install.packages(c("FactoMineR", "factoextra"))
## Installing packages into '/cloud/lib/x86_64-pc-linux-gnu-library/4.3'
## (as 'lib' is unspecified)
library("FactoMineR")
library("factoextra")
## Loading required package: ggplot2
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
library("ade4")
## 
## Attaching package: 'ade4'
## The following object is masked from 'package:FactoMineR':
## 
##     reconst
res.ca <- dudi.coa (housetasks, scannf = FALSE, nf = 5)
library (ca)

res.ca <- ca (housetasks)
library (MASS)

res.ca <- corresp(housetasks, nf = 3)
library("ExPosition")
## Loading required package: prettyGraphs
res.ca <- epCA (housetasks, graph = FALSE)
fviz_eig(res.ca)     # Scree plot

fviz_ca_biplot (res.ca) # Biplot of rows and columns

data (housetasks) 
# head (house tasks)
library("gplots")
## 
## Attaching package: 'gplots'
## The following object is masked from 'package:stats':
## 
##     lowess
#1. convert the data as a table 
dt <- as.table(as.matrix (housetasks))

#2. Graph
balloonplot(t(dt), main = "housetasks", xlab = "", ylab="",
            label = FALSE, show.margins = FALSE)

chisq <- chisq.test(housetasks)

chisq
## 
##  Pearson's Chi-squared test
## 
## data:  housetasks
## X-squared = 1944.5, df = 36, p-value < 2.2e-16
library("FactoMineR")

res.ca <- CA (housetasks, graph = FALSE)
print(res.ca)
## **Results of the Correspondence Analysis (CA)**
## The row variable has  13  categories; the column variable has 4 categories
## The chi square of independence between the two variables is equal to 1944.456 (p-value =  0 ).
## *The results are available in the following objects:
## 
##    name              description                   
## 1  "$eig"            "eigenvalues"                 
## 2  "$col"            "results for the columns"     
## 3  "$col$coord"      "coord. for the columns"      
## 4  "$col$cos2"       "cos2 for the columns"        
## 5  "$col$contrib"    "contributions of the columns"
## 6  "$row"            "results for the rows"        
## 7  "$row$coord"      "coord. for the rows"         
## 8  "$row$cos2"       "cos2 for the rows"           
## 9  "$row$contrib"    "contributions of the rows"   
## 10 "$call"           "summary called parameters"   
## 11 "$call$marge.col" "weights of the columns"      
## 12 "$call$marge.row" "weights of the rows"
#Chi-square statistics
chi2 <- 1944.456

#Degree of freedom
df <- (nrow (housetasks) - 1) * (ncol (housetasks) - 1)

#P-value
pval <- pchisq (chi2, df = df, lower.tail = FALSE)

pval
## [1] 0
library("factoextra")

eig.val <- get_eigenvalue(res.ca)

eig.val
##       eigenvalue variance.percent cumulative.variance.percent
## Dim.1  0.5428893         48.69222                    48.69222
## Dim.2  0.4450028         39.91269                    88.60491
## Dim.3  0.1270484         11.39509                   100.00000
fviz_screeplot (res.ca, addlabels = TRUE, ylim = c(0, 50))

fviz_screeplot(res.ca) +

geom_hline (yintercept=33.33, linetype=2, color="red")

# repel= TRUE to avoid text overlapping (slow if many point)
fviz_ca_biplot (res.ca, repel = TRUE)

row <- get_ca_row(res.ca)

row
## Correspondence Analysis - Results for rows
##  ===================================================
##   Name       Description                
## 1 "$coord"   "Coordinates for the rows" 
## 2 "$cos2"    "Cos2 for the rows"        
## 3 "$contrib" "contributions of the rows"
## 4 "$inertia" "Inertia of the rows"
# Coordinates
head (row$coord)
##                 Dim 1      Dim 2       Dim 3
## Laundry    -0.9918368  0.4953220 -0.31672897
## Main_meal  -0.8755855  0.4901092 -0.16406487
## Dinner     -0.6925740  0.3081043 -0.20741377
## Breakfeast -0.5086002  0.4528038  0.22040453
## Tidying    -0.3938084 -0.4343444 -0.09421375
## Dishes     -0.1889641 -0.4419662  0.26694926
# Cos2: quality on the factore map
head(row$cos2)
##                Dim 1     Dim 2      Dim 3
## Laundry    0.7399874 0.1845521 0.07546047
## Main_meal  0.7416028 0.2323593 0.02603787
## Dinner     0.7766401 0.1537032 0.06965666
## Breakfeast 0.5049433 0.4002300 0.09482670
## Tidying    0.4398124 0.5350151 0.02517249
## Dishes     0.1181178 0.6461525 0.23572969
# Contributions to the principal components
head(row$contrib)
##                 Dim 1    Dim 2    Dim 3
## Laundry    18.2867003 5.563891 7.968424
## Main_meal  12.3888433 4.735523 1.858689
## Dinner      5.4713982 1.321022 2.096926
## Breakfeast  3.8249284 3.698613 3.069399
## Tidying     1.9983518 2.965644 0.488734
## Dishes      0.4261663 2.844117 3.634294
head(row$coord)
##                 Dim 1      Dim 2       Dim 3
## Laundry    -0.9918368  0.4953220 -0.31672897
## Main_meal  -0.8755855  0.4901092 -0.16406487
## Dinner     -0.6925740  0.3081043 -0.20741377
## Breakfeast -0.5086002  0.4528038  0.22040453
## Tidying    -0.3938084 -0.4343444 -0.09421375
## Dishes     -0.1889641 -0.4419662  0.26694926
fviz_ca_row(res.ca, repel = TRUE)

