#install.packages("factoextra")
library(ggplot2)
library(factoextra)
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
# Cargando el data set
data("USArrests")
# Normalizando la data
df <- scale(USArrests)
# Visualizando las primeras 3 filas
head(df, n = 3)
## Murder Assault UrbanPop Rape
## Alabama 1.24256408 0.7828393 -0.5209066 -0.003416473
## Alaska 0.50786248 1.1068225 -1.2117642 2.484202941
## Arizona 0.07163341 1.4788032 0.9989801 1.042878388
A continuaciĂłn, se estima el nĂşmero Ăłpitimo de Clusters
fviz_nbclust(df, kmeans, method = "wss") +
geom_vline(xintercept = 4, linetype = 2)
Después de haber hecho esto se calcula las K-medias con K=4
set.seed(123)
km.res <- kmeans(df, 4, nstart = 25)
print(km.res)
## K-means clustering with 4 clusters of sizes 8, 13, 16, 13
##
## Cluster means:
## Murder Assault UrbanPop Rape
## 1 1.4118898 0.8743346 -0.8145211 0.01927104
## 2 -0.9615407 -1.1066010 -0.9301069 -0.96676331
## 3 -0.4894375 -0.3826001 0.5758298 -0.26165379
## 4 0.6950701 1.0394414 0.7226370 1.27693964
##
## Clustering vector:
## Alabama Alaska Arizona Arkansas California
## 1 4 4 1 4
## Colorado Connecticut Delaware Florida Georgia
## 4 3 3 4 1
## Hawaii Idaho Illinois Indiana Iowa
## 3 2 4 3 2
## Kansas Kentucky Louisiana Maine Maryland
## 3 2 1 2 4
## Massachusetts Michigan Minnesota Mississippi Missouri
## 3 4 2 1 4
## Montana Nebraska Nevada New Hampshire New Jersey
## 2 2 4 2 3
## New Mexico New York North Carolina North Dakota Ohio
## 4 4 1 2 3
## Oklahoma Oregon Pennsylvania Rhode Island South Carolina
## 3 3 3 3 1
## South Dakota Tennessee Texas Utah Vermont
## 2 1 4 3 2
## Virginia Washington West Virginia Wisconsin Wyoming
## 3 3 2 2 3
##
## Within cluster sum of squares by cluster:
## [1] 8.316061 11.952463 16.212213 19.922437
## (between_SS / total_SS = 71.2 %)
##
## Available components:
##
## [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
## [6] "betweenss" "size" "iter" "ifault"
Sin embargo, también es posible calcular la media de cada variable por clustering usando los datos originales.
aggregate(USArrests, by=list(cluster=km.res$cluster), mean)
## cluster Murder Assault UrbanPop Rape
## 1 1 13.93750 243.62500 53.75000 21.41250
## 2 2 3.60000 78.53846 52.07692 12.17692
## 3 3 5.65625 138.87500 73.87500 18.78125
## 4 4 10.81538 257.38462 76.00000 33.19231
Además, si se desea agregar el punto de clasificaciones a los datos originales se plantea que es posible utilizar la siguiente lógica en el código.
dd <- cbind(USArrests, cluster = km.res$cluster)
head(dd)
## Murder Assault UrbanPop Rape cluster
## Alabama 13.2 236 58 21.2 1
## Alaska 10.0 263 48 44.5 4
## Arizona 8.1 294 80 31.0 4
## Arkansas 8.8 190 50 19.5 1
## California 9.0 276 91 40.6 4
## Colorado 7.9 204 78 38.7 4
También, se emplea la función kmenas() para entender el número de Clusters para cada observación.
km.res$cluster
## Alabama Alaska Arizona Arkansas California
## 1 4 4 1 4
## Colorado Connecticut Delaware Florida Georgia
## 4 3 3 4 1
## Hawaii Idaho Illinois Indiana Iowa
## 3 2 4 3 2
## Kansas Kentucky Louisiana Maine Maryland
## 3 2 1 2 4
## Massachusetts Michigan Minnesota Mississippi Missouri
## 3 4 2 1 4
## Montana Nebraska Nevada New Hampshire New Jersey
## 2 2 4 2 3
## New Mexico New York North Carolina North Dakota Ohio
## 4 4 1 2 3
## Oklahoma Oregon Pennsylvania Rhode Island South Carolina
## 3 3 3 3 1
## South Dakota Tennessee Texas Utah Vermont
## 2 1 4 3 2
## Virginia Washington West Virginia Wisconsin Wyoming
## 3 3 2 2 3
head(km.res$cluster, 4)
## Alabama Alaska Arizona Arkansas
## 1 4 4 1
Es posible conocer el tamaño del Cluster realizado por medio de la siguiente función.
