Libraries

library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.2     ✔ readr     2.1.4
## ✔ forcats   1.0.0     ✔ stringr   1.5.0
## ✔ ggplot2   3.4.2     ✔ tibble    3.2.1
## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0
## ✔ purrr     1.0.1     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(ggplot2)
library(janitor)
## 
## Attaching package: 'janitor'
## 
## The following objects are masked from 'package:stats':
## 
##     chisq.test, fisher.test
library(broom)
library(dplyr)
library(tidyr)
library(purrr)
library(readxl)
library(openxlsx)
library(readr)
library(stringr)
library(afex)
## Loading required package: lme4
## Loading required package: Matrix
## 
## Attaching package: 'Matrix'
## 
## The following objects are masked from 'package:tidyr':
## 
##     expand, pack, unpack
## 
## ************
## Welcome to afex. For support visit: http://afex.singmann.science/
## - Functions for ANOVAs: aov_car(), aov_ez(), and aov_4()
## - Methods for calculating p-values with mixed(): 'S', 'KR', 'LRT', and 'PB'
## - 'afex_aov' and 'mixed' objects can be passed to emmeans() for follow-up tests
## - Get and set global package options with: afex_options()
## - Set sum-to-zero contrasts globally: set_sum_contrasts()
## - For example analyses see: browseVignettes("afex")
## ************
## 
## Attaching package: 'afex'
## 
## The following object is masked from 'package:lme4':
## 
##     lmer
library(nlme)
## 
## Attaching package: 'nlme'
## 
## The following object is masked from 'package:lme4':
## 
##     lmList
## 
## The following object is masked from 'package:dplyr':
## 
##     collapse
library(emmeans)
library(effects)
## Loading required package: carData
## lattice theme set by effectsTheme()
## See ?effectsTheme for details.
library(reshape2)
## 
## Attaching package: 'reshape2'
## 
## The following object is masked from 'package:tidyr':
## 
##     smiths
library(lme4)
library(brms)
## Warning: package 'brms' was built under R version 4.3.1
## Loading required package: Rcpp
## Loading 'brms' package (version 2.19.0). Useful instructions
## can be found by typing help('brms'). A more detailed introduction
## to the package is available through vignette('brms_overview').
## 
## Attaching package: 'brms'
## 
## The following object is masked from 'package:lme4':
## 
##     ngrps
## 
## The following object is masked from 'package:stats':
## 
##     ar

Survey analysis

NASA TLX Analysis

The participant were asked to fill the Nasa tlx after 5 block and after 10 blocks

Condition 1= Cold temperature

Condition 2= Warm temperature

SURVEY <- read.xlsx("DATAsurvey - Copy.xlsx")
HM <- read.xlsx("heatmap.xlsx")
Mental1 <- lm( Mental1~ CONDITION, data = SURVEY)
Mental2 <- lm(Mental2 ~ CONDITION , data = SURVEY)
Physical1 <- lm(Physical1~ CONDITION , data = SURVEY)
Physical2 <- lm(Physical2~ CONDITION , data = SURVEY)
Temporal1 <- lm(Temporal1~ CONDITION, data = SURVEY)
Temporal2 <- lm(Temporal2 ~ CONDITION, data = SURVEY)
Performance1 <- lm(Performance1 ~  CONDITION, data = SURVEY)
Performance2 <- lm(Performance2 ~  CONDITION, data = SURVEY)
Effort1 <- lm(Effort1 ~ CONDITION , data = SURVEY)
Effort2 <- lm(Effort2 ~ CONDITION , data = SURVEY)
Frustration1 <- lm(Frustration1 ~ CONDITION , data = SURVEY)
Frustration2 <- lm(Frustration2 ~ CONDITION , data = SURVEY)

