X1 <- c(1, 2, 3, 3, 4, 5, 6, 8, 9, 11) X2 <- c(18.95, 19.00, 17.95, 15.54, 14.00, 12.95, 8.94, 7.49, 6.00, 3.99) # Scatterplot of X1 and X2 plot(X1, X2, pch=19)
# Dot plot of X1 dotchart(X1, pch=19)
# Dot plot of X2 dotchart(X2, pch=19)
The sign of the sample covariance is negative.
# Sample mean of X1 mean(X1)
[1] 5.2
# Sample mean of X2 mean(X2)
[1] 12.481
# Sample variance of X1 var(X1)
[1] 10.62222
# Sample variance of X2 var(X2)
[1] 30.85437
# Sample covariance of X1 and X2 cov(X1, X2)
[1] -17.71022
# Sample correlation of X1 and X2 cor(X1, X2)
[1] -0.9782684
X1 and X2 have a strong negative correlation. That is, large X1 occurs with small X2 and vice versa.
data <- cbind(X1, X2) # Sample mean array colMeans(data)
X1 X2 5.200 12.481
# Sample variance-covariance matrix cov(data)
X1 X2 X1 10.62222 -17.71022 X2 -17.71022 30.85437
# Sample correlation matrix cor(data)
X1 X2 X1 1.0000000 -0.9782684 X2 -0.9782684 1.0000000
X1 <- c(-6, -3, -2, 1, 2, 5, 6, 8) X2 <- c(-2, -3, 1, -1, 2, 1, 5, 3) # Scatterplot of X1 and X2 plot(X1, X2, pch=19)
# Data matrix data <- cbind(X1, X2) # Euclidean distance between each pair of measurements dist(data, method="euclidean")
1 2 3 4 5 6 7 2 3.162278 3 5.000000 4.123106 4 7.071068 4.472136 3.605551 5 8.944272 7.071068 4.123106 3.162278 6 11.401754 8.944272 7.000000 4.472136 3.162278 7 13.892444 12.041595 8.944272 7.810250 5.000000 4.123106 8 14.866069 12.529964 10.198039 8.062258 6.082763 3.605551 2.828427
# Mahalanobis distance between each measurement and the mean vector of the data sqrt(mahalanobis(data, center=colMeans(data), cov=cov(data)))
[1] 1.5604666 1.4653827 1.3153760 1.0130664 0.6336689 1.1458979 1.6962688 [8] 1.4384485
# Mahalanobis distance between (-2,1) and (6,5) P <- data[3, ] Q <- data[7, ] sqrt(mahalanobis(P, center=Q, cov=cov(data)))
[1] 1.677988
X1 <- c(9, 2, 6, 5, 8) X2 <- c(12, 8, 6, 4, 10) X3 <- c(3, 4, 0, 2, 1) # Data matrix data <- cbind(X1, X2, X3) # Sample mean array colMeans(data)
X1 X2 X3 6 8 2
# Sample variance-covariance matrix cov(data)
X1 X2 X3 X1 7.50 5.0 -1.75 X2 5.00 10.0 1.50 X3 -1.75 1.5 2.50
# Sample correlation matrix cor(data)
X1 X2 X3 X1 1.0000000 0.5773503 -0.4041452 X2 0.5773503 1.0000000 0.3000000 X3 -0.4041452 0.3000000 1.0000000
# Euclidean distance between each pair of measurements dist(data, method="euclidean")
1 2 3 4 2 8.124038 3 7.348469 6.000000 4 9.000000 5.385165 3.000000 5 3.000000 7.000000 4.582576 6.782330
# Mahalanobis distance between each measurement and the mean vector of the data sqrt(mahalanobis(data, center=colMeans(data), cov=cov(data)))
[1] 1.609423 1.788854 1.415937 1.726409 1.106522
# Mahalanobis distance between (9,12,3) and (5,4,2) P <- data[1, ] Q <- data[4, ] sqrt(mahalanobis(P, center=Q, cov=cov(data)))
[1] 2.537523