Sq  Df F value Pr(>F)    
## bloque       7399.0   2 96.8208 <2e-16 ***
## acido         237.7   3  2.0734 0.1083    
## bloque:acido  275.8   6  1.2030 0.3108    
## Residuals    3935.6 103                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#type "II", nos ayuda a que la funcion (suma de cuadrados), realiza el ajuste solo, sin importar el orden que coloquemos en el codigo (lo mejor de lo mejor)
#type: "I": es para diseƱo balanceado(clasico)
#type: "III": diseƱo para desbalanceado(chachara vieja)

#ARTICULO: ANOVA for unbalanced data: Use type II instead of type III sums of squares. pone en evidencia que es mejor realizar el analisis con type II que un modelo antiguo como es el Type III 

#Analisis de covariable #diseƱo factoriral simple en bloques completos generalizados y al azar,desbalanceado y con la tecnica de analisis de Covarianza #un factor: acido #bloques completos: 3 #generalizados: repeticiones en los bloques #desbalanceado: rep diferentes #ES UN ANALISIS DE COVARIANZA (covariable)

set.seed(123)
porc_germ= c(
  rnorm(40,60,6),
  rnorm(40,70,7),
  rnorm(40,80,8)
)
diam_med= sort(rnorm(120,12,1.3))
#promedio geometrico: medicion de diferentes zonas de la semilla para luego multiplicarlas y sacar la Raiz



bloque= gl(3,40,120, c("B0","B1","B2"))
acido=gl(4,10,120, c("C0","C1","C2","C3"))


datos= data.frame(acido,bloque,porc_germ, diam_med)

class(datos$acido)
## [1] "factor"
library(collapsibleTree)

