library(seminr)
## Warning: 套件 'seminr' 是用 R 版本 4.2.3 來建造的
secdata <- read.csv("C:/R-language/BACS/security_data_sem.csv")

Question 1) Composite Path Models using PLS-PM

1-a) Create a PLS path model using SEMinR, with all the following characteristics:

1-a-i) Measurement model – all constructs are measured as composites:

sec_mm <- constructs(
  composite("TRUST", multi_items("TRST", 1:4)),
  composite("SEC", multi_items("PSEC", 1:4)),
  composite("REP", multi_items("PREP", 1:4)),
  composite("INV", multi_items("PINV", 1:3)),
  composite("POL", multi_items("PPSS", 1:3)),
  composite("FAML", single_item("FAML1")),
  interaction_term(iv="REP", moderator="POL", method=orthogonal)
)

1-a-ii) Structural Model – paths between constructs as shown in this causal model:

sec_sm <- relationships(
  paths(from = c("FAML","POL","REP","INV","REP*POL"), to = "SEC"),
  paths(from = "SEC", to = "TRUST")
)

1-b) Show us the following results in table or figure formats:

1-b-i) Plot a figure of the estimated model

sec_pls <- estimate_pls(data = secdata, 
                        measurement_model = sec_mm,
                        structural_model = sec_sm)
## Generating the seminr model
## All 405 observations are valid.
plot(sec_pls)