fviz_ca_row(res.ca, col.row="steelblue", shape.row = 15)

head(row$cos2, 4)
##                Dim 1     Dim 2      Dim 3
## Laundry    0.7399874 0.1845521 0.07546047
## Main_meal  0.7416028 0.2323593 0.02603787
## Dinner     0.7766401 0.1537032 0.06965666
## Breakfeast 0.5049433 0.4002300 0.09482670
# Color by cos2 values: quality on the factor map
fviz_ca_row(res.ca, col.row = "cos2",
            gradient.cols= c("#00AFBB", "#E7B800", "#FC4E07"),
            repel = TRUE)

# Change the transparency by cos2 values
fviz_ca_row(res.ca, alpha.row="cos2")

library("corrplot")
## corrplot 0.92 loaded
corrplot (row$cos2, is.corr=FALSE)

# Cos2 of rows on Dim. 1 and Dim.2
fviz_cos2 (res.ca, choice = "row", axes = 1:2)

head(row$contrib)
##                 Dim 1    Dim 2    Dim 3
## Laundry    18.2867003 5.563891 7.968424
## Main_meal  12.3888433 4.735523 1.858689
## Dinner      5.4713982 1.321022 2.096926
## Breakfeast  3.8249284 3.698613 3.069399
## Tidying     1.9983518 2.965644 0.488734
## Dishes      0.4261663 2.844117 3.634294
library("corrplot")
corrplot (row$contrib, is.corr=FALSE)

# Contributions of rows to dimension 1

fviz_contrib (res.ca, choice = "row", axes = 1, top = 10)

# Contributions of rows to dimension 2

fviz_contrib(res.ca, choice = "row", axes = 2, top = 10)

#Total contribution to dimension 1 and 2
fviz_contrib(res.ca, choice = "row", axes = 1:2, top = 10)

fviz_ca_row(res.ca, col.row = "contrib",
            gradient.cols = c("#00AFBB", "#E7B800","#FC4E07"),
            repel = TRUE)

# Change the transparency by contrib values
fviz_ca_row(res.ca, alpha.row="contrib",
            repel = TRUE)

col <- get_ca_col(res.ca)

col
## Correspondence Analysis - Results for columns
##  ===================================================
##   Name       Description                   
## 1 "$coord"   "Coordinates for the columns" 
## 2 "$cos2"    "Cos2 for the columns"        
## 3 "$contrib" "contributions of the columns"
## 4 "$inertia" "Inertia of the columns"
# Coordinates of column points
head(col$coord)
##                   Dim 1      Dim 2       Dim 3
## Wife        -0.83762154  0.3652207 -0.19991139
## Alternating -0.06218462  0.2915938  0.84858939
## Husband      1.16091847  0.6019199 -0.18885924
## Jointly      0.14942609 -1.0265791 -0.04644302
#Quality of representation 
head (col$cos2)
##                   Dim 1     Dim 2       Dim 3
## Wife        0.801875947 0.1524482 0.045675847
## Alternating 0.004779897 0.1051016 0.890118521
## Husband     0.772026244 0.2075420 0.020431728
## Jointly     0.020705858 0.9772939 0.002000236
# Contributions 
head(col$contrib)
##                 Dim 1     Dim 2      Dim 3
## Wife        44.462018 10.312237 10.8220753
## Alternating  0.103739  2.782794 82.5492464
## Husband     54.233879 17.786612  6.1331792
## Jointly      1.200364 69.118357  0.4954991
fviz_ca_col(res.ca)

fviz_ca_col(res.ca, col.col = "cos2",
            gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"),
            repel = TRUE)

fviz_cos2(res.ca, choice = "col", axes = 1:2)

fviz_contrib(res.ca, choice = "col", axes = 1:2)

fviz_ca_biplot (res.ca, repel = TRUE)

fviz_ca_biplot(res.ca,
               map="rowprincipal", arrow = c(TRUE, TRUE),
               repel = TRUE)

fviz_ca_biplot(res.ca, map ="colgreen", arrow = c(TRUE, FALSE),
               repel = TRUE)