collapsibleTreeSummary(datos, 
                       c("bloque","acido","diam_med","porc_germ"),F)
#datos_des= datos[-c(50,111,120),]
datos_des= datos[-sample(120, 5),]
#se eliminaron las filas de 5 datos recolectaros que "se perdieron"
datos_des
##     acido bloque porc_germ  diam_med
## 1      C0     B0  56.63715  9.330779
## 2      C0     B0  58.61894  9.918003
## 3      C0     B0  69.35225  9.956213
## 4      C0     B0  60.42305 10.030932
## 5      C0     B0  60.77573 10.099718
## 6      C0     B0  70.29039 10.101168
## 7      C0     B0  62.76550 10.122939
## 8      C0     B0  52.40963 10.287879
## 9      C0     B0  55.87888 10.295958
## 10     C0     B0  57.32603 10.326860
## 11     C1     B0  67.34449 10.329870
## 12     C1     B0  62.15888 10.361798
## 13     C1     B0  62.40463 10.373347
## 14     C1     B0  60.66410 10.392845
## 15     C1     B0  56.66495 10.458876
## 17     C1     B0  62.98710 10.617676
## 18     C1     B0  48.20030 10.636070
## 19     C1     B0  64.20814 10.679730
## 20     C1     B0  57.16325 10.689110
## 21     C2     B0  53.59306 10.709741
## 23     C2     B0  53.84397 10.768283
## 24     C2     B0  55.62665 10.836028
## 25     C2     B0  56.24976 10.874833
## 26     C2     B0  49.87984 10.974816
## 27     C2     B0  65.02672 10.984003
## 28     C2     B0  60.92024 11.036263
## 29     C2     B0  53.17118 11.039914
## 30     C2     B0  67.52289 11.060014
## 31     C3     B0  62.55879 11.067616
## 32     C3     B0  58.22957 11.084025
## 33     C3     B0  65.37075 11.152465
## 34     C3     B0  65.26880 11.205484
## 35     C3     B0  64.92949 11.226998
## 36     C3     B0  64.13184 11.253295
## 37     C3     B0  63.32351 11.253834
## 38     C3     B0  59.62853 11.309822
## 39     C3     B0  58.16422 11.329117
## 40     C3     B0  57.71717 11.350920
## 41     C0     B1  65.13705 11.362275
## 42     C0     B1  68.54458 11.371085
## 43     C0     B1  61.14223 11.380879
## 44     C0     B1  85.18269 11.404125
## 45     C0     B1  78.45573 11.426488
## 46     C0     B1  62.13824 11.450754
## 47     C0     B1  67.17981 11.458085
## 48     C0     B1  66.73341 11.461358
## 49     C0     B1  75.45976 11.513045
## 50     C0     B1  69.41642 11.515830
## 51     C1     B1  71.77323 11.527246
## 52     C1     B1  69.80017 11.545454
## 53     C1     B1  69.69991 11.577908
## 54     C1     B1  79.58022 11.635486
## 55     C1     B1  68.41960 11.655311
## 56     C1     B1  80.61529 11.659143
## 57     C1     B1  59.15873 11.667080
## 58     C1     B1  74.09230 11.692837
## 59     C1     B1  70.86698 11.720005
## 60     C1     B1  71.51159 11.743671
## 61     C2     B1  72.65748 11.762197
## 62     C2     B1  66.48374 11.844712
## 63     C2     B1  67.66755 11.882585
## 64     C2     B1  62.86997 11.907299
## 65     C2     B1  62.49746 11.929763
## 66     C2     B1  72.12470 11.955713
## 67     C2     B1  73.13747 12.049125
## 68     C2     B1  70.37103 12.053603
## 70     C2     B1  84.35059 12.084881
## 71     C3     B1  66.56278 12.101349
## 72     C3     B1  53.83582 12.110158
## 73     C3     B1  77.04017 12.122959
## 75     C3     B1  65.18394 12.155019
## 76     C3     B1  77.17900 12.278779
## 77     C3     B1  68.00659 12.278900
## 78     C3     B1  61.45498 12.306003
## 79     C3     B1  71.26912 12.316794
## 80     C3     B1  69.02776 12.387696
## 81     C0     B2  80.04611 12.403625
## 82     C0     B2  83.08224 12.421596
## 83     C0     B2  77.03472 12.431863
## 84     C0     B2  85.15501 12.479654
## 85     C0     B2  78.23611 12.544677
## 86     C0     B2  82.65426 12.567481
## 87     C0     B2  88.77471 12.586955
## 88     C0     B2  83.48145 12.671921
## 89     C0     B2  77.39255 12.706152
## 90     C0     B2  89.19046 12.731886
## 91     C1     B2  87.94803 12.780921
## 92     C1     B2  84.38718 12.803382
## 93     C1     B2  81.90985 12.827541
## 95     C1     B2  90.88522 12.912320
## 96     C1     B2  75.19792 12.919865
## 97     C1     B2  97.49866 12.961932
## 98     C1     B2  92.26089 12.980270
## 99     C1     B2  78.11440 12.999755
## 100    C1     B2  71.78863 13.024061
## 101    C2     B2  74.31675 13.150046
## 102    C2     B2  82.05507 13.270065
## 103    C2     B2  78.02646 13.368525
## 104    C2     B2  77.21966 13.442803
## 105    C2     B2  72.38705 13.442896
## 106    C2     B2  79.63978 13.470738
## 107    C2     B2  73.72076 13.602219
## 108    C2     B2  66.65646 13.642141
## 109    C2     B2  76.95819 13.706137
## 110    C2     B2  87.35197 13.877916
## 111    C3     B2  75.39722 14.146180
## 112    C3     B2  84.86371 14.178406
## 113    C3     B2  67.05694 14.397021
## 114    C3     B2  79.55550 14.481835
## 115    C3     B2  84.15526 14.541882
## 116    C3     B2  82.40923 14.596377
## 117    C3     B2  80.84541 14.730142
## 118    C3     B2  74.87435 14.766987
## 119    C3     B2  73.20237 14.858453
## 120    C3     B2  71.80697 16.213352
bb=tapply(datos_des$porc_germ, datos_des$acido,
       mean,na.rm=T);bb
##       C0       C1       C2       C3 
## 70.96384 72.04659 68.44023 69.07068
table(datos_des$porc_germ, datos_des$acido)
##                   
##                    C0 C1 C2 C3
##   48.2002970602222  0  1  0  0
##   49.8798401355455  0  0  1  0
##   52.4096325923608  1  0  0  0
##   53.1711783779283  0  0  1  0
##   53.5930577640789  0  0  1  0
##   53.8358178705143  0  0  0  1
##   53.8439733101566  0  0  1  0
##   55.6266526242532  0  0  1  0
##   55.8788828886388  1  0  0  0
##   56.2497643929045  0  0  1  0
##   56.6371461206867  1  0  0  0
##   56.6649531914755  0  1  0  0
##   57.1632515536324  0  1  0  0
##   57.3260281794003  1  0  0  0
##   57.7171739939257  0  0  0  1
##   58.1642240175605  0  0  0  1
##   58.2295711020464  0  0  0  1
##   58.6189350631003  1  0  0  0
##   59.1587303703885  0  1  0  0
##   59.6285297365397  0  0  0  1
##   60.4230503485475  1  0  0  0
##   60.6640962956707  0  1  0  0
##   60.7757264109657  1  0  0  0
##   60.9202387070191  0  0  1  0
##   61.1422255390221  1  0  0  0
##   61.4549760142182  0  0  0  1
##   62.1382399175766  1  0  0  0
##   62.1588829623442  0  1  0  0
##   62.4046287035643  0  1  0  0
##   62.497461414671   0  0  1  0
##   62.5587853288609  0  0  0  1
##   62.7654972359352  1  0  0  0
##   62.8699723182504  0  0  1  0
##   62.9871028693754  0  1  0  0
##   63.3235059212255  0  0  0  1
##   64.1318415246005  0  0  0  1
##   64.2081354093821  0  1  0  0
##   64.9294864898249  0  0  0  1
##   65.0267222669671  0  0  1  0
##   65.1370511475564  1  0  0  0
##   65.1839396847285  0  0  0  1
##   65.2688009251982  0  0  0  1
##   65.3707539662701  0  0  0  1
##   66.4837358282349  0  0  1  0
##   66.5627818376042  0  0  0  1
##   66.6564645072949  0  0  1  0
##   66.7334125246375  1  0  0  0
##   67.0569383336867  0  0  0  1
##   67.1798061529065  1  0  0  0
##   67.3444907846368  0  1  0  0
##   67.5228895264196  0  0  1  0
##   67.6675483143141  0  0  1  0
##   68.0065889506429  0  0  0  1
##   68.4196031003851  0  1  0  0
##   68.5445790538628  1  0  0  0
##   69.0277604629267  0  0  0  1
##   69.3522498848947  1  0  0  0
##   69.4164165346972  1  0  0  0
##   69.6999067989608  0  1  0  0
##   69.8001727125591  0  1  0  0
##   70.2903899212997  1  0  0  0
##   70.3710295871135  0  0  1  0
##   70.8669797069123  0  1  0  0
##   71.2691243582441  0  0  0  1
##   71.5115909812078  0  1  0  0
##   71.7732295979633  0  1  0  0
##   71.7886327975458  0  1  0  0
##   71.8069696751607  0  0  0  1
##   72.1247004898298  0  0  1  0
##   72.3870514618799  0  0  1  0
##   72.6574763793192  0  0  1  0
##   73.137468450406   0  0  1  0
##   73.2023652317313  0  0  0  1
##   73.7207642443434  0  0  1  0
##   74.0922962474525  0  1  0  0
##   74.3167474904056  0  0  1  0
##   74.874351933557   0  0  0  1
##   75.197923302823   0  1  0  0
##   75.3972242991329  0  0  0  1
##   75.4597558283542  1  0  0  0
##   76.9581878376979  0  0  1  0
##   77.0347197456607  1  0  0  0
##   77.0401696712358  0  0  0  1
##   77.1789995878769  0  0  0  1
##   77.2196592048181  0  0  1  0
##   77.3925473157502  1  0  0  0
##   78.026464972301   0  0  1  0
##   78.1143971271962  0  1  0  0
##   78.23610750545    1  0  0  0
##   78.4557339881349  1  0  0  0
##   79.5555042758037  0  0  0  1
##   79.5802159881012  0  1  0  0
##   79.6397782015286  0  0  1  0
##   80.0461134871991  1  0  0  0
##   80.6152942310068  0  1  0  0
##   80.8454095531915  0  0  0  1
##   81.9098538808915  0  1  0  0
##   82.0550696732522  0  0  1  0
##   82.4092268973337  0  0  0  1
##   82.6542557113256  1  0  0  0
##   83.0822432090106  1  0  0  0
##   83.4814519266704  1  0  0  0
##   84.1552576315477  0  0  0  1
##   84.35059279939    0  0  1  0
##   84.3871756760646  0  1  0  0
##   84.8637145778003  0  0  0  1
##   85.1550123881507  1  0  0  0
##   85.1826917573696  1  0  0  0
##   87.3519728724861  0  0  1  0
##   87.948030847697   0  1  0  0
##   88.7747121051948  1  0  0  0
##   89.1904609476088  1  0  0  0
##   90.8852195882401  0  1  0  0
##   92.2608850094815  0  1  0  0
##   97.4986639441326  0  1  0  0
mod1a=lm(porc_germ~diam_med+bloque+acido+bloque:acido, datos_des)
mod1_res= Anova(mod1a, type = "II");mod1_res
## Anova Table (Type II tests)
## 
## Response: porc_germ
##              Sum Sq  Df F value    Pr(>F)    
## diam_med        6.0   1  0.1574    0.6924    
## bloque       1069.4   2 14.0706 4.013e-06 ***
## acido         151.8   3  1.3315    0.2683    
## bloque:acido  235.4   6  1.0325    0.4087    
## Residuals    3876.1 102                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#Interacion:p_valor>5%: no se rechaza H_0, no hay interacción se puede analizar los factores #Bloque:no se analiza el p_valor, El H es de 14,07>1: si valio la pena realizar el bloqueo #Factor: acido: P_valor>5% No se rechaza H_0:los efectos son nulos en la respuesta #Factor respuesta promedio de semilla: p_valor>5%,No se rechaza H_0, no hay efecto en la variable respuesta