1-b-ii) Weights and loadings of composites

sec_report <- summary(sec_pls)
sec_report$weights
##              FAML   POL   REP   INV REP*POL   SEC TRUST
## TRST1       0.000 0.000 0.000 0.000   0.000 0.000 0.282
## TRST2       0.000 0.000 0.000 0.000   0.000 0.000 0.280
## TRST3       0.000 0.000 0.000 0.000   0.000 0.000 0.286
## TRST4       0.000 0.000 0.000 0.000   0.000 0.000 0.278
## PSEC1       0.000 0.000 0.000 0.000   0.000 0.277 0.000
## PSEC2       0.000 0.000 0.000 0.000   0.000 0.315 0.000
## PSEC3       0.000 0.000 0.000 0.000   0.000 0.307 0.000
## PSEC4       0.000 0.000 0.000 0.000   0.000 0.292 0.000
## PREP1       0.000 0.000 0.215 0.000   0.000 0.000 0.000
## PREP2       0.000 0.000 0.334 0.000   0.000 0.000 0.000
## PREP3       0.000 0.000 0.349 0.000   0.000 0.000 0.000
## PREP4       0.000 0.000 0.287 0.000   0.000 0.000 0.000
## PINV1       0.000 0.000 0.000 0.363   0.000 0.000 0.000
## PINV2       0.000 0.000 0.000 0.395   0.000 0.000 0.000
## PINV3       0.000 0.000 0.000 0.358   0.000 0.000 0.000
## PPSS1       0.000 0.360 0.000 0.000   0.000 0.000 0.000
## PPSS2       0.000 0.395 0.000 0.000   0.000 0.000 0.000
## PPSS3       0.000 0.367 0.000 0.000   0.000 0.000 0.000
## FAML1       1.000 0.000 0.000 0.000   0.000 0.000 0.000
## PREP1*PPSS1 0.000 0.000 0.000 0.000   0.239 0.000 0.000
## PREP1*PPSS2 0.000 0.000 0.000 0.000   0.031 0.000 0.000
## PREP1*PPSS3 0.000 0.000 0.000 0.000   0.021 0.000 0.000
## PREP2*PPSS1 0.000 0.000 0.000 0.000   0.046 0.000 0.000
## PREP2*PPSS2 0.000 0.000 0.000 0.000  -0.104 0.000 0.000
## PREP2*PPSS3 0.000 0.000 0.000 0.000  -0.228 0.000 0.000
## PREP3*PPSS1 0.000 0.000 0.000 0.000  -0.341 0.000 0.000
## PREP3*PPSS2 0.000 0.000 0.000 0.000   0.095 0.000 0.000
## PREP3*PPSS3 0.000 0.000 0.000 0.000   0.108 0.000 0.000
## PREP4*PPSS1 0.000 0.000 0.000 0.000   0.443 0.000 0.000
## PREP4*PPSS2 0.000 0.000 0.000 0.000   0.382 0.000 0.000
## PREP4*PPSS3 0.000 0.000 0.000 0.000   0.271 0.000 0.000
sec_report$loadings
##               FAML    POL    REP    INV REP*POL    SEC  TRUST
## TRST1        0.000  0.000  0.000  0.000  -0.000  0.000  0.900
## TRST2        0.000  0.000  0.000  0.000  -0.000  0.000  0.909
## TRST3        0.000  0.000  0.000  0.000  -0.000  0.000  0.905
## TRST4        0.000  0.000  0.000  0.000  -0.000  0.000  0.838
## PSEC1        0.000  0.000  0.000  0.000  -0.000  0.813  0.000
## PSEC2        0.000  0.000  0.000  0.000  -0.000  0.865  0.000
## PSEC3        0.000  0.000  0.000  0.000  -0.000  0.868  0.000
## PSEC4        0.000  0.000  0.000  0.000  -0.000  0.807  0.000
## PREP1        0.000  0.000  0.800  0.000   0.000  0.000  0.000
## PREP2        0.000  0.000  0.913  0.000   0.000  0.000  0.000
## PREP3        0.000  0.000  0.908  0.000   0.000  0.000  0.000
## PREP4        0.000  0.000  0.718  0.000   0.000  0.000  0.000
## PINV1        0.000  0.000  0.000  0.903  -0.000  0.000  0.000
## PINV2        0.000  0.000  0.000  0.925  -0.000  0.000  0.000
## PINV3        0.000  0.000  0.000  0.855  -0.000  0.000  0.000
## PPSS1        0.000  0.868  0.000  0.000   0.000  0.000  0.000
## PPSS2        0.000  0.893  0.000  0.000   0.000  0.000  0.000
## PPSS3        0.000  0.911  0.000  0.000   0.000  0.000  0.000
## FAML1        1.000  0.000  0.000  0.000  -0.000  0.000  0.000
## PREP1*PPSS1 -0.000 -0.000 -0.000 -0.000   0.581 -0.000 -0.000
## PREP1*PPSS2 -0.000  0.000 -0.000 -0.000   0.510 -0.000 -0.000
## PREP1*PPSS3 -0.000 -0.000 -0.000 -0.000   0.506 -0.000 -0.000
## PREP2*PPSS1 -0.000 -0.000 -0.000 -0.000   0.509 -0.000 -0.000
## PREP2*PPSS2 -0.000  0.000 -0.000 -0.000   0.421  0.000  0.000
## PREP2*PPSS3  0.000 -0.000 -0.000 -0.000   0.336  0.000  0.000
## PREP3*PPSS1  0.000 -0.000 -0.000 -0.000   0.236  0.000  0.000
## PREP3*PPSS2 -0.000  0.000 -0.000 -0.000   0.555 -0.000 -0.000
## PREP3*PPSS3  0.000 -0.000 -0.000 -0.000   0.466 -0.000 -0.000
## PREP4*PPSS1  0.000  0.000  0.000 -0.000   0.900 -0.000 -0.000
## PREP4*PPSS2 -0.000 -0.000 -0.000 -0.000   0.836 -0.000  0.000
## PREP4*PPSS3  0.000  0.000  0.000 -0.000   0.859 -0.000  0.000

1-b-iii) Regression coefficients of paths between factors

sec_report$paths
##            SEC TRUST
## R^2      0.420 0.367
## AdjR^2   0.412 0.365
## FAML     0.011     .
## POL      0.339     .
## REP      0.247     .
## INV      0.181     .
## REP*POL -0.105     .
## SEC          . 0.606