#Dimension description

res.desc <- dimdesc (res.ca, axes = c(1,2))
# Description of dimension 1 by row points
head (res.desc[[1]]$row, 4)
##                 coord
## Laundry    -0.9918368
## Main_meal  -0.8755855
## Dinner     -0.6925740
## Breakfeast -0.5086002
# Description of dimension 1 by colum points
head (res.desc[[1]]$col, 4)
##                   coord
## Wife        -0.83762154
## Alternating -0.06218462
## Jointly      0.14942609
## Husband      1.16091847
# Description of dimension 2 by row points
res.desc[[2]]$row
##                 coord
## Holidays   -1.4350066
## Finances   -0.6178684
## Insurance  -0.4737832
## Dishes     -0.4419662
## Tidying    -0.4343444
## Shopping   -0.4033171
## Official    0.2536132
## Dinner      0.3081043
## Breakfeast  0.4528038
## Main_meal   0.4901092
## Laundry     0.4953220
## Driving     0.6534143
## Repairs     0.8642647
# Description of dimension 1 by column points
res.desc[[2]]$col
##                  coord
## Jointly     -1.0265791
## Alternating  0.2915938
## Wife         0.3652207
## Husband      0.6019199
data(children)

#head (children)
res.ca <- CA (children, row.sup = 15:18, col.sup = 6:8,
              graph = FALSE)
fviz_ca_biplot (res.ca, repel = TRUE)

fviz_ca_biplot(res.ca, repel = TRUE,
               invisible = c("row.sup", "col.sup"))

res.ca$row.sup
## $coord
##                  Dim 1     Dim 2      Dim 3      Dim 4
## comfort      0.2096705 0.7031677 0.07111168  0.3071354
## disagreement 0.1462777 0.1190106 0.17108916 -0.3132169
## world        0.5233045 0.1429707 0.08399269 -0.1063597
## to_live      0.3083067 0.5020193 0.52093397  0.2557357
## 
## $cos2
##                   Dim 1      Dim 2       Dim 3      Dim 4
## comfort      0.06892759 0.77524032 0.007928672 0.14790342
## disagreement 0.13132177 0.08692632 0.179649183 0.60210272
## world        0.87587685 0.06537746 0.022564054 0.03618163
## to_live      0.13899699 0.36853645 0.396830367 0.09563620
fviz_ca_row(res.ca, repel = TRUE)

res.ca$col.sup
## $coord
##                  Dim 1       Dim 2       Dim 3       Dim 4
## thirty      0.10541339 -0.05969594 -0.10322613  0.06977996
## fifty      -0.01706444  0.04907657 -0.01568923 -0.01306117
## more_fifty -0.17706810 -0.04813788  0.10077299 -0.08517528
## 
## $cos2
##                Dim 1      Dim 2       Dim 3       Dim 4
## thirty     0.1375601 0.04411543 0.131910759 0.060278490
## fifty      0.0108695 0.08990298 0.009188167 0.006367804
## more_fifty 0.2860989 0.02114509 0.092666735 0.066200714
fviz_ca_col (res.ca, repel = TRUE)

#Visualize rows with cos2 >= 0.8
fviz_ca_row(res.ca, select.row = list (cos2 = 0.8))

# Top 5 active rous and 5 suppl. rous with the highest cos2
fviz_ca_row(res.ca, select.row = list (cos2 = 5))

# Select by names
name <-list (name = c("employment", "fear", "future"))
fviz_ca_row(res.ca, select.row = name)

#Top 5 contributing rows and columns

fviz_ca_biplot(res.ca, select.row = list (contrib=5),
               select.col= list(contrib= 5)) +
  theme_minimal()

#Scree plot
scree.plot <- fviz_eig(res.ca)

#Biplot of row and column variables
biplot.ca <- fviz_ca_biplot (res.ca)
library(ggpubr)

ggexport (plotlist = list (scree.plot, biplot.ca),
          filename = "CA.pdf")
## file saved to CA.pdf
# Export into a TXT file
write.infile(res.ca, "ca.txt", sep = "\t")

#Export into a CSV file
write.infile(res.ca, "ca.csv", sep = ";")
library("FactoMineR")

library("factoextra")
data (poison)

head (poison[, 1:7], 3)
##   Age Time   Sick Sex   Nausea Vomiting Abdominals
## 1   9   22 Sick_y   F Nausea_y  Vomit_n     Abdo_y
## 2   5    0 Sick_n   F Nausea_n  Vomit_n     Abdo_n
## 3   6   16 Sick_y   F Nausea_n  Vomit_y     Abdo_y
poison.active <- poison [1:55, 5:15]
head (poison.active[, 1:6], 3)
##     Nausea Vomiting Abdominals   Fever   Diarrhae   Potato
## 1 Nausea_y  Vomit_n     Abdo_y Fever_y Diarrhea_y Potato_y
## 2 Nausea_n  Vomit_n     Abdo_n Fever_n Diarrhea_n Potato_y
## 3 Nausea_n  Vomit_y     Abdo_y Fever_y Diarrhea_y Potato_y
#Summary of the 4 first variables
summary (poison.active) [, 1:4]
##       Nausea      Vomiting   Abdominals     Fever   
##  Nausea_n:43   Vomit_n:33   Abdo_n:18   Fever_n:20  
##  Nausea_y:12   Vomit_y:22   Abdo_y:37   Fever_y:35
for (i in 1:4) {
  plot (poison.active[,1], main=colnames(poison.active) [i],
        ylab = "Count", col="steelblue", las = 2)