km.res$size
## [1] 8 13 16 13
Para tener un análisis de las medias se plantea la obtención de las mismas y de esta manera conocer las medidas de tendencia central para cada caso.
km.res$centers
## Murder Assault UrbanPop Rape
## 1 1.4118898 0.8743346 -0.8145211 0.01927104
## 2 -0.9615407 -1.1066010 -0.9301069 -0.96676331
## 3 -0.4894375 -0.3826001 0.5758298 -0.26165379
## 4 0.6950701 1.0394414 0.7226370 1.27693964
Esto se puede representar de manera vizual para mejorar la comprensiĂłn.
# Visualizando las k-medias
fviz_cluster(km.res, data = df,
palette = c("#2E9FDF", "#00AFBB", "#E7B800", "#FC4E07"),
ellipse.type = "euclid", # Concentration ellipse
star.plot = TRUE, # Add segments from centroids to items
repel = TRUE, # Avoid label overplotting (slow)
ggtheme = theme_minimal()
)
library(cluster)
library(factoextra)
# Calculando PAM
data("USArrests") # Load the data set
df <- scale(USArrests) # Scale the data
head(df, n = 3) # View the firt 3 rows of the data
## Murder Assault UrbanPop Rape
## Alabama 1.24256408 0.7828393 -0.5209066 -0.003416473
## Alaska 0.50786248 1.1068225 -1.2117642 2.484202941
## Arizona 0.07163341 1.4788032 0.9989801 1.042878388
# Estimating the optimal number of clusters
fviz_nbclust(df, pam, method = "silhouette")+
theme_classic()
En tĂ©rminos del trabajo tambiĂ©n resulta relevante calcular el PAM Clustering con K=2, para ello se realiza lo mostrado en la siguiente lĂnea de cĂłdigo.
pam.res <- pam(df, 2)
print(pam.res)
## Medoids:
## ID Murder Assault UrbanPop Rape
## New Mexico 31 0.8292944 1.3708088 0.3081225 1.1603196
## Nebraska 27 -0.8008247 -0.8250772 -0.2445636 -0.5052109
## Clustering vector:
## Alabama Alaska Arizona Arkansas California
## 1 1 1 2 1
## Colorado Connecticut Delaware Florida Georgia
## 1 2 2 1 1
## Hawaii Idaho Illinois Indiana Iowa
## 2 2 1 2 2
## Kansas Kentucky Louisiana Maine Maryland
## 2 2 1 2 1
## Massachusetts Michigan Minnesota Mississippi Missouri
## 2 1 2 1 1
## Montana Nebraska Nevada New Hampshire New Jersey
## 2 2 1 2 2
## New Mexico New York North Carolina North Dakota Ohio
## 1 1 1 2 2
## Oklahoma Oregon Pennsylvania Rhode Island South Carolina
## 2 2 2 2 1
## South Dakota Tennessee Texas Utah Vermont
## 2 1 1 2 2
## Virginia Washington West Virginia Wisconsin Wyoming
## 2 2 2 2 2
## Objective function:
## build swap
## 1.441358 1.368969
##
## Available components:
## [1] "medoids" "id.med" "clustering" "objective" "isolation"
## [6] "clusinfo" "silinfo" "diss" "call" "data"
Si se desea agrerar las clasificaciones de puntos a los datos originales se emplea esto.
dd <- cbind(USArrests, cluster = pam.res$cluster)
head(dd, n = 3)
## Murder Assault UrbanPop Rape cluster
## Alabama 13.2 236 58 21.2 1
## Alaska 10.0 263 48 44.5 1
## Arizona 8.1 294 80 31.0 1
A continuaciĂłn se accede a los resultados de la funciĂłn pam() y se desarrollan los medoids de racismo en New Mexico, Nebraska.