1-b-iv) Bootstrapped path coefficients: t-values, 95% CI

boot_pls <- bootstrap_model(sec_pls, nboot = 1000)
## Bootstrapping model using seminr...
## SEMinR Model successfully bootstrapped
summary(boot_pls)
## 
## Results from Bootstrap resamples:  1000
## 
## Bootstrapped Structural Paths:
##                  Original Est. Bootstrap Mean Bootstrap SD T Stat. 2.5% CI
## FAML  ->  SEC            0.011          0.015        0.061   0.173  -0.106
## POL  ->  SEC             0.339          0.342        0.057   5.967   0.229
## REP  ->  SEC             0.247          0.243        0.060   4.088   0.121
## INV  ->  SEC             0.181          0.184        0.059   3.053   0.071
## REP*POL  ->  SEC        -0.105         -0.019        0.123  -0.851  -0.193
## SEC  ->  TRUST           0.606          0.609        0.035  17.483   0.538
##                  97.5% CI
## FAML  ->  SEC       0.133
## POL  ->  SEC        0.452
## REP  ->  SEC        0.365
## INV  ->  SEC        0.298
## REP*POL  ->  SEC    0.190
## SEC  ->  TRUST      0.671
## 
## Bootstrapped Weights:
##                          Original Est. Bootstrap Mean Bootstrap SD T Stat.
## TRST1  ->  TRUST                 0.282          0.281        0.014  19.727
## TRST2  ->  TRUST                 0.280          0.280        0.016  17.863
## TRST3  ->  TRUST                 0.286          0.285        0.017  17.147
## TRST4  ->  TRUST                 0.278          0.278        0.020  13.637
## PSEC1  ->  SEC                   0.277          0.278        0.016  17.395
## PSEC2  ->  SEC                   0.315          0.315        0.017  18.942
## PSEC3  ->  SEC                   0.307          0.307        0.016  19.824
## PSEC4  ->  SEC                   0.292          0.290        0.018  16.466
## PREP1  ->  REP                   0.215          0.213        0.026   8.406
## PREP2  ->  REP                   0.334          0.334        0.018  18.347
## PREP3  ->  REP                   0.349          0.350        0.022  15.814
## PREP4  ->  REP                   0.287          0.286        0.025  11.445
## PINV1  ->  INV                   0.363          0.363        0.026  13.937
## PINV2  ->  INV                   0.395          0.394        0.027  14.854
## PINV3  ->  INV                   0.358          0.359        0.028  12.852
## PPSS1  ->  POL                   0.360          0.360        0.022  16.029
## PPSS2  ->  POL                   0.395          0.395        0.022  17.667
## PPSS3  ->  POL                   0.367          0.367        0.018  20.221
## FAML1  ->  FAML                  1.000          1.000        0.000       .
## PREP1*PPSS1  ->  REP*POL         0.239          0.092        0.153   1.558
## PREP1*PPSS2  ->  REP*POL         0.031          0.062        0.093   0.337
## PREP1*PPSS3  ->  REP*POL         0.021          0.064        0.111   0.190
## PREP2*PPSS1  ->  REP*POL         0.046          0.074        0.110   0.417
## PREP2*PPSS2  ->  REP*POL        -0.104          0.053        0.153  -0.680
## PREP2*PPSS3  ->  REP*POL        -0.228          0.042        0.235  -0.972
## PREP3*PPSS1  ->  REP*POL        -0.341          0.012        0.308  -1.107
## PREP3*PPSS2  ->  REP*POL         0.095          0.093        0.134   0.706
## PREP3*PPSS3  ->  REP*POL         0.108          0.094        0.138   0.787
## PREP4*PPSS1  ->  REP*POL         0.443          0.124        0.279   1.587
## PREP4*PPSS2  ->  REP*POL         0.382          0.105        0.263   1.456
## PREP4*PPSS3  ->  REP*POL         0.271          0.104        0.183   1.482
##                          2.5% CI 97.5% CI
## TRST1  ->  TRUST           0.253    0.309
## TRST2  ->  TRUST           0.249    0.310
## TRST3  ->  TRUST           0.253    0.321
## TRST4  ->  TRUST           0.239    0.318
## PSEC1  ->  SEC             0.249    0.310
## PSEC2  ->  SEC             0.283    0.347
## PSEC3  ->  SEC             0.277    0.339
