Erosion sin encisales

Aca se analiza como se distribuye la erosion para las piezas 17 15 21 acumulando para cada pieza la cara V,P,I

library(survey)
## 
## Attaching package: 'survey'
## 
## The following object(s) are masked from 'package:graphics':
## 
##     dotchart
options(OutDec = ",")
library(car)
## Loading required package: MASS
## Loading required package: nnet
load("~/Dropbox/odontologia/maestria licet/octubre 2013/datos_licet_10112013.RData")

erosion_sin <- read.csv("erosion_sin.csv")

diseniopost1$variables <- cbind(diseniopost1$variables[, 1:455], erosion_sin[, 
    c(2:29)], diseniopost1$variables[, 484:487])
names(diseniopost1$variables[, 456:483])
##  [1] "Eros17" "Eros16" "Eros15" "Eros14" "Eros13" "Eros12" "Eros11"
##  [8] "Eros21" "Eros22" "Eros23" "Eros24" "Eros25" "Eros26" "Eros27"
## [15] "Eros37" "Eros36" "Eros35" "Eros34" "Eros33" "Eros32" "Eros31"
## [22] "Eros41" "Eros42" "Eros43" "Eros44" "Eros45" "Eros46" "Eros47"

Recodifica y pasa a Factores

diseniopost1$variables$Eros17 <- as.factor(diseniopost1$variables$Eros17)
diseniopost1$variables$Eros16 <- as.factor(diseniopost1$variables$Eros16)
diseniopost1$variables$Eros15 <- as.factor(diseniopost1$variables$Eros15)
diseniopost1$variables$Eros14 <- as.factor(diseniopost1$variables$Eros14)
diseniopost1$variables$Eros13 <- as.factor(diseniopost1$variables$Eros13)
diseniopost1$variables$Eros12 <- as.factor(diseniopost1$variables$Eros12)
diseniopost1$variables$Eros11 <- as.factor(diseniopost1$variables$Eros11)
diseniopost1$variables$Eros21 <- as.factor(diseniopost1$variables$Eros21)
diseniopost1$variables$Eros22 <- as.factor(diseniopost1$variables$Eros22)
diseniopost1$variables$Eros23 <- as.factor(diseniopost1$variables$Eros23)
diseniopost1$variables$Eros24 <- as.factor(diseniopost1$variables$Eros24)
diseniopost1$variables$Eros25 <- as.factor(diseniopost1$variables$Eros25)
diseniopost1$variables$Eros26 <- as.factor(diseniopost1$variables$Eros26)
diseniopost1$variables$Eros27 <- as.factor(diseniopost1$variables$Eros27)
diseniopost1$variables$Eros37 <- as.factor(diseniopost1$variables$Eros37)
diseniopost1$variables$Eros36 <- as.factor(diseniopost1$variables$Eros36)
diseniopost1$variables$Eros35 <- as.factor(diseniopost1$variables$Eros35)
diseniopost1$variables$Eros34 <- as.factor(diseniopost1$variables$Eros34)
diseniopost1$variables$Eros33 <- as.factor(diseniopost1$variables$Eros33)
diseniopost1$variables$Eros32 <- as.factor(diseniopost1$variables$Eros32)
diseniopost1$variables$Eros31 <- as.factor(diseniopost1$variables$Eros31)
diseniopost1$variables$Eros41 <- as.factor(diseniopost1$variables$Eros41)
diseniopost1$variables$Eros42 <- as.factor(diseniopost1$variables$Eros42)
diseniopost1$variables$Eros43 <- as.factor(diseniopost1$variables$Eros43)
diseniopost1$variables$Eros44 <- as.factor(diseniopost1$variables$Eros44)
diseniopost1$variables$Eros45 <- as.factor(diseniopost1$variables$Eros45)
diseniopost1$variables$Eros46 <- as.factor(diseniopost1$variables$Eros46)
diseniopost1$variables$Eros47 <- as.factor(diseniopost1$variables$Eros47)