summary(Mental1)
## 
## Call:
## lm(formula = Mental1 ~ CONDITION, data = SURVEY)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -10.8235  -3.5882  -0.3529   3.1765   9.1176 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept)    6.941      2.779   2.498   0.0178 *
## CONDITION      2.941      1.758   1.673   0.1040  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.124 on 32 degrees of freedom
## Multiple R-squared:  0.08047,    Adjusted R-squared:  0.05173 
## F-statistic:   2.8 on 1 and 32 DF,  p-value: 0.104
summary(Mental2)
## 
## Call:
## lm(formula = Mental2 ~ CONDITION, data = SURVEY)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -9.4118 -3.8971 -0.2353  4.4265  9.5882 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)    8.765      2.672   3.280  0.00251 **
## CONDITION      1.647      1.690   0.974  0.33713   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.928 on 32 degrees of freedom
## Multiple R-squared:  0.02882,    Adjusted R-squared:  -0.00153 
## F-statistic: 0.9496 on 1 and 32 DF,  p-value: 0.3371
summary(Physical1)
## 
## Call:
## lm(formula = Physical1 ~ CONDITION, data = SURVEY)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -10.2941  -3.2941  -0.4412   2.4118   9.7059 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)    9.000      2.572   3.499  0.00139 **
## CONDITION      2.294      1.627   1.410  0.16807   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.742 on 32 degrees of freedom
## Multiple R-squared:  0.05852,    Adjusted R-squared:  0.0291 
## F-statistic: 1.989 on 1 and 32 DF,  p-value: 0.1681
summary(Physical2)
## 
## Call:
## lm(formula = Physical2 ~ CONDITION, data = SURVEY)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -10.353  -3.765   1.735   4.088   8.235 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    9.941      2.669   3.725 0.000753 ***
## CONDITION      1.412      1.688   0.836 0.409134    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.921 on 32 degrees of freedom
## Multiple R-squared:  0.02139,    Adjusted R-squared:  -0.009188 
## F-statistic: 0.6996 on 1 and 32 DF,  p-value: 0.4091
summary(Temporal1)
## 
## Call:
## lm(formula = Temporal1 ~ CONDITION, data = SURVEY)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8.8824 -3.5000 -0.7941  3.0441  8.1176 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  12.0588     2.3703   5.087 1.54e-05 ***
## CONDITION    -0.1765     1.4991  -0.118    0.907    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.371 on 32 degrees of freedom
## Multiple R-squared:  0.0004328,  Adjusted R-squared:  -0.0308 
## F-statistic: 0.01386 on 1 and 32 DF,  p-value: 0.907
summary(Temporal2)
## 
## Call:
## lm(formula = Temporal2 ~ CONDITION, data = SURVEY)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -7.8824 -3.7500 -0.6176  3.8676  8.6471 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)    9.412      2.639   3.567  0.00116 **
## CONDITION      1.471      1.669   0.881  0.38482   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.866 on 32 degrees of freedom
## Multiple R-squared:  0.02369,    Adjusted R-squared:  -0.006822 
## F-statistic: 0.7764 on 1 and 32 DF,  p-value: 0.3848
summary(Performance1)
## 
## Call:
## lm(formula = Performance1 ~ CONDITION, data = SURVEY)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.529 -2.529 -1.294  2.471  9.706 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)  
## (Intercept)   4.7647     1.9921   2.392   0.0228 *
## CONDITION     0.7647     1.2599   0.607   0.5482  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.673 on 32 degrees of freedom
## Multiple R-squared:  0.01138,    Adjusted R-squared:  -0.01951 
## F-statistic: 0.3684 on 1 and 32 DF,  p-value: 0.5482
summary(Performance2)
## 
## Call:
## lm(formula = Performance2 ~ CONDITION, data = SURVEY)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.8235 -2.8235 -0.8235  1.6176 10.1765 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)   6.6471     2.2515   2.952  0.00587 **
## CONDITION     0.5882     1.4240   0.413  0.68229   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.152 on 32 degrees of freedom
## Multiple R-squared:  0.005304,   Adjusted R-squared:  -0.02578 
## F-statistic: 0.1706 on 1 and 32 DF,  p-value: 0.6823
summary(Effort1)
## 
## Call:
## lm(formula = Effort1 ~ CONDITION, data = SURVEY)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8.8824 -3.1471  0.7647  3.0294  9.1176 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)    8.529      2.373   3.594  0.00108 **
## CONDITION      3.353      1.501   2.234  0.03261 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.376 on 32 degrees of freedom
## Multiple R-squared:  0.1349, Adjusted R-squared:  0.1079 
## F-statistic:  4.99 on 1 and 32 DF,  p-value: 0.03261
summary(Effort2)
## 
## Call:
## lm(formula = Effort2 ~ CONDITION, data = SURVEY)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -10.3529  -3.2500   0.5588   4.2500   6.6471 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  11.7647     2.6340   4.467 9.29e-05 ***
## CONDITION     0.5882     1.6659   0.353    0.726    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.857 on 32 degrees of freedom
## Multiple R-squared:  0.003881,   Adjusted R-squared:  -0.02725 
## F-statistic: 0.1247 on 1 and 32 DF,  p-value: 0.7263
summary(Frustration1)
## 
## Call:
## lm(formula = Frustration1 ~ CONDITION, data = SURVEY)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -10.647  -6.324   1.000   5.353   9.353 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## (Intercept)  11.9412     3.5792   3.336  0.00216 **
## CONDITION    -0.2941     2.2637  -0.130  0.89743   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.6 on 32 degrees of freedom
## Multiple R-squared:  0.0005273,  Adjusted R-squared:  -0.03071 
## F-statistic: 0.01688 on 1 and 32 DF,  p-value: 0.8974
summary(Frustration2)
## 
## Call:
## lm(formula = Frustration2 ~ CONDITION, data = SURVEY)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8.4706 -4.2206  0.1176  3.5294 10.5294 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   13.647      2.936   4.648  5.5e-05 ***
## CONDITION     -3.176      1.857  -1.711   0.0968 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.413 on 32 degrees of freedom
## Multiple R-squared:  0.08379,    Adjusted R-squared:  0.05516 
## F-statistic: 2.927 on 1 and 32 DF,  p-value: 0.09681