## PSEC4  ->  SEC             0.256    0.325
## PREP1  ->  REP             0.156    0.257
## PREP2  ->  REP             0.301    0.373
## PREP3  ->  REP             0.310    0.398
## PREP4  ->  REP             0.241    0.338
## PINV1  ->  INV             0.312    0.414
## PINV2  ->  INV             0.340    0.449
## PINV3  ->  INV             0.306    0.417
## PPSS1  ->  POL             0.314    0.404
## PPSS2  ->  POL             0.355    0.441
## PPSS3  ->  POL             0.331    0.402
## FAML1  ->  FAML            1.000    1.000
## PREP1*PPSS1  ->  REP*POL  -0.263    0.378
## PREP1*PPSS2  ->  REP*POL  -0.150    0.223
## PREP1*PPSS3  ->  REP*POL  -0.192    0.265
## PREP2*PPSS1  ->  REP*POL  -0.192    0.274
## PREP2*PPSS2  ->  REP*POL  -0.257    0.347
## PREP2*PPSS3  ->  REP*POL  -0.401    0.455
## PREP3*PPSS1  ->  REP*POL  -0.586    0.663
## PREP3*PPSS2  ->  REP*POL  -0.227    0.331
## PREP3*PPSS3  ->  REP*POL  -0.251    0.342
## PREP4*PPSS1  ->  REP*POL  -0.439    0.541
## PREP4*PPSS2  ->  REP*POL  -0.423    0.571
## PREP4*PPSS3  ->  REP*POL  -0.271    0.411
## 
## Bootstrapped Loadings:
##                          Original Est. Bootstrap Mean Bootstrap SD T Stat.
## TRST1  ->  TRUST                 0.900          0.901        0.016  57.543
## TRST2  ->  TRUST                 0.909          0.910        0.020  45.290
## TRST3  ->  TRUST                 0.905          0.906        0.021  43.564
## TRST4  ->  TRUST                 0.838          0.839        0.031  26.619
## PSEC1  ->  SEC                   0.813          0.814        0.025  32.188
## PSEC2  ->  SEC                   0.865          0.867        0.024  35.699
## PSEC3  ->  SEC                   0.868          0.869        0.021  41.554
## PSEC4  ->  SEC                   0.807          0.807        0.024  33.040
## PREP1  ->  REP                   0.800          0.796        0.040  19.864
## PREP2  ->  REP                   0.913          0.914        0.016  58.377
## PREP3  ->  REP                   0.908          0.910        0.020  46.233
## PREP4  ->  REP                   0.718          0.718        0.032  22.259
## PINV1  ->  INV                   0.903          0.904        0.024  37.686
## PINV2  ->  INV                   0.925          0.925        0.022  41.316
## PINV3  ->  INV                   0.855          0.855        0.026  32.604
## PPSS1  ->  POL                   0.868          0.868        0.023  37.012
## PPSS2  ->  POL                   0.893          0.894        0.014  63.747
## PPSS3  ->  POL                   0.911          0.911        0.016  55.740
## FAML1  ->  FAML                  1.000          1.000        0.000       .
## PREP1*PPSS1  ->  REP*POL         0.581          0.584        0.268   2.167
## PREP1*PPSS2  ->  REP*POL         0.510          0.569        0.249   2.049
## PREP1*PPSS3  ->  REP*POL         0.506          0.583        0.264   1.916
## PREP2*PPSS1  ->  REP*POL         0.509          0.619        0.281   1.810
## PREP2*PPSS2  ->  REP*POL         0.421          0.586        0.291   1.444
## PREP2*PPSS3  ->  REP*POL         0.336          0.592        0.337   0.996
## PREP3*PPSS1  ->  REP*POL         0.236          0.505        0.347   0.679
## PREP3*PPSS2  ->  REP*POL         0.555          0.618        0.281   1.971
## PREP3*PPSS3  ->  REP*POL         0.466          0.601        0.298   1.565
## PREP4*PPSS1  ->  REP*POL         0.900          0.595        0.356   2.529
## PREP4*PPSS2  ->  REP*POL         0.836          0.514        0.351   2.381
## PREP4*PPSS3  ->  REP*POL         0.859          0.571        0.327   2.626
##                          2.5% CI 97.5% CI
## TRST1  ->  TRUST           0.867    0.929
## TRST2  ->  TRUST           0.861    0.941
## TRST3  ->  TRUST           0.857    0.939
## TRST4  ->  TRUST           0.771    0.893
## PSEC1  ->  SEC             0.762    0.858
## PSEC2  ->  SEC             0.814    0.908
## PSEC3  ->  SEC             0.823    0.906
## PSEC4  ->  SEC             0.757    0.852
## PREP1  ->  REP             0.714    0.861
## PREP2  ->  REP             0.878    0.939
## PREP3  ->  REP             0.867    0.940
## PREP4  ->  REP             0.653    0.776
## PINV1  ->  INV             0.849    0.942
## PINV2  ->  INV             0.871    0.959
## PINV3  ->  INV             0.800    0.900
## PPSS1  ->  POL             0.815    0.908
## PPSS2  ->  POL             0.863    0.919
## PPSS3  ->  POL             0.874    0.939
## FAML1  ->  FAML            1.000    1.000
## PREP1*PPSS1  ->  REP*POL  -0.070    0.915
## PREP1*PPSS2  ->  REP*POL  -0.050    0.883
## PREP1*PPSS3  ->  REP*POL  -0.080    0.907
## PREP2*PPSS1  ->  REP*POL  -0.083    0.962
## PREP2*PPSS2  ->  REP*POL  -0.179    0.931
## PREP2*PPSS3  ->  REP*POL  -0.277    0.984
## PREP3*PPSS1  ->  REP*POL  -0.304    0.944
## PREP3*PPSS2  ->  REP*POL  -0.116    0.950
## PREP3*PPSS3  ->  REP*POL  -0.178    0.953
## PREP4*PPSS1  ->  REP*POL  -0.267    0.986
## PREP4*PPSS2  ->  REP*POL  -0.321    0.915
## PREP4*PPSS3  ->  REP*POL  -0.228    0.953
## 
## Bootstrapped HTMT:
##                    Original Est. Bootstrap Mean Bootstrap SD 2.5% CI 97.5% CI
## FAML  ->  POL              0.596          0.592        0.051   0.486    0.695
## FAML  ->  REP              0.599          0.599        0.056   0.483    0.707
## FAML  ->  INV              0.494          0.493        0.056   0.382    0.606
## FAML  ->  REP*POL          0.046          0.066        0.023   0.030    0.122
## FAML  ->  SEC              0.455          0.457        0.054   0.354    0.562
## FAML  ->  TRUST            0.471          0.473        0.054   0.368    0.577
## POL  ->  REP               0.543          0.544        0.058   0.427    0.654
## POL  ->  INV               0.498          0.500        0.058   0.383    0.621
## POL  ->  REP*POL           0.000          0.000        0.000   0.000    0.000
## POL  ->  SEC               0.622          0.624        0.053   0.515    0.723
## POL  ->  TRUST             0.458          0.460        0.060   0.332    0.572
## REP  ->  INV               0.705          0.704        0.051   0.596    0.797
## REP  ->  REP*POL           0.000          0.000        0.000   0.000    0.000
## REP  ->  SEC               0.595          0.595        0.045   0.501    0.679
## REP  ->  TRUST             0.682          0.683        0.044   0.588    0.760
## INV  ->  REP*POL           0.085          0.103        0.032   0.056    0.176
## INV  ->  SEC               0.568          0.568        0.050   0.466    0.665
## INV  ->  TRUST             0.563          0.562        0.051   0.456    0.659
## REP*POL  ->  SEC           0.059          0.082        0.020   0.048    0.128
## REP*POL  ->  TRUST         0.044          0.071        0.017   0.043    0.115
## SEC  ->  TRUST             0.685          0.685        0.037   0.611    0.752
## 
## Bootstrapped Total Paths:
##                    Original Est. Bootstrap Mean Bootstrap SD 2.5% CI 97.5% CI
## FAML  ->  SEC              0.011          0.015        0.061  -0.106    0.133
## FAML  ->  TRUST            0.006          0.009        0.037  -0.065    0.084
## POL  ->  SEC               0.339          0.342        0.057   0.229    0.452
## POL  ->  TRUST             0.205          0.208        0.037   0.134    0.280
## REP  ->  SEC               0.247          0.243        0.060   0.121    0.365
## REP  ->  TRUST             0.150          0.148        0.039   0.072    0.229
## INV  ->  SEC               0.181          0.184        0.059   0.071    0.298
## INV  ->  TRUST             0.109          0.112        0.037   0.044    0.182
## REP*POL  ->  SEC          -0.105         -0.019        0.123  -0.193    0.190
## REP*POL  ->  TRUST        -0.063         -0.012        0.075  -0.117    0.115
## SEC  ->  TRUST             0.606          0.609        0.035   0.538    0.671