pam.res$medoids
## Murder Assault UrbanPop Rape
## New Mexico 0.8292944 1.3708088 0.3081225 1.1603196
## Nebraska -0.8008247 -0.8250772 -0.2445636 -0.5052109
Se presenta un Cluster de numeros
head(pam.res$clustering)
## Alabama Alaska Arizona Arkansas California Colorado
## 1 1 1 2 1 1
Finalmente, se vizualian los resultados del PAM clusters
fviz_cluster(pam.res,
palette = c("#00AFBB", "#FC4E07"), # color palette
ellipse.type = "t", # Concentration ellipse
repel = TRUE, # Avoid label overplotting (slow)
ggtheme = theme_classic()
)
library(cluster)
library(factoextra)
set.seed(1234)
# Se generan 500 objetos, cada uno dividido entre dos clusters
df <- rbind(cbind(rnorm(200,0,8), rnorm(200,0,8)),
cbind(rnorm(300,50,8), rnorm(300,50,8)))
# Se especifican los nombres de las columnas y filas
colnames(df) <- c("x", "y")
rownames(df) <- paste0("S", 1:nrow(df))
# Se previsualizan los datos
head(df, nrow = 6)
## x y
## S1 -9.656526 3.881815
## S2 2.219434 5.574150
## S3 8.675529 1.484111
## S4 -18.765582 5.605868
## S5 3.432998 2.493448
## S6 4.048447 6.083699
Como en los casos anteriores se estima el nĂşmreo Ăłptimo de clusters que debe tener el modelo.
fviz_nbclust(df, clara, method = "silhouette")+
theme_classic()
Se computa CLARA y se presentan los componentes de la funciĂłn clara.res.
# Compute CLARA
clara.res <- clara(df, 2, samples = 50, pamLike = TRUE)
# Print components of clara.res
print(clara.res)
## Call: clara(x = df, k = 2, samples = 50, pamLike = TRUE)
## Medoids:
## x y
## S121 -1.531137 1.145057
## S455 48.357304 50.233499
## Objective function: 9.87862
## Clustering vector: Named int [1:500] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ...
## - attr(*, "names")= chr [1:500] "S1" "S2" "S3" "S4" "S5" "S6" "S7" ...
## Cluster sizes: 200 300
## Best sample:
## [1] S37 S49 S54 S63 S68 S71 S76 S80 S82 S101 S103 S108 S109 S118 S121
## [16] S128 S132 S138 S144 S162 S203 S210 S216 S231 S234 S249 S260 S261 S286 S299
## [31] S304 S305 S312 S315 S322 S350 S403 S450 S454 S455 S456 S465 S488 S497
##
## Available components:
## [1] "sample" "medoids" "i.med" "clustering" "objective"
## [6] "clusinfo" "diss" "call" "silinfo" "data"
Si se busca agregar las clasificaciones de los datos originales a los puntos se ejecuta el siguiente cĂłdigo.
dd <- cbind(df, cluster = clara.res$cluster)
head(dd, n = 4)
## x y cluster
## S1 -9.656526 3.881815 1
## S2 2.219434 5.574150 1
## S3 8.675529 1.484111 1
## S4 -18.765582 5.605868 1
Es posible acceder a los resultados generados por clara() segĂşn como se muestra a continuaciĂłn.
# Medoids
clara.res$medoids
## x y
## S121 -1.531137 1.145057
## S455 48.357304 50.233499
Se realiza el Clustering respectivo.
# Clustering
head(clara.res$clustering, 10)
## S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
## 1 1 1 1 1 1 1 1 1 1
También, se visualizan los Clusters de CLARA.
fviz_cluster(clara.res,
palette = c("#00AFBB", "#FC4E07"), # color palette
ellipse.type = "t", # Concentration ellipse
geom = "point", pointsize = 1,
ggtheme = theme_classic()
)
library("factoextra")
library("cluster")
# Load the data
data("USArrests")
# Standardize the data
df <- scale(USArrests)
# Show the first 6 rows
head(df, nrow = 6)
## Murder Assault UrbanPop Rape
## Alabama 1.24256408 0.7828393 -0.5209066 -0.003416473
## Alaska 0.50786248 1.1068225 -1.2117642 2.484202941
## Arizona 0.07163341 1.4788032 0.9989801 1.042878388
## Arkansas 0.23234938 0.2308680 -1.0735927 -0.184916602
## California 0.27826823 1.2628144 1.7589234 2.067820292
## Colorado 0.02571456 0.3988593 0.8608085 1.864967207
Debido a medidas similares se computa la “dissimilarity” en la matriz de valores del data frame.