save.image("~/Dropbox/odontologia/maestria licet/octubre 2013/datos_licet_10112013.RData")

summary(diseniopost1$variables[, 456:483])
##   Eros17      Eros16     Eros15     Eros14     Eros13     Eros12   
##  0   :1032   0   :841   0   :996   0   :916   0   :943   0   :632  
##  1   :   3   1   :271   1   : 37   1   :112   1   : 87   1   :287  
##  NA's: 119   2   : 22   2   :  2   2   :  7   2   :  5   2   :217  
##              3   :  2   NA's:119   NA's:119   NA's:119   NA's: 18  
##              NA's: 18                                              
##   Eros11     Eros21     Eros22     Eros23     Eros24     Eros25    
##  0   :577   0   :579   0   :625   0   :957   0   :943   0   :1007  
##  1   :264   1   :274   1   :294   1   : 68   1   : 88   1   :  26  
##  2   :295   2   :283   2   :217   2   :  9   2   :  4   2   :   2  
##  NA's: 18   NA's: 18   NA's: 18   NA's:120   NA's:119   NA's: 119  
##                                                                    
##   Eros26     Eros27      Eros37      Eros36     Eros35      Eros34    
##  0   :889   0   :1034   0   :1032   0   :911   0   :1011   0   :1009  
##  1   :225   1   :   1   1   :   2   1   :208   1   :  24   1   :  25  
##  2   : 19   NA's: 119   2   :   1   2   : 16   NA's: 119   2   :   1  
##  3   :  3               NA's: 119   3   :  1               NA's: 119  
##  NA's: 18                           NA's: 18                          
##   Eros33     Eros32     Eros31     Eros41     Eros42     Eros43   
##  0   :990   0   :911   0   :849   0   :837   0   :883   0   :984  
##  1   : 42   1   :174   1   :229   1   :241   1   :190   1   : 46  
##  2   :  3   2   : 51   2   : 58   2   : 58   2   : 60   2   :  5  
##  NA's:119   NA's: 18   NA's: 18   NA's: 18   3   :  3   NA's:119  
##                                              NA's: 18             
##   Eros44      Eros45      Eros46     Eros47    
##  0   :1004   0   :1016   0   :884   0   :1029  
##  1   :  29   1   :  18   1   :237   1   :   5  
##  2   :   2   3   :   1   2   : 15   3   :   1  
##  NA's: 119   NA's: 119   NA's: 18   NA's: 119  
## 
Ero17 <- svymean(~Eros17, diseniopost1, na.rm = TRUE, deff = TRUE)
round(Ero17 * 100, 1)
##             mean       SE DEff
## Eros170 9,99e+01 6,06e-04 0,43
## Eros171 1,00e-01 6,06e-04 0,43
Ero16 <- svymean(~Eros16, diseniopost1, na.rm = TRUE, deff = TRUE)
round(Ero16 * 100, 1)
##             mean       SE DEff
## Eros160 75,50000  0,02623 4,40
## Eros161 22,00000  0,02361 3,85
## Eros162  2,50000  0,00822 3,34
## Eros163  0,10000  0,00104 1,23
Ero15 <- svymean(~Eros15, diseniopost1, na.rm = TRUE, deff = TRUE)
round(Ero15 * 100, 1)
##             mean       SE DEff
## Eros150 95,50000  0,00709 1,27
## Eros151  3,90000  0,00740 1,57
## Eros152  0,60000  0,00410 3,17
Ero14 <- svymean(~Eros14, diseniopost1, na.rm = TRUE, deff = TRUE)
round(Ero14 * 100, 1)
##             mean       SE DEff
## Eros140 88,50000  0,01471 2,30
## Eros141 10,10000  0,01130 1,52
## Eros142  1,40000  0,00871 5,91
Ero13 <- svymean(~Eros13, diseniopost1, na.rm = TRUE, deff = TRUE)
round(Ero13 * 100, 1)
##             mean       SE DEff
## Eros130 90,20000  0,02115 5,44
## Eros131  8,90000  0,02030 5,46
## Eros132  0,90000  0,00347 1,45
Ero12 <- svymean(~Eros12, diseniopost1, na.rm = TRUE, deff = TRUE)
round(Ero12 * 100, 1)
##            mean      SE  DEff
## Eros120 55,7000  0,0395  7,49
## Eros121 21,8000  0,0237  3,91
## Eros122 22,5000  0,0444 13,39
Ero11 <- svymean(~Eros11, diseniopost1, na.rm = TRUE, deff = TRUE)
round(Ero11 * 100, 1)
##            mean      SE DEff
## Eros110 51,1000  0,0389 7,17
## Eros111 19,9000  0,0235 4,12
## Eros112 29,0000  0,0417 9,98