Question 2) Common-Factor Models using CB-SEM

2-a) Create a common factor model using SEMinR, with the following characteristics:

2-a-i) Either respecify all the constructs as being reflective(), or use the as.reflective() function to convert your earlier measurement model to being entirely reflective.

sec_cf_mm <- as.reflective(sec_mm)

2-a-ii) Use the same structural model as before (you can just reuse it again!)

sec_cf_pls <- estimate_cbsem(
  data = secdata,
  measurement_model = sec_cf_mm,
  structural_model = sec_sm
)
## Generating the seminr model for CBSEM

2-b) Show us the following results in table or figure formats

2-b-i) Plot a figure of the estimated model (it will look different from your PLS model!)

plot(sec_cf_pls)
## Plotting of lavaan models using semPlot.

## NULL

2-b-ii) Loadings of composites

sec_cf_report <- summary(sec_cf_pls)
sec_cf_report$loadings
## $coefficients
##           TRUST       SEC       REP       INV       POL FAML
## TRST1 0.8800240        NA        NA        NA        NA   NA
## TRST2 0.8886342        NA        NA        NA        NA   NA
## TRST3 0.8690644        NA        NA        NA        NA   NA
## TRST4 0.7575988        NA        NA        NA        NA   NA
## PSEC1        NA 0.7308766        NA        NA        NA   NA
## PSEC2        NA 0.8173481        NA        NA        NA   NA
## PSEC3        NA 0.8151708        NA        NA        NA   NA
## PSEC4        NA 0.7260444        NA        NA        NA   NA
## PREP1        NA        NA 0.7551328        NA        NA   NA
## PREP2        NA        NA 0.9199208        NA        NA   NA
## PREP3        NA        NA 0.8871362        NA        NA   NA
## PREP4        NA        NA 0.5650059        NA        NA   NA
## PINV1        NA        NA        NA 0.8520004        NA   NA
## PINV2        NA        NA        NA 0.9257476        NA   NA
## PINV3        NA        NA        NA 0.7388750        NA   NA
## PPSS1        NA        NA        NA        NA 0.8051533   NA
## PPSS2        NA        NA        NA        NA 0.8272576   NA
## PPSS3        NA        NA        NA        NA 0.8674335   NA
## FAML1        NA        NA        NA        NA        NA    1
## 
## $significance
##                            Std Estimate         SE      t-Value   2.5% CI
## TRUST -> TRST1                0.8800240 0.02272091 0.000000e+00 0.8354919
## TRUST -> TRST2                0.8886342 0.03330783 0.000000e+00 0.8233521
## TRUST -> TRST3                0.8690644 0.03749444 0.000000e+00 0.7955767
## TRUST -> TRST4                0.7575988 0.04846748 0.000000e+00 0.6626042
## SEC -> PSEC1                  0.7308766 0.03679205 0.000000e+00 0.6587655
## SEC -> PSEC2                  0.8173481 0.04480183 0.000000e+00 0.7295381
## SEC -> PSEC3                  0.8151708 0.03728082 0.000000e+00 0.7421017
## SEC -> PSEC4                  0.7260444 0.03811841 0.000000e+00 0.6513337
## REP -> PREP1                  0.7551328 0.04464916 0.000000e+00 0.6676220
## REP -> PREP2                  0.9199208 0.02635333 0.000000e+00 0.8682692
## REP -> PREP3                  0.8871362 0.04015103 0.000000e+00 0.8084416
## REP -> PREP4                  0.5650059 0.04585583 0.000000e+00 0.4751302
## INV -> PINV1                  0.8520004 0.04489927 0.000000e+00 0.7639994
## INV -> PINV2                  0.9257476 0.04556425 0.000000e+00 0.8364433
## INV -> PINV3                  0.7388750 0.04511601 0.000000e+00 0.6504492
## POL -> PPSS1                  0.8051533 0.04355300 0.000000e+00 0.7197910
## POL -> PPSS2                  0.8272576 0.02807169 0.000000e+00 0.7722381
## POL -> PPSS3                  0.8674335 0.03273664 0.000000e+00 0.8032708
## FAML -> FAML1                 1.0000000 0.00000000           NA 1.0000000
## REP_x_POL -> PREP1_x_PPSS1    0.7781584 0.05799871 0.000000e+00 0.6644831
## REP_x_POL -> PREP1_x_PPSS2    0.7597768 0.05931838 0.000000e+00 0.6435149
## REP_x_POL -> PREP1_x_PPSS3    0.7879106 0.05013554 0.000000e+00 0.6896467
## REP_x_POL -> PREP2_x_PPSS1    0.8447368 0.03649041 0.000000e+00 0.7732169
## REP_x_POL -> PREP2_x_PPSS2    0.8034561 0.03639411 0.000000e+00 0.7321250
## REP_x_POL -> PREP2_x_PPSS3    0.8342444 0.03536430 0.000000e+00 0.7649317
## REP_x_POL -> PREP3_x_PPSS1    0.6736451 0.12948898 1.967997e-07 0.4198514
## REP_x_POL -> PREP3_x_PPSS2    0.8011944 0.03780427 0.000000e+00 0.7270994
## REP_x_POL -> PREP3_x_PPSS3    0.7902063 0.06416741 0.000000e+00 0.6644405
## REP_x_POL -> PREP4_x_PPSS1    0.6854770 0.06906812 0.000000e+00 0.5501059
## REP_x_POL -> PREP4_x_PPSS2    0.5531922 0.06212434 0.000000e+00 0.4314307
## REP_x_POL -> PREP4_x_PPSS3    0.6405843 0.05794028 0.000000e+00 0.5270235
##                             97.5% CI
## TRUST -> TRST1             0.9245562
## TRUST -> TRST2             0.9539164
## TRUST -> TRST3             0.9425522
## TRUST -> TRST4             0.8525933
## SEC -> PSEC1               0.8029877
## SEC -> PSEC2               0.9051581
## SEC -> PSEC3               0.8882399
## SEC -> PSEC4               0.8007551
## REP -> PREP1               0.8426435
## REP -> PREP2               0.9715724
## REP -> PREP3               0.9658307
## REP -> PREP4               0.6548817
## INV -> PINV1               0.9400013
## INV -> PINV2               1.0150518
## INV -> PINV3               0.8273007
## POL -> PPSS1               0.8905156
## POL -> PPSS2               0.8822771
## POL -> PPSS3               0.9315961
## FAML -> FAML1              1.0000000
## REP_x_POL -> PREP1_x_PPSS1 0.8918338
## REP_x_POL -> PREP1_x_PPSS2 0.8760387
## REP_x_POL -> PREP1_x_PPSS3 0.8861744
## REP_x_POL -> PREP2_x_PPSS1 0.9162567
## REP_x_POL -> PREP2_x_PPSS2 0.8747873
## REP_x_POL -> PREP2_x_PPSS3 0.9035572
## REP_x_POL -> PREP3_x_PPSS1 0.9274389
## REP_x_POL -> PREP3_x_PPSS2 0.8752894
## REP_x_POL -> PREP3_x_PPSS3 0.9159721
## REP_x_POL -> PREP4_x_PPSS1 0.8208480
## REP_x_POL -> PREP4_x_PPSS2 0.6749536
## REP_x_POL -> PREP4_x_PPSS3 0.7541452