Condition seems to have only a significant effect on effort 1 and an effect of 0.09 which is not significant but worth to notice for the frustration 2, therefore i run a post-hoc (emmeans) to check

emmeans(Effort1, ~ CONDITION)
##  CONDITION emmean   SE df lower.CL upper.CL
##          1   11.9 1.06 32     9.72     14.0
##          2   15.2 1.06 32    13.07     17.4
## 
## Confidence level used: 0.95
emmeans(Effort2, ~ CONDITION)
##  CONDITION emmean   SE df lower.CL upper.CL
##          1   12.4 1.18 32     9.95     14.8
##          2   12.9 1.18 32    10.54     15.3
## 
## Confidence level used: 0.95
emmeans(Frustration1, ~ CONDITION)
##  CONDITION emmean  SE df lower.CL upper.CL
##          1   11.6 1.6 32     8.39     14.9
##          2   11.4 1.6 32     8.09     14.6
## 
## Confidence level used: 0.95
emmeans(Frustration2, ~ CONDITION)
##  CONDITION emmean   SE df lower.CL upper.CL
##          1  10.47 1.31 32     7.80    13.14
##          2   7.29 1.31 32     4.62     9.97
## 
## Confidence level used: 0.95

The post-hoc shows that for effort 1 seems to be higher for the condition 2 (Warm) and the frustration 2 even if not statistically significant is higher for condition 1 (Cold)

lmer NASATLX

HM$CONDITION <- factor(HM$CONDITION)
HM$TIMEPOINT <- factor(HM$TIMEPOINT)