Ero21 <- svymean(~Eros21, diseniopost1, na.rm = TRUE, deff = TRUE)
round(Ero21 * 100, 1)
##            mean      SE DEff
## Eros210 51,7000  0,0343 5,58
## Eros211 21,3000  0,0268 5,09
## Eros212 27,0000  0,0384 8,82
Ero22 <- svymean(~Eros22, diseniopost1, na.rm = TRUE, deff = TRUE)
round(Ero22 * 100, 1)
##            mean      SE  DEff
## Eros220 55,2000  0,0342  5,60
## Eros221 23,2000  0,0259  4,48
## Eros222 21,6000  0,0390 10,62
Ero23 <- svymean(~Eros23, diseniopost1, na.rm = TRUE, deff = TRUE)
round(Ero23 * 100, 1)
##             mean       SE DEff
## Eros230 91,90000  0,01886 5,14
## Eros231  6,50000  0,01469 3,82
## Eros232  1,60000  0,00556 2,11
Ero24 <- svymean(~Eros24, diseniopost1, na.rm = TRUE, deff = TRUE)
round(Ero24 * 100, 1)
##             mean       SE DEff
## Eros240 92,50000  0,01401 3,04
## Eros241  6,30000  0,01430 3,75
## Eros242  1,30000  0,00986 8,43
Ero25 <- svymean(~Eros25, diseniopost1, na.rm = TRUE, deff = TRUE)
round(Ero25 * 100, 1)
##             mean       SE DEff
## Eros250 97,20000  0,00936 3,42
## Eros251  2,30000  0,00587 1,67
## Eros252  0,60000  0,00410 3,17
Ero26 <- svymean(~Eros26, diseniopost1, na.rm = TRUE, deff = TRUE)
round(Ero26 * 100, 1)
##             mean       SE DEff
## Eros260 79,70000  0,02580 4,87
## Eros261 18,10000  0,02285 4,18
## Eros262  2,00000  0,00818 3,99
## Eros263  0,20000  0,00136 1,11
Ero27 <- svymean(~Eros27, diseniopost1, na.rm = TRUE, deff = TRUE)
round(Ero27 * 100, 1)
##             mean       SE DEff
## Eros270 1,00e+02 2,06e-04 0,23
## Eros271 0,00e+00 2,06e-04 0,23