}

res.mca <- MCA (poison.active, graph = FALSE)
print (res.mca)
## **Results of the Multiple Correspondence Analysis (MCA)**
## The analysis was performed on 55 individuals, described by 11 variables
## *The results are available in the following objects:
## 
##    name              description                       
## 1  "$eig"            "eigenvalues"                     
## 2  "$var"            "results for the variables"       
## 3  "$var$coord"      "coord. of the categories"        
## 4  "$var$cos2"       "cos2 for the categories"         
## 5  "$var$contrib"    "contributions of the categories" 
## 6  "$var$v.test"     "v-test for the categories"       
## 7  "$ind"            "results for the individuals"     
## 8  "$ind$coord"      "coord. for the individuals"      
## 9  "$ind$cos2"       "cos2 for the individuals"        
## 10 "$ind$contrib"    "contributions of the individuals"
## 11 "$call"           "intermediate results"            
## 12 "$call$marge.col" "weights of columns"              
## 13 "$call$marge.li"  "weights of rows"
library("factoextra")

eig.val <-get_eigenvalue (res.mca)
  # head (eig. val)
fviz_screeplot (res.mca, addlabels = TRUE, ylim = c(0, 45))

fviz_mca_biplot(res.mca,
                repel = TRUE, # Avoid text overlapping (slow if many point) 
                ggtheme = theme_minimal())

var <- get_mca_var(res.mca)

var
## Multiple Correspondence Analysis Results for variables
##  ===================================================
##   Name       Description                  
## 1 "$coord"   "Coordinates for categories" 
## 2 "$cos2"    "Cos2 for categories"        
## 3 "$contrib" "contributions of categories"
# Coordinates

head (var$coord)
##               Dim 1       Dim 2        Dim 3       Dim 4       Dim 5
## Nausea_n  0.2673909  0.12139029 -0.265583253  0.03376130  0.07370500
## Nausea_y -0.9581506 -0.43498187  0.951673323 -0.12097801 -0.26410958
## Vomit_n   0.4790279 -0.40919465  0.084492799  0.27361142  0.05245250
## Vomit_y  -0.7185419  0.61379197 -0.126739198 -0.41041713 -0.07867876
## Abdo_n    1.3180221 -0.03574501 -0.005094243 -0.15360951 -0.06986987
## Abdo_y   -0.6411999  0.01738946  0.002478280  0.07472895  0.03399075
# Cos2: quality on the factore nap
head (var$cos2)
##              Dim 1        Dim 2        Dim 3       Dim 4       Dim 5
## Nausea_n 0.2562007 0.0528025759 2.527485e-01 0.004084375 0.019466197
## Nausea_y 0.2562007 0.0528025759 2.527485e-01 0.004084375 0.019466197
## Vomit_n  0.3442016 0.2511603912 1.070855e-02 0.112294813 0.004126898
## Vomit_y  0.3442016 0.2511603912 1.070855e-02 0.112294813 0.004126898
## Abdo_n   0.8451157 0.0006215864 1.262496e-05 0.011479077 0.002374929
## Abdo_y   0.8451157 0.0006215864 1.262496e-05 0.011479077 0.002374929
# Contributions to the principal components 
head(var$contrib)
##              Dim 1       Dim 2        Dim 3      Dim 4      Dim 5
## Nausea_n  1.515869  0.81100008 4.670018e+00 0.08449397 0.48977906
## Nausea_y  5.431862  2.90608363 1.673423e+01 0.30277007 1.75504164
## Vomit_n   3.733667  7.07226253 3.627455e-01 4.25893721 0.19036376
## Vomit_y   5.600500 10.60839380 5.441183e-01 6.38840581 0.28554563
## Abdo_n   15.417637  0.02943661 7.192511e-04 0.73219636 0.18424268
## Abdo_y    7.500472  0.01432051 3.499060e-04 0.35620363 0.08963157
fviz_mca_var(res.mca, choice = "mca.cor",
             repel = TRUE, # Avoid text overlapping (slow)
             ggtheme = theme_minimal())

head (round(var$coord, 2), 4)
##          Dim 1 Dim 2 Dim 3 Dim 4 Dim 5
## Nausea_n  0.27  0.12 -0.27  0.03  0.07
## Nausea_y -0.96 -0.43  0.95 -0.12 -0.26
## Vomit_n   0.48 -0.41  0.08  0.27  0.05
## Vomit_y  -0.72  0.61 -0.13 -0.41 -0.08
fviz_mca_var(res.mca,
             repel = TRUE, # Avoid text overlapping (slow)
             ggtheme = theme_minimal())

fviz_mca_var(res.mca, col.var="black", shape.var = 15,
             repel = TRUE)

head(var$cos2, 4)
##              Dim 1      Dim 2      Dim 3       Dim 4       Dim 5
## Nausea_n 0.2562007 0.05280258 0.25274850 0.004084375 0.019466197
## Nausea_y 0.2562007 0.05280258 0.25274850 0.004084375 0.019466197
## Vomit_n  0.3442016 0.25116039 0.01070855 0.112294813 0.004126898
## Vomit_y  0.3442016 0.25116039 0.01070855 0.112294813 0.004126898
# Color by cos2 values: quality on the factor map
fviz_mca_var(res.mca, col.var = "cos2",
             gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"),
             repel = TRUE, # Avoid text overlapping
             ggtheme = theme_minimal())