Mental <- lmer( Mental1 ~ TIMEPOINT * CONDITION + (1|PARTICIPANT), data = HM)
summary(Mental)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Mental1 ~ TIMEPOINT * CONDITION + (1 | PARTICIPANT)
##    Data: HM
## 
## REML criterion at convergence: 380.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.7122 -0.5396 -0.1092  0.5832  1.6779 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  PARTICIPANT (Intercept) 17.094   4.134   
##  Residual                 8.176   2.859   
## Number of obs: 68, groups:  PARTICIPANT, 34
## 
## Fixed effects:
##                       Estimate Std. Error      df t value Pr(>|t|)    
## (Intercept)             9.8824     1.2192 43.9087   8.106 2.89e-10 ***
## TIMEPOINT3              0.5294     0.9808 32.0000   0.540   0.5931    
## CONDITION2              2.9412     1.7242 43.9087   1.706   0.0951 .  
## TIMEPOINT3:CONDITION2  -1.2941     1.3870 32.0000  -0.933   0.3578    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) TIMEPOINT3 CONDIT
## TIMEPOINT3  -0.402                  
## CONDITION2  -0.707  0.284           
## TIMEPOINT3:  0.284 -0.707     -0.402
Physical <- lmer( Physical1 ~ TIMEPOINT * CONDITION + (1|PARTICIPANT), data = HM)
summary(Physical)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Physical1 ~ TIMEPOINT * CONDITION + (1 | PARTICIPANT)
##    Data: HM
## 
## REML criterion at convergence: 374.4
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -1.75996 -0.47211 -0.02457  0.40643  1.57682 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  PARTICIPANT (Intercept) 15.986   3.998   
##  Residual                 7.366   2.714   
## Number of obs: 68, groups:  PARTICIPANT, 34
## 
## Fixed effects:
##                       Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)           11.29412    1.17203 43.58059   9.636 2.28e-12 ***
## TIMEPOINT3             0.05882    0.93092 31.99907   0.063    0.950    
## CONDITION2             2.29412    1.65750 43.58059   1.384    0.173    
## TIMEPOINT3:CONDITION2 -0.88235    1.31652 31.99907  -0.670    0.508    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) TIMEPOINT3 CONDIT
## TIMEPOINT3  -0.397                  
## CONDITION2  -0.707  0.281           
## TIMEPOINT3:  0.281 -0.707     -0.397
Temporal <- lmer( Temporal1 ~ TIMEPOINT * CONDITION + (1|PARTICIPANT), data = HM)
summary(Temporal)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Temporal1 ~ TIMEPOINT * CONDITION + (1 | PARTICIPANT)
##    Data: HM
## 
## REML criterion at convergence: 379.4
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -1.41577 -0.50750 -0.09031  0.61240  1.75079 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  PARTICIPANT (Intercept) 10.86    3.295   
##  Residual                10.53    3.245   
## Number of obs: 68, groups:  PARTICIPANT, 34
## 
## Fixed effects:
##                       Estimate Std. Error      df t value Pr(>|t|)    
## (Intercept)            11.8824     1.1217 50.8827  10.593 1.79e-14 ***
## TIMEPOINT3             -1.0000     1.1130 32.0000  -0.898    0.376    
## CONDITION2             -0.1765     1.5863 50.8827  -0.111    0.912    
## TIMEPOINT3:CONDITION2   1.6471     1.5740 32.0000   1.046    0.303    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) TIMEPOINT3 CONDIT
## TIMEPOINT3  -0.496                  
## CONDITION2  -0.707  0.351           
## TIMEPOINT3:  0.351 -0.707     -0.496
Performance <- lmer( Performance1 ~ TIMEPOINT * CONDITION + (1|PARTICIPANT), data = HM)
summary(Performance)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Performance1 ~ TIMEPOINT * CONDITION + (1 | PARTICIPANT)
##    Data: HM
## 
## REML criterion at convergence: 356
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.3364 -0.5617 -0.1924  0.3627  2.1334 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  PARTICIPANT (Intercept) 8.524    2.920   
##  Residual                6.840    2.615   
## Number of obs: 68, groups:  PARTICIPANT, 34
## 
## Fixed effects:
##                       Estimate Std. Error      df t value Pr(>|t|)    
## (Intercept)             5.5294     0.9507 48.9371   5.816  4.5e-07 ***
## TIMEPOINT3              1.7059     0.8971 32.0000   1.902   0.0663 .  
## CONDITION2              0.7647     1.3444 48.9371   0.569   0.5721    
## TIMEPOINT3:CONDITION2  -0.1765     1.2686 32.0000  -0.139   0.8902    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) TIMEPOINT3 CONDIT
## TIMEPOINT3  -0.472                  
## CONDITION2  -0.707  0.334           
## TIMEPOINT3:  0.334 -0.707     -0.472
Effort <- lmer(Effort1 ~ TIMEPOINT * CONDITION + (1|PARTICIPANT), data = HM)
summary(Effort)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Effort1 ~ TIMEPOINT * CONDITION + (1 | PARTICIPANT)
##    Data: HM
## 
## REML criterion at convergence: 369.3
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.11218 -0.52153  0.04779  0.53277  1.80599 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  PARTICIPANT (Intercept) 14.467   3.804   
##  Residual                 6.903   2.627   
## Number of obs: 68, groups:  PARTICIPANT, 34
## 
## Fixed effects:
##                       Estimate Std. Error      df t value Pr(>|t|)    
## (Intercept)            11.8824     1.1212 43.8863  10.598 1.12e-13 ***
## TIMEPOINT3              0.4706     0.9011 32.0000   0.522   0.6051    
## CONDITION2              3.3529     1.5856 43.8863   2.115   0.0402 *  
## TIMEPOINT3:CONDITION2  -2.7647     1.2744 32.0000  -2.169   0.0376 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) TIMEPOINT3 CONDIT
## TIMEPOINT3  -0.402                  
## CONDITION2  -0.707  0.284           
## TIMEPOINT3:  0.284 -0.707     -0.402
Frustration <- lmer( Frustration1 ~ TIMEPOINT * CONDITION + (1|PARTICIPANT), data = HM)
summary(Frustration)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Frustration1 ~ TIMEPOINT * CONDITION + (1 | PARTICIPANT)
##    Data: HM
## 
## REML criterion at convergence: 392
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -1.99561 -0.43688  0.01434  0.58633  1.62709 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  PARTICIPANT (Intercept) 28.72    5.359   
##  Residual                 7.71    2.777   
## Number of obs: 68, groups:  PARTICIPANT, 34
## 
## Fixed effects:
##                       Estimate Std. Error      df t value Pr(>|t|)    
## (Intercept)            11.6471     1.4639 39.4688   7.956 9.95e-10 ***
## TIMEPOINT3             -1.1765     0.9524 32.0000  -1.235   0.2257    
## CONDITION2             -0.2941     2.0702 39.4688  -0.142   0.8877    
## TIMEPOINT3:CONDITION2  -2.8824     1.3469 32.0000  -2.140   0.0401 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) TIMEPOINT3 CONDIT
## TIMEPOINT3  -0.325                  
## CONDITION2  -0.707  0.230           
## TIMEPOINT3:  0.230 -0.707     -0.325
emmeans(Mental,~ CONDITION )
## NOTE: Results may be misleading due to involvement in interactions
##  CONDITION emmean   SE df lower.CL upper.CL
##  1           10.1 1.12 32     7.87     12.4
##  2           12.4 1.12 32    10.17     14.7
## 
## Results are averaged over the levels of: TIMEPOINT 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95
emmeans(Performance,~ TIMEPOINT)
## NOTE: Results may be misleading due to involvement in interactions
##  TIMEPOINT emmean    SE   df lower.CL upper.CL
##  2           5.91 0.672 48.9     4.56     7.26
##  3           7.53 0.672 48.9     6.18     8.88
## 
## Results are averaged over the levels of: CONDITION 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95
emmeans(Effort,~ CONDITION * TIMEPOINT)
##  CONDITION TIMEPOINT emmean   SE   df lower.CL upper.CL
##  1         2           11.9 1.12 43.9     9.62     14.1
##  2         2           15.2 1.12 43.9    12.98     17.5
##  1         3           12.4 1.12 43.9    10.09     14.6
##  2         3           12.9 1.12 43.9    10.68     15.2
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95
emmeans(Frustration,~ CONDITION * TIMEPOINT)
##  CONDITION TIMEPOINT emmean   SE   df lower.CL upper.CL
##  1         2          11.65 1.46 39.5     8.69     14.6
##  2         2          11.35 1.46 39.5     8.39     14.3
##  1         3          10.47 1.46 39.5     7.51     13.4
##  2         3           7.29 1.46 39.5     4.33     10.3
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95
plot_data <- data.frame(TIMEPOINT = HM$TIMEPOINT,
                        CONDITION = HM$CONDITION,
                        Effort1 = HM$Effort1,
                        Frustration1 = HM$Frustration1)