Ero31 <- svymean(~Eros31, diseniopost1, na.rm = TRUE, deff = TRUE)
round(Ero31 * 100, 1)
##            mean      SE  DEff
## Eros310 72,8000  0,0385  8,85
## Eros311 18,8000  0,0169  2,23
## Eros312  8,4000  0,0286 12,60
Ero32 <- svymean(~Eros32, diseniopost1, na.rm = TRUE, deff = TRUE)
round(Ero32 * 100, 1)
##            mean      SE  DEff
## Eros320 77,6000  0,0357  8,70
## Eros321 14,5000  0,0145  1,99
## Eros322  7,9000  0,0285 13,29
Ero33 <- svymean(~Eros33, diseniopost1, na.rm = TRUE, deff = TRUE)
round(Ero33 * 100, 1)
##             mean       SE  DEff
## Eros330 92,40000  0,02850 12,55
## Eros331  6,80000  0,02601 11,47
## Eros332  0,70000  0,00303  1,37
Ero34 <- svymean(~Eros34, diseniopost1, na.rm = TRUE, deff = TRUE)
round(Ero34 * 100, 1)
##             mean       SE DEff
## Eros340 96,40000  0,01475 6,68
## Eros341  3,30000  0,01222 5,04
## Eros342  0,30000  0,00296 2,77
Ero35 <- svymean(~Eros35, diseniopost1, na.rm = TRUE, deff = TRUE)
round(Ero35 * 100, 1)
##            mean      SE DEff
## Eros350 96,8000  0,0126 5,45
## Eros351  3,2000  0,0126 5,45
Ero36 <- svymean(~Eros36, diseniopost1, na.rm = TRUE, deff = TRUE)
round(Ero36 * 100, 1)
##             mean       SE DEff
## Eros360 8,28e+01 2,06e-02 3,53
## Eros361 1,56e+01 1,93e-02 3,34
## Eros362 1,50e+00 6,42e-03 3,26
## Eros363 1,00e-01 6,59e-04 0,78
Ero37 <- svymean(~Eros37, diseniopost1, na.rm = TRUE, deff = TRUE)
round(Ero37 * 100, 1)
##             mean       SE DEff
## Eros370 9,96e+01 2,94e-03 2,29
## Eros371 1,00e-01 4,87e-04 0,39
## Eros372 3,00e-01 2,96e-03 2,77


Ero41 <- svymean(~Eros41, diseniopost1, na.rm = TRUE, deff = TRUE)
round(Ero41 * 100, 1)
##            mean      SE  DEff
## Eros410 72,7000  0,0367  8,04
## Eros411 18,8000  0,0170  2,24
## Eros412  8,5000  0,0287 12,58
Ero42 <- svymean(~Eros42, diseniopost1, na.rm = TRUE, deff = TRUE)
round(Ero42 * 100, 1)
##             mean       SE  DEff
## Eros420 7,67e+01 3,90e-02 10,07
## Eros421 1,48e+01 1,59e-02  2,37
## Eros422 8,40e+00 2,84e-02 12,35
## Eros423 1,00e-01 4,31e-04  0,39
Ero43 <- svymean(~Eros43, diseniopost1, na.rm = TRUE, deff = TRUE)
round(Ero43 * 100, 1)
##             mean       SE  DEff
## Eros430 92,10000  0,02821 11,79
## Eros431  7,10000  0,02956 14,25
## Eros432  0,80000  0,00354  1,74
Ero44 <- svymean(~Eros44, diseniopost1, na.rm = TRUE, deff = TRUE)
round(Ero44 * 100, 1)
##             mean       SE DEff
## Eros440 96,00000  0,01332 5,03
## Eros441  3,50000  0,01061 3,62
## Eros442  0,50000  0,00323 2,35
Ero45 <- svymean(~Eros45, diseniopost1, na.rm = TRUE, deff = TRUE)
round(Ero45 * 100, 1)
##             mean       SE DEff
## Eros450 97,80000  0,00690 2,40
## Eros451  2,00000  0,00652 2,29
## Eros453  0,10000  0,00133 1,39
Ero46 <- svymean(~Eros46, diseniopost1, na.rm = TRUE, deff = TRUE)
round(Ero46 * 100, 1)
##             mean       SE DEff
## Eros460 79,90000  0,02424 4,34
## Eros461 18,20000  0,02303 4,22
## Eros462  1,90000  0,00507 1,65
Ero47 <- svymean(~Eros47, diseniopost1, na.rm = TRUE, deff = TRUE)
round(Ero47 * 100, 1)
##             mean       SE DEff
## Eros470 99,10000  0,00623 4,78
## Eros471  0,70000  0,00609 5,41
## Eros473  0,10000  0,00133 1,39


svychisq(~Eros21 + Sexo.rec, diseniopost1, statistic = "Wald")
## 
##  Design-based Wald test of association
## 
## data:  svychisq(~Eros21 + Sexo.rec, diseniopost1, statistic = "Wald") 
## F = 0,5285, ndf = 2, ddf = 39, p-value = 0,5937