# Change the transparency by cos2 values
fviz_mca_var(res.mca, alpha.var="cos2",
             repel = TRUE,
             ggtheme = theme_minimal())

library("corrplot") 
corrplot (var$cos2, is.corr=FALSE)

# Cos2 of variable categories on Dim. 1 and Dim. 2
fviz_cos2(res.mca, choice = "var", axes = 1:2)

head (round (var$contrib, 2), 4)
##          Dim 1 Dim 2 Dim 3 Dim 4 Dim 5
## Nausea_n  1.52  0.81  4.67  0.08  0.49
## Nausea_y  5.43  2.91 16.73  0.30  1.76
## Vomit_n   3.73  7.07  0.36  4.26  0.19
## Vomit_y   5.60 10.61  0.54  6.39  0.29
# Contributions of rows to dimension 1
fviz_contrib (res.mca, choice = "var", axes = 1, top = 15)

# Contributions of rows to dimension 2 
fviz_contrib (res.mca, choice = "var", axes = 2, top = 15)

# Total contribution to dimension 1 and 2

fviz_contrib (res.mca, choice = "var", axes = 1:2, top = 15)

fviz_mca_var(res.mca, col.var = "contrib",
             gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"),
             repel = TRUE, # avoid text overlapping (slow)
             ggtheme = theme_minimal()
             )

# Change the transparency by contrib values
fviz_mca_var(res.mca, alpha.var="contrib",
             repel = TRUE,
             ggtheme = theme_minimal())

ind <- get_mca_ind(res.mca)

ind
## Multiple Correspondence Analysis Results for individuals
##  ===================================================
##   Name       Description                       
## 1 "$coord"   "Coordinates for the individuals" 
## 2 "$cos2"    "Cos2 for the individuals"        
## 3 "$contrib" "contributions of the individuals"
#Coordinates of column points
head (ind$coord)
##        Dim 1       Dim 2       Dim 3       Dim 4       Dim 5
## 1 -0.4525811 -0.26415072  0.17151614  0.01369348 -0.11696806
## 2  0.8361700 -0.03193457 -0.07208249 -0.08550351  0.51978710
## 3 -0.4481892  0.13538726 -0.22484048 -0.14170168 -0.05004753
## 4  0.8803694 -0.08536230 -0.02052044 -0.07275873 -0.22935022
## 5 -0.4481892  0.13538726 -0.22484048 -0.14170168 -0.05004753
## 6 -0.3594324 -0.43604390 -1.20932223  1.72464616  0.04348157
#Quality of representation 
head (ind$cos2)
##        Dim 1        Dim 2        Dim 3        Dim 4        Dim 5
## 1 0.34652591 0.1180447167 0.0497683175 0.0003172275 0.0231460846
## 2 0.55589562 0.0008108236 0.0041310808 0.0058126211 0.2148103098
## 3 0.54813888 0.0500176790 0.1379484860 0.0547920948 0.0068349171
## 4 0.74773962 0.0070299584 0.0004062504 0.0051072923 0.0507479873
## 5 0.54813888 0.0500176790 0.1379484860 0.0547920948 0.0068349171
## 6 0.02485357 0.0365775483 0.2813443706 0.5722083217 0.0003637178
# Contributions

head (ind$contrib)
##      Dim 1      Dim 2        Dim 3        Dim 4      Dim 5
## 1 1.110927 0.98238297  0.498254685  0.003555817 0.31554778
## 2 3.792117 0.01435818  0.088003703  0.138637089 6.23134138
## 3 1.089470 0.25806722  0.856229950  0.380768961 0.05776914
## 4 4.203611 0.10259105  0.007132055  0.100387990 1.21319013
## 5 1.089470 0.25806722  0.856229950  0.380768961 0.05776914
## 6 0.700692 2.67693398 24.769968729 56.404214518 0.04360547
fviz_mca_ind(res.mca, col.ind = "cos2",
             gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"),
             repel = TRUE, # Avoid text overlapping (slow if many points)
             ggtheme = theme_minimal())

# Cos2 of individuals
fviz_cos2 (res.mca, choice = "ind", axes = 1:2, top = 20)

# Contribution of individuals to the dimensions

fviz_contrib(res.mca, choice = "ind", axes = 1:2, top = 20)

fviz_mca_ind (res.mca,
              label = "none", # hide individual labels
              habillage = "Vomiting", # color by groups
              palette = c("#00AFBB", "#E7B800"), 
              addEllipses = TRUE, ellipse.type = "confidence",
              ggtheme = theme_minimal())

#habillage inder of the column to be used as grouping variable
fviz_mca_ind(res.mca, habillage = 2, addEllipses = TRUE)