plot_data$CONDITION <- factor(plot_data$CONDITION, levels = c(1, 2),
                              labels = c("Cold", "Warm"))

ggplot(plot_data, aes(x = TIMEPOINT, y = Effort1, fill = CONDITION)) +
  geom_boxplot(width = 0.8) +
  xlab("Timepoints") +
  ylab("Effort levels") +
  ggtitle("Box Plot of effort level by Condition") +
  scale_fill_manual(name = "Condition", 
                    labels = c("Cold", "Ideal"),
                    values = c("#56B4E9", "orange"))
## Warning: Removed 34 rows containing non-finite values (`stat_boxplot()`).

ggplot(plot_data, aes(x = TIMEPOINT, y = Frustration1, fill = CONDITION)) +
  geom_boxplot(width = 0.8) +
  xlab("Timepoints") +
  ylab("Frustration levels") +
  ggtitle("Box Plot of frustration level by Condition") +
  scale_fill_manual(name = "Condition", 
                    labels = c("Cold", "Ideal"),
                    values = c("#56B4E9", "orange"))
## Warning: Removed 34 rows containing non-finite values (`stat_boxplot()`).

filtered_data <- HM %>% filter(TIMEPOINT %in% c(2, 3))


filtered_data$CONDITION <- factor(filtered_data$CONDITION, levels = c(1, 2),
                                  labels = c("Cold", "Warm"))
filtered_data$TIMEPOINT <- factor(filtered_data$TIMEPOINT, levels = c(2, 3),
                                  labels = c("After 5 Blocks", "After 10 Blocks"))

ggplot(filtered_data, aes(x = TIMEPOINT, y = Effort1, fill = CONDITION)) +
  geom_boxplot(width = 0.8) +
  xlab("Timepoints") +
  ylab("Effort levels") +
  ggtitle("Box Plot of effort level by Condition") +
  scale_fill_manual(name = "Condition", 
                    labels = c("Cold", "Ideal"), 
                    values = c("#56B4E9", "orange")) +
  theme_classic()

ggplot(filtered_data, aes(x = TIMEPOINT, y = Frustration1, fill = CONDITION)) +
  geom_boxplot(width = 0.8) +
  xlab("Timepoints") +
  ylab("Frustration levels") +
  ggtitle("Box Plot of frustration level by Condition") +
  scale_fill_manual(name = "Condition", 
                    labels = c("Cold", "Ideal"), 
                    values = c("#56B4E9", "orange")) +
  theme_classic()

filtered_data <- HM %>% filter(TIMEPOINT %in% c(2, 3))


filtered_data$CONDITION <- factor(filtered_data$CONDITION, levels = c(1, 2),
                                  labels = c("Cold", "Warm"))
filtered_data$TIMEPOINT <- factor(filtered_data$TIMEPOINT, levels = c(2, 3),
                                  labels = c("After 5 Blocks", "After 10 Blocks"))

ggplot(filtered_data, aes(x = TIMEPOINT, y = Effort1, fill = CONDITION)) +
  geom_boxplot(width = 0.8) +
  xlab("Timepoints") +
  ylab("Effort levels") +
  ggtitle("Box Plot of effort level by Condition") +
  scale_fill_manual(name = "Condition", 
                    labels = c("Cold", "Warm"), 
                    values = c("#56B4E9", "orange")) +
  theme_classic()

## Temperature perception Analysis

during the experiment participant where asked to indicate how warm or cold they felt on a scale from 1 (very cold) and 10 (very warm) in 3 different time (before starting, after 5 block, after 10 block).