# df = the standardized data
res.dist <- dist(df, method = "euclidean")
as.matrix(res.dist)[1:6, 1:6]
## Alabama Alaska Arizona Arkansas California Colorado
## Alabama 0.000000 2.703754 2.293520 1.289810 3.263110 2.651067
## Alaska 2.703754 0.000000 2.700643 2.826039 3.012541 2.326519
## Arizona 2.293520 2.700643 0.000000 2.717758 1.310484 1.365031
## Arkansas 1.289810 2.826039 2.717758 0.000000 3.763641 2.831051
## California 3.263110 3.012541 1.310484 3.763641 0.000000 1.287619
## Colorado 2.651067 2.326519 1.365031 2.831051 1.287619 0.000000
Se emplea a funciĂłn hclust() para realizar el dendrograma.
# hclust() can be used as follow:
res.hc <- hclust(d = res.dist, method = "ward.D2")
# Dendrogram
# cex: label size
fviz_dend(res.hc, cex = 0.5)
## Warning: The `<scale>` argument of `guides()` cannot be `FALSE`. Use "none" instead as
## of ggplot2 3.3.4.
## ℹ The deprecated feature was likely used in the factoextra package.
## Please report the issue at <https://github.com/kassambara/factoextra/issues>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
Posterior a esto se verifica el árbol del cluster.
# Verify the cluster tree
# Compute cophentic distance
res.coph <- cophenetic(res.hc)
# Correlation between cophenetic distance and
# the original distance
cor(res.dist, res.coph)
## [1] 0.6975266
Ante esto se realiza lo siguiente para confirmar el valor adecuado.
res.hc2 <- hclust(res.dist, method = "average")
cor(res.dist, cophenetic(res.hc2))
## [1] 0.7180382
Se corta el dendrograma en diferentes grupos, más especificamente, en cuatro grupos.
# Cut tree into 4 groups
grp <- cutree(res.hc, k = 4)
head(grp, n = 4)
## Alabama Alaska Arizona Arkansas
## 1 2 2 3
También, se realiza una tabla con los grupos.
# Number of members in each cluster
table(grp)
## grp
## 1 2 3 4
## 7 12 19 12
Y se plantean los nombres de cada uno de los grupos.
# Get the names for the members of cluster 1
rownames(df)[grp == 1]
## [1] "Alabama" "Georgia" "Louisiana" "Mississippi"
## [5] "North Carolina" "South Carolina" "Tennessee"
Se realiza una gráfica teniendo en cuenta lo realizado anteriormente.
# Cut in 4 groups and color by groups
fviz_dend(res.hc, k = 4, # Cut in four groups
cex = 0.5, # label size
k_colors = c("#2E9FDF", "#00AFBB", "#E7B800", "#FC4E07"),
color_labels_by_k = TRUE, # color labels by groups
rect = TRUE # Add rectangle around groups
)
También se desarrolla otra manera de visualización de datos empleando la función fviz_cluster()
# Using the function fviz_cluster()
fviz_cluster(list(data = df, cluster = grp),
palette = c("#2E9FDF", "#00AFBB", "#E7B800", "#FC4E07"),
ellipse.type = "convex", # Concentration ellipse
repel = TRUE, # Avoid label overplotting (slow)
show.clust.cent = FALSE, ggtheme = theme_minimal())
El resultado final es un Agglomerative nesting (Hierarical clustering) lo cual se presenta a como un dendrograma.
# Cluster R package
# Agglomerative Nesting (Hierarchical Clustering)
res.agnes <- agnes(x = USArrests, # data matrix
stand = TRUE, # Standardize the data
metric = "euclidean", # metric for distance matrix
method = "ward" # Linkage method
)
# DIvisive ANAlysis Clustering
res.diana <- diana(x = USArrests, # data matrix
stand = TRUE, # standardize the data
metric = "euclidean" # metric for distance matrix
)
# After running agnes() and diana(), you can use the function fviz_dend()[in factoextra] to visualize the output:
fviz_dend(res.agnes, cex = 0.6, k = 4)