#habillage external grouping variable

fviz_mca_ind(res.mca, habillage = poison$Vomiting, addEllipses = TRUE)

fviz_ellipses (res.mca, c("Vomiting", "Fever"),
               geom = "point")
## Warning: `gather_()` was deprecated in tidyr 1.2.0.
## ℹ Please use `gather()` instead.
## ℹ The deprecated feature was likely used in the factoextra package.
##   Please report the issue at <https://github.com/kassambara/factoextra/issues>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.

fviz_ellipses (res.mca, 1:4, geom = "point")

res.desc <- dimdesc(res.mca, axes = c(1,2))

# Description of dimension 1
res.desc[[1]]
## 
## Link between the variable and the categorical variable (1-way anova)
## =============================================
##                   R2      p.value
## Abdominals 0.8451157 4.055640e-23
## Diarrhae   0.7994680 3.910776e-20
## Fever      0.7846788 2.600566e-19
## Mayo       0.3829749 4.756234e-07
## Vomiting   0.3442016 2.510738e-06
## Nausea     0.2562007 8.062777e-05
## Cheese     0.1944181 7.534834e-04
## 
## Link between variable and the categories of the categorical variables
## ================================================================
##                       Estimate      p.value
## Abdominals=Abdo_n    0.5671866 4.055640e-23
## Diarrhae=Diarrhea_n  0.5380920 3.910776e-20
## Fever=Fever_n        0.5330918 2.600566e-19
## Mayo=Mayo_n          0.4644981 4.756234e-07
## Vomiting=Vomit_n     0.3466915 2.510738e-06
## Nausea=Nausea_n      0.3547892 8.062777e-05
## Cheese=Cheese_n      0.3830043 7.534834e-04
## Cheese=Cheese_y     -0.3830043 7.534834e-04
## Nausea=Nausea_y     -0.3547892 8.062777e-05
## Vomiting=Vomit_y    -0.3466915 2.510738e-06
## Mayo=Mayo_y         -0.4644981 4.756234e-07
## Fever=Fever_y       -0.5330918 2.600566e-19
## Diarrhae=Diarrhea_y -0.5380920 3.910776e-20
## Abdominals=Abdo_y   -0.5671866 4.055640e-23
# Description of dimension 2
res.desc[[2]]
## 
## Link between the variable and the categorical variable (1-way anova)
## =============================================
##                  R2      p.value
## Courgette 0.4464145 2.500166e-08
## Potato    0.3957543 2.690662e-07
## Vomiting  0.2511604 9.728027e-05
## Icecream  0.1409011 4.743927e-03
## 
## Link between variable and the categories of the categorical variables
## ================================================================
##                       Estimate      p.value
## Courgette=Courg_n    0.4176013 2.500166e-08
## Potato=Potato_y      0.4977523 2.690662e-07
## Vomiting=Vomit_y     0.1838104 9.728027e-05
## Icecream=Icecream_n  0.2597197 4.743927e-03
## Icecream=Icecream_y -0.2597197 4.743927e-03
## Vomiting=Vomit_n    -0.1838104 9.728027e-05
## Potato=Potato_n     -0.4977523 2.690662e-07
## Courgette=Courg_y   -0.4176013 2.500166e-08
res.mca <- MCA (poison, ind.sup = 53:55,
                quanti.sup = 1:2, quali.sup = 3:4, graph=FALSE)
#Supplementary qualitative variable categories
res.mca$quali.sup
## $coord
##              Dim 1         Dim 2       Dim 3        Dim 4       Dim 5
## Sick_n  1.41809140  0.0020394048  0.13199139 -0.016036841 -0.08354663
## Sick_y -0.63026284 -0.0009064021 -0.05866284  0.007127485  0.03713184
## F      -0.03108147  0.1123143957  0.05033124 -0.055927173 -0.06832928
## M       0.03356798 -0.1212995474 -0.05435774  0.060401347  0.07379562
## 
## $cos2
##              Dim 1        Dim 2       Dim 3        Dim 4       Dim 5
## Sick_n 0.893770319 1.848521e-06 0.007742990 0.0001143023 0.003102240
## Sick_y 0.893770319 1.848521e-06 0.007742990 0.0001143023 0.003102240
## F      0.001043342 1.362369e-02 0.002735892 0.0033780765 0.005042401
## M      0.001043342 1.362369e-02 0.002735892 0.0033780765 0.005042401
## 
## $v.test
##             Dim 1        Dim 2      Dim 3       Dim 4      Dim 5
## Sick_n  6.7514655  0.009709509  0.6284047 -0.07635063 -0.3977615
## Sick_y -6.7514655 -0.009709509 -0.6284047  0.07635063  0.3977615
## F      -0.2306739  0.833551410  0.3735378 -0.41506855 -0.5071119
## M       0.2306739 -0.833551410 -0.3735378  0.41506855  0.5071119
## 
## $eta2
##            Dim 1        Dim 2       Dim 3        Dim 4       Dim 5
## Sick 0.893770319 1.848521e-06 0.007742990 0.0001143023 0.003102240
## Sex  0.001043342 1.362369e-02 0.002735892 0.0033780765 0.005042401
#Supplementary quantitative variables
res.mca$quanti
## $coord
##             Dim 1       Dim 2       Dim 3       Dim 4       Dim 5
## Age   0.003934896 -0.00741340 -0.26494536  0.20015501  0.02928483
## Time -0.838158507 -0.08330586 -0.08718851 -0.08421599 -0.02316931
#Supplementary individuals
res.mca$ind.sup
## $coord
##         Dim 1     Dim 2      Dim 3      Dim 4      Dim 5
## 53  1.0835684 0.5172478  0.5794063  0.5390903  0.4553650
## 54 -0.1249473 0.1417271 -0.1765234 -0.1526587 -0.2779565
## 55 -0.4315948 0.1270468 -0.2071580 -0.1186804 -0.1891760
## 
## $cos2
##         Dim 1      Dim 2      Dim 3      Dim 4      Dim 5
## 53 0.36304957 0.08272764 0.10380536 0.08986204 0.06411692
## 54 0.03157652 0.04062716 0.06302535 0.04713607 0.15626590
## 55 0.50232519 0.04352713 0.11572730 0.03798314 0.09650827
#Baplot of individuals and variable categories
fviz_mca_biplot(res.mca, repel = TRUE,
                ggtheme = theme_minimal())