PERCEPTION1 <- lm(PERCEPTION1 ~ CONDITION, data = SURVEY)
PERCEPTION2 <- lm(PERCEPTION2 ~ CONDITION, data = SURVEY)
PERCEPTION3 <- lm(PERCEPTION3 ~ CONDITION, data = SURVEY)

summary(PERCEPTION1)
## 
## Call:
## lm(formula = PERCEPTION1 ~ CONDITION, data = SURVEY)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2941 -1.1176 -0.2941  1.2353  2.7059 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   5.0000     0.8001   6.249 5.28e-07 ***
## CONDITION     0.2941     0.5060   0.581    0.565    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.475 on 32 degrees of freedom
## Multiple R-squared:  0.01045,    Adjusted R-squared:  -0.02048 
## F-statistic: 0.3378 on 1 and 32 DF,  p-value: 0.5652
summary(PERCEPTION2)
## 
## Call:
## lm(formula = PERCEPTION2 ~ CONDITION, data = SURVEY)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.7059 -1.2941  0.2941  0.7059  4.7059 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   3.8824     0.8945   4.340 0.000134 ***
## CONDITION     1.4118     0.5657   2.495 0.017930 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.649 on 32 degrees of freedom
## Multiple R-squared:  0.1629, Adjusted R-squared:  0.1367 
## F-statistic: 6.227 on 1 and 32 DF,  p-value: 0.01793
summary(PERCEPTION3)
## 
## Call:
## lm(formula = PERCEPTION3 ~ CONDITION, data = SURVEY)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.4118 -1.5000 -0.4118  0.5882  3.4706 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   4.2941     0.8700   4.936  2.4e-05 ***
## CONDITION     1.1176     0.5502   2.031   0.0506 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.604 on 32 degrees of freedom
## Multiple R-squared:  0.1142, Adjusted R-squared:  0.08652 
## F-statistic: 4.126 on 1 and 32 DF,  p-value: 0.05061

from the results of this model it can be seen that for perception 2 and 3 there is a significant effect of condition on the perception therefore a post-hoc is needed to see if it actually correspond the perception with the condition participants were in

emmeans(PERCEPTION1,~ CONDITION)
##  CONDITION emmean    SE df lower.CL upper.CL
##          1   5.29 0.358 32     4.57     6.02
##          2   5.59 0.358 32     4.86     6.32
## 
## Confidence level used: 0.95
emmeans(PERCEPTION2,~ CONDITION)
##  CONDITION emmean  SE df lower.CL upper.CL
##          1   5.29 0.4 32     4.48     6.11
##          2   6.71 0.4 32     5.89     7.52
## 
## Confidence level used: 0.95
emmeans(PERCEPTION3,~ CONDITION)
##  CONDITION emmean    SE df lower.CL upper.CL
##          1   5.41 0.389 32     4.62     6.20
##          2   6.53 0.389 32     5.74     7.32
## 
## Confidence level used: 0.95

For perception 2 and 3 it can be seen that people that were in the warm condition(2) have a higher mean and therefore felt warmer than the people in the condition 1(cold). therefore perception is in line with how the participant felt.

Plot all together

and then i united the 3 plot together

SURVEY$CONDITION <- factor(SURVEY$CONDITION)

predictions <- SURVEY %>% 
  pivot_longer(cols = starts_with("PERCEPTION"), names_to = "Perception", values_to = "value") %>% 
  mutate(Perception = case_when(
    Perception == "PERCEPTION1" ~ "At 0 Blocks",
    Perception == "PERCEPTION2" ~ "After 5 Blocks",
    Perception == "PERCEPTION3" ~ "After 10 Blocks",
    TRUE ~ Perception
  )) %>% 
  group_by(Perception, CONDITION) %>% 
  reframe(Prediction = value) %>%
  mutate(Perception = reorder(Perception, as.integer(gsub("\\D", "", Perception))))

ggplot(predictions, aes(x = Perception, y = Prediction, fill = factor(CONDITION))) +
  geom_boxplot(coef = 1, width = 0.8) +
  xlab("Perception Time") +
  ylab("Perception Values") +
  ggtitle("Box Plot of Temperature perception by Condition") +
  scale_fill_manual(
    name = "Condition", 
    labels = c("Cold", "Ideal"), 
    values = c("#56B4E9", "orange")
  ) +
  scale_y_continuous(limits = c(1, 10)) +
  theme_classic()

Heatmaps analysis

the heathmap was asked at 3 different times, at the beginning(base) after 5 and after 10 blcks. i decided to run a descriptive analysis, and an anova. X is the scale from 1 t 9 from unpleasant to pleasant feelings Y is the scale from 1 to 9 from sleepiness and high arousal

with relevelling

HM$X <- as.numeric(HM$X)
HM$Y <- as.numeric(HM$Y)