#regresion lineal simple
mod1a=lm(porc_germ~diam_med+bloque+acido+bloque:acido, datos_des)
mod1_res= Anova(mod1a, type = "II");mod1_res
## Anova Table (Type II tests)
## 
## Response: porc_germ
##              Sum Sq  Df F value    Pr(>F)    
## diam_med        6.0   1  0.1574    0.6924    
## bloque       1069.4   2 14.0706 4.013e-06 ***
## acido         151.8   3  1.3315    0.2683    
## bloque:acido  235.4   6  1.0325    0.4087    
## Residuals    3876.1 102                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(mod1a)
## 
## Call:
## lm(formula = porc_germ ~ diam_med + bloque + acido + bloque:acido, 
##     data = datos_des)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -14.0216  -3.7536   0.0696   3.3394  15.2109 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)   
## (Intercept)       71.3474    27.5417   2.591  0.01099 * 
## diam_med          -1.0849     2.7344  -0.397  0.69238   
## bloqueB1          10.9963     4.6895   2.345  0.02097 * 
## bloqueB2          24.7773     7.3901   3.353  0.00112 **
## acidoC1            0.2479     3.0962   0.080  0.93634   
## acidoC2           -2.1853     3.7048  -0.590  0.55659   
## acidoC3            2.7606     4.2363   0.652  0.51608   
## bloqueB1:acidoC1   1.5906     4.0109   0.397  0.69252   
## bloqueB2:acidoC1   2.0787     4.0149   0.518  0.60575   
## bloqueB1:acidoC2   3.0360     4.1292   0.735  0.46387   
## bloqueB2:acidoC2  -2.4634     3.9571  -0.623  0.53498   
## bloqueB1:acidoC3  -4.1091     4.0883  -1.005  0.31723   
## bloqueB2:acidoC3  -5.5309     4.7004  -1.177  0.24205   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.164 on 102 degrees of freedom
## Multiple R-squared:  0.6845, Adjusted R-squared:  0.6474 
## F-statistic: 18.44 on 12 and 102 DF,  p-value: < 2.2e-16
#Rajustado:0,64, perfecto, hay una buena relación en la variable respuesta con la covariable: p_valor:>5% se rechaza H_0, no hay efectos en la variable respuesta se comienza a analizar los supuestos
scatterplot(porc_germ~diam_med|acido,regLine=TRUE,smooth=FALSE)