fviz_mca_var(res.mca, choice = "mca.cor",
             repel = TRUE)

fviz_mca_var(res.mca, repel = TRUE,
             ggtheme = theme_minimal())

fviz_mca_var(res.mca, choice = "quanti.sup",
             ggtheme = theme_minimal())

fviz_mca_ind (res.mca,
              label = "ind.sup", #Show the label of ind.sup only 
              ggtheme = theme_minimal())

# Visualize variable categories with cos2 >= 0.4
fviz_mca_var(res.mca, select.var = list(cos2 = 0.4))

# Top 10 active variables with the highest cos2 
fviz_mca_var(res.mca, select.var = list(cos2 = 10))

# Select by names

name <- list(name= c("Fever_n", "Abdo_y", "Diarrhea_n",
                     "Fever_Y", "Vomit_y", "Vomit_n"))

fviz_mca_var(res.mca, select.var = name)

# top 5 contributing individuals and variable categories
fviz_mca_biplot(res.mca, select.ind = list(contrib = 5),
                select.var = list (contrib = 5),
                ggtheme = theme_minimal())

# Scree plot
scree.plot <- fviz_eig(res.mca)

#Biplot of row and column variables
biplot.mca <- fviz_mca_biplot(res.mca)
library(ggpubr)
ggexport (plotlist = list(scree.plot, biplot.mca),
          filename = "MCA.pdf")
## file saved to MCA.pdf
#Export into a TXT file
write.infile(res.mca, "aca.txt", sep="\t")

#Export into a CSV file 
write.infile(res.mca, "mca.csv", sep=";")
library("ade4")

res.mca <- dudi.acm(poison.active, scannf= FALSE, nf = 5)
library("ExPosition")

res.mca <- epMCA(poison.active, graph = FALSE, correction = "bg")
fviz_eig(res.mca) # Scree plot

fviz_mca_biplot (res.mca) # Biplot of rows and columns

library("FactoMineR")
data(wine)

df <- wine [,c(1,2, 16, 22, 29, 28, 30,31)]

head (df [, 1:7], 4)
##           Label Soil Plante Acidity Harmony Intensity Overall.quality
## 2EL      Saumur Env1  2.000   2.107   3.143     2.857           3.393
## 1CHA     Saumur Env1  2.000   2.107   2.964     2.893           3.214
## 1FON Bourgueuil Env1  1.750   2.179   3.143     3.074           3.536
## 1VAU     Chinon Env2  2.304   3.179   2.038     2.462           2.464
str(df)
## 'data.frame':    21 obs. of  8 variables:
##  $ Label          : Factor w/ 3 levels "Saumur","Bourgueuil",..: 1 1 2 3 1 2 2 1 3 1 ...
##  $ Soil           : Factor w/ 4 levels "Reference","Env1",..: 2 2 2 3 1 1 1 2 2 3 ...
##  $ Plante         : num  2 2 1.75 2.3 1.76 ...
##  $ Acidity        : num  2.11 2.11 2.18 3.18 2.57 ...
##  $ Harmony        : num  3.14 2.96 3.14 2.04 3.64 ...
##  $ Intensity      : num  2.86 2.89 3.07 2.46 3.64 ...
##  $ Overall.quality: num  3.39 3.21 3.54 2.46 3.74 ...
##  $ Typical        : num  3.25 3.04 3.18 2.25 3.44 ...
library (FactoMineR)

res.famd <- FAMD (df, graph = FALSE)
print(res.famd)
## *The results are available in the following objects:
## 
##   name          description                             
## 1 "$eig"        "eigenvalues and inertia"               
## 2 "$var"        "Results for the variables"             
## 3 "$ind"        "results for the individuals"           
## 4 "$quali.var"  "Results for the qualitative variables" 
## 5 "$quanti.var" "Results for the quantitative variables"
library("factoextra")