HM$TIMEPOINT <- relevel(HM$TIMEPOINT, ref = 1)

summary_stats <- HM %>%
  group_by(CONDITION) %>%
  summarise(
    mean_X = mean(X),
    sd_X = sd(X),
    mean_Y = mean(Y),
    sd_Y = sd(Y)
  )
print(summary_stats)
## # A tibble: 2 × 5
##   CONDITION mean_X  sd_X mean_Y  sd_Y
##   <fct>      <dbl> <dbl>  <dbl> <dbl>
## 1 1           5.89  1.99   5.73  1.75
## 2 2           5.48  2.05   5.03  2.24
ANOVA.X <- aov(X ~ CONDITION* TIMEPOINT, data = HM)
ANOVA.Y <- aov(Y ~ CONDITION* TIMEPOINT, data = HM)
print(summary(ANOVA.X))
##                     Df Sum Sq Mean Sq F value   Pr(>F)    
## CONDITION            1    4.2   4.160   1.159 0.284441    
## TIMEPOINT            2   63.1  31.556   8.788 0.000313 ***
## CONDITION:TIMEPOINT  2    0.1   0.029   0.008 0.992060    
## Residuals           96  344.7   3.591                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
print(summary(ANOVA.Y))
##                     Df Sum Sq Mean Sq F value Pr(>F)  
## CONDITION            1   12.4  12.425   3.113 0.0809 .
## TIMEPOINT            2   16.3   8.164   2.045 0.1349  
## CONDITION:TIMEPOINT  2    4.3   2.155   0.540 0.5846  
## Residuals           96  383.2   3.992                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#pairwise.t.test(HM$X, interaction(HM$CONDITION, HM$TIMEPOINT), p.adjust.method = "bonferroni")
#pairwise.t.test(HM$Y, interaction(HM$CONDITION, HM$TIMEPOINT), p.adjust.method = "bonferroni")
 
emmeans(ANOVA.X,~ TIMEPOINT )
## NOTE: Results may be misleading due to involvement in interactions
##  TIMEPOINT emmean    SE df lower.CL upper.CL
##  1           6.75 0.325 96     6.11     7.40
##  2           4.88 0.325 96     4.24     5.53
##  3           5.42 0.325 96     4.77     6.06
## 
## Results are averaged over the levels of: CONDITION 
## Confidence level used: 0.95
emmeans(ANOVA.Y,~ CONDITION )
## NOTE: Results may be misleading due to involvement in interactions
##  CONDITION emmean   SE df lower.CL upper.CL
##  1           5.73 0.28 96     5.18     6.29
##  2           5.03 0.28 96     4.48     5.59
## 
## Results are averaged over the levels of: TIMEPOINT 
## Confidence level used: 0.95

DATAFRAMES

Behav <- read_excel("SUMS.xlsx")
EMG <- read_excel("COACTIVATION TABLE.xlsx")

NA Analysis

before starting the analysis i made a quick analysis on the NA of the EMG file. the following code gives the total number of NA for all participant together and then separately of missing Extensor, Flexor, error and Coactivation. and for every participant it also calculate the percentage of missing value for each variable.

#colSums(is.na(EMG[, c("EXTENSOR", "FLEXOR", "ERRORS", "COACTIVATION.INDEX")]))