library(ggplot2)
ggplot(datos_des)+
  aes(diam_med,porc_germ, col=acido)+
  geom_point(aes(col=acido),
             size=3)+
  geom_smooth(aes(col=acido),
              linewidth=2,
              method = "lm",
              formula="y~x",
              se=F)+
  geom_smooth(method = "lm",
              formula="y~x",
              se=F,
              col="black")

shapiro.test(mod1a$residuals)# se cumple el supuesto de normalidad
## 
##  Shapiro-Wilk normality test
## 
## data:  mod1a$residuals
## W = 0.98915, p-value = 0.4933
bartlett.test(mod1a$residuals, datos_des$acido)# se cumple el supuesto de homocedasticidad
## 
##  Bartlett test of homogeneity of variances
## 
## data:  mod1a$residuals and datos_des$acido
## Bartlett's K-squared = 0.98488, df = 3, p-value = 0.8049
library(agricolae)
dt=duncan.test(mod1a,"acido", console=T)
## 
## Study: mod1a ~ "acido"
## 
## Duncan's new multiple range test
## for porc_germ 
## 
## Mean Square Error:  38.00091 
## 
## acido,  means
## 
##    porc_germ       std  r      Min      Max
## C0  70.96384 10.879445 30 52.40963 89.19046
## C1  72.04659 11.862111 28 48.20030 97.49866
## C2  68.44023 10.119977 28 49.87984 87.35197
## C3  69.07068  8.561033 29 53.83582 84.86371
## 
## Groups according to probability of means differences and alpha level( 0.05 )
## 
## Means with the same letter are not significantly different.
## 
##    porc_germ groups
## C1  72.04659      a
## C0  70.96384     ab
## C3  69.07068     ab
## C2  68.44023      b
plot(dt)