2-b-iii) Regression coefficients of paths between factors, and their p-values

sec_cf_report$paths
## $coefficients
##                    SEC     TRUST
## R^2        0.540381651 0.4951084
## FAML      -0.008837653        NA
## POL        0.376401499        NA
## REP        0.299536782        NA
## INV        0.214253245        NA
## REP_x_POL  0.008355287        NA
## SEC                 NA 0.7036394
## 
## $pvalues
##                    SEC TRUST
## FAML      8.996836e-01    NA
## POL       4.380974e-09    NA
## REP       3.817181e-05    NA
## INV       3.534482e-03    NA
## REP_x_POL 8.516847e-01    NA
## SEC                 NA     0
## 
## $significance
##                  Std Estimate         SE      t-Value     2.5% CI   97.5% CI
## SEC -> FAML      -0.008837653 0.07010617 8.996836e-01 -0.14624321 0.12856791
## SEC -> POL        0.376401499 0.06413246 4.380974e-09  0.25070419 0.50209881
## SEC -> REP        0.299536782 0.07273355 3.817181e-05  0.15698165 0.44209191
## SEC -> INV        0.214253245 0.07345058 3.534482e-03  0.07029275 0.35821374
## SEC -> REP_x_POL  0.008355287 0.04468802 8.516847e-01 -0.07923162 0.09594219
## TRUST -> SEC      0.703639369 0.03721630 0.000000e+00  0.63069677 0.77658197