eig.val <- get_eigenvalue(res.famd)

head(eig.val)
##       eigenvalue variance.percent cumulative.variance.percent
## Dim.1  4.8315174        43.922886                    43.92289
## Dim.2  1.8568797        16.880724                    60.80361
## Dim.3  1.5824794        14.386176                    75.18979
## Dim.4  1.1491200        10.446546                    85.63633
## Dim.5  0.6518053         5.925503                    91.56183
fviz_screeplot(res.famd)

var <- get_famd_var(res.famd)

var
## FAMD results for variables 
##  ===================================================
##   Name       Description                      
## 1 "$coord"   "Coordinates"                    
## 2 "$cos2"    "Cos2, quality of representation"
## 3 "$contrib" "Contributions"
#Coordinates of variables

head (var$coord)
##                     Dim.1       Dim.2       Dim.3       Dim.4        Dim.5
## Plante          0.7344160 0.060551966 0.105902048 0.004011299 0.0010340559
## Acidity         0.1732738 0.491118153 0.126394029 0.115376784 0.0045862935
## Harmony         0.8943968 0.023628146 0.040124469 0.003653813 0.0086624633
## Intensity       0.6991811 0.134639254 0.065382234 0.023214984 0.0064730431
## Overall.quality 0.9115699 0.005246728 0.009336677 0.005445276 0.0007961880
## Typical         0.7808611 0.027094327 0.001549791 0.083446627 0.0005912942
# Cos2: quality of representation on the factore map
head (var$cos2)
##                      Dim.1        Dim.2        Dim.3        Dim.4        Dim.5
## Plante          0.53936692 3.666541e-03 1.121524e-02 1.609052e-05 1.069272e-06
## Acidity         0.03002381 2.411970e-01 1.597545e-02 1.331180e-02 2.103409e-05
## Harmony         0.79994566 5.582893e-04 1.609973e-03 1.335035e-05 7.503827e-05
## Intensity       0.48885427 1.812773e-02 4.274836e-03 5.389355e-04 4.190029e-05
## Overall.quality 0.83095973 2.752815e-05 8.717353e-05 2.965103e-05 6.339153e-07
## Typical         0.60974400 7.341026e-04 2.401853e-06 6.963340e-03 3.496288e-07
# Contributions to the dimensions
head (var$contrib)
##                     Dim.1      Dim.2      Dim.3      Dim.4      Dim.5
## Plante          15.200526  3.2609526 6.69215972  0.3490757 0.15864490
## Acidity          3.586323 26.4485720 7.98708850 10.0404466 0.70362936
## Harmony         18.511716  1.2724651 2.53554453  0.3179662 1.32899551
## Intensity       14.471254  7.2508336 4.13163258  2.0202401 0.99309457
## Overall.quality 18.867156  0.2825562 0.59000304  0.4738648 0.12215119
## Typical         16.161818  1.4591321 0.09793437  7.2617850 0.09071638
# Plot of variables
fviz_famd_var(res.famd, repel = TRUE)

# Contribution to the first dimension
fviz_contrib(res.famd, "var", axes = 1)

# Contribution to the second dimension
fviz_contrib(res.famd, "var", axes = 2)

quanti.var <- get_famd_var(res.famd, "quanti.var") 
quanti.var
## FAMD results for quantitative variables 
##  ===================================================
##   Name       Description                      
## 1 "$coord"   "Coordinates"                    
## 2 "$cos2"    "Cos2, quality of representation"
## 3 "$contrib" "Contributions"
fviz_famd_var(res.famd, "quanti.var", repel = TRUE,
              col.var = "black")

fviz_famd_var(res.famd, "quanti.var", col.var = "contrib",
              gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"),
              repel = TRUE)

#Color by cos2 values: quality on the factor map
fviz_famd_var(res.famd, "quanti.var", col.var = "cos2",
              gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"),
              repel = TRUE)

quali.var <- get_famd_var (res.famd, "quali.var") 
quali.var
## FAMD results for qualitative variable categories 
##  ===================================================
##   Name       Description                      
## 1 "$coord"   "Coordinates"                    
## 2 "$cos2"    "Cos2, quality of representation"
## 3 "$contrib" "Contributions"
fviz_famd_var(res.famd, "quali.var", col.var = "contrib",
              gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07")
)

ind <- get_famd_ind(res.famd)
ind
## FAMD results for individuals 
##  ===================================================
##   Name       Description                      
## 1 "$coord"   "Coordinates"                    
## 2 "$cos2"    "Cos2, quality of representation"
## 3 "$contrib" "Contributions"
fviz_famd_ind (res.famd, col.ind = "cos2",
               gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"),
               repel = TRUE)

fviz_mfa_ind (res.famd,
              habillage = "Label", # color by groups 
              palette = c("#00AFBB", "#E7B800", "#FC4E07"), 
              addEllipses = TRUE, ellipse.type = "confidence",
              repel = TRUE # Avoid text overlapping
)

fviz_ellipses (res.famd, c("Label", "Soil"), repel = TRUE)

fviz_ellipses (res.famd, 1:2, geom = "point")