na_counts <- colSums(is.na(EMG[, c("EXTENSOR", "FLEXOR", "ERRORS", "COACTIVATION.INDEX")]))
total_counts <- colSums(!is.na(EMG[, c("EXTENSOR", "FLEXOR", "ERRORS", "COACTIVATION.INDEX")]))
na_percentage <- na_counts / total_counts * 100
result.perc <- data.frame(Variable = c("EXTENSOR", "FLEXOR", "ERRORS", "COACTIVATION.INDEX"),
                     NA_Percentage = na_percentage)
na_counts
##           EXTENSOR             FLEXOR             ERRORS COACTIVATION.INDEX 
##                 93                 15               1325                102
result.perc
##                              Variable NA_Percentage
## EXTENSOR                     EXTENSOR     0.6238680
## FLEXOR                         FLEXOR     0.1001001
## ERRORS                         ERRORS     9.6892139
## COACTIVATION.INDEX COACTIVATION.INDEX     0.6846557
for (p in 5:34) {
   na_counts <- colSums(is.na(EMG[EMG$PARTICIPANT == paste0("P", p), c("EXTENSOR", "FLEXOR", "ERRORS", "COACTIVATION.INDEX")]))
  n_rows <- nrow(EMG[EMG$PARTICIPANT == paste0("P", p), ])
  ext.perc <- round(na_counts[1] / n_rows * 100, 2)
  flex.perc <- round(na_counts[2] / n_rows * 100, 2)
  err.perc <- round(na_counts[3] / n_rows * 100, 2)
  coact.perc <- round(na_counts[4] / n_rows * 100, 2)
  print(paste0("P", p, " has ", na_counts[1], " EXTENSOR ","Percentage ", ext.perc))
  print(paste0("P", p, " has ", na_counts[2], " FLEXOR ","Percentage ", flex.perc))
  print(paste0("P", p, " has ", na_counts[3], " ERRORS ", "Percentage ", err.perc))
  print(paste0("P", p, " has ", na_counts[4], " COACTIVATION.INDEX ","Percentage ", coact.perc))
}
## [1] "P5 has 0 EXTENSOR Percentage 0"
## [1] "P5 has 0 FLEXOR Percentage 0"
## [1] "P5 has 22 ERRORS Percentage 4.4"
## [1] "P5 has 0 COACTIVATION.INDEX Percentage 0"
## [1] "P6 has 0 EXTENSOR Percentage 0"
## [1] "P6 has 0 FLEXOR Percentage 0"
## [1] "P6 has 69 ERRORS Percentage 13.8"
## [1] "P6 has 0 COACTIVATION.INDEX Percentage 0"
## [1] "P7 has 0 EXTENSOR Percentage 0"
## [1] "P7 has 0 FLEXOR Percentage 0"
## [1] "P7 has 32 ERRORS Percentage 6.4"
## [1] "P7 has 0 COACTIVATION.INDEX Percentage 0"
## [1] "P8 has 0 EXTENSOR Percentage 0"
## [1] "P8 has 0 FLEXOR Percentage 0"
## [1] "P8 has 90 ERRORS Percentage 18"
## [1] "P8 has 0 COACTIVATION.INDEX Percentage 0"
## [1] "P9 has 4 EXTENSOR Percentage 0.8"
## [1] "P9 has 0 FLEXOR Percentage 0"
## [1] "P9 has 38 ERRORS Percentage 7.6"
## [1] "P9 has 4 COACTIVATION.INDEX Percentage 0.8"
## [1] "P10 has 0 EXTENSOR Percentage 0"
## [1] "P10 has 0 FLEXOR Percentage 0"
## [1] "P10 has 34 ERRORS Percentage 6.8"
## [1] "P10 has 0 COACTIVATION.INDEX Percentage 0"
## [1] "P11 has 2 EXTENSOR Percentage 0.4"
## [1] "P11 has 2 FLEXOR Percentage 0.4"
## [1] "P11 has 63 ERRORS Percentage 12.6"
## [1] "P11 has 2 COACTIVATION.INDEX Percentage 0.4"
## [1] "P12 has 0 EXTENSOR Percentage 0"
## [1] "P12 has 0 FLEXOR Percentage 0"
## [1] "P12 has 43 ERRORS Percentage 8.6"
## [1] "P12 has 0 COACTIVATION.INDEX Percentage 0"
## [1] "P13 has 1 EXTENSOR Percentage 0.2"
## [1] "P13 has 0 FLEXOR Percentage 0"
## [1] "P13 has 4 ERRORS Percentage 0.8"
## [1] "P13 has 1 COACTIVATION.INDEX Percentage 0.2"
## [1] "P14 has 17 EXTENSOR Percentage 3.4"
## [1] "P14 has 3 FLEXOR Percentage 0.6"
## [1] "P14 has 36 ERRORS Percentage 7.2"
## [1] "P14 has 19 COACTIVATION.INDEX Percentage 3.8"
## [1] "P15 has 0 EXTENSOR Percentage 0"
## [1] "P15 has 0 FLEXOR Percentage 0"
## [1] "P15 has 23 ERRORS Percentage 4.6"
## [1] "P15 has 0 COACTIVATION.INDEX Percentage 0"
## [1] "P16 has 0 EXTENSOR Percentage 0"
## [1] "P16 has 0 FLEXOR Percentage 0"
## [1] "P16 has 9 ERRORS Percentage 1.8"
## [1] "P16 has 0 COACTIVATION.INDEX Percentage 0"
## [1] "P17 has 0 EXTENSOR Percentage 0"
## [1] "P17 has 0 FLEXOR Percentage 0"
## [1] "P17 has 59 ERRORS Percentage 11.8"
## [1] "P17 has 0 COACTIVATION.INDEX Percentage 0"
## [1] "P18 has 0 EXTENSOR Percentage 0"
## [1] "P18 has 0 FLEXOR Percentage 0"
## [1] "P18 has 35 ERRORS Percentage 7"
## [1] "P18 has 0 COACTIVATION.INDEX Percentage 0"
## [1] "P19 has 0 EXTENSOR Percentage 0"
## [1] "P19 has 0 FLEXOR Percentage 0"
## [1] "P19 has 75 ERRORS Percentage 15"
## [1] "P19 has 0 COACTIVATION.INDEX Percentage 0"
## [1] "P20 has 0 EXTENSOR Percentage 0"
## [1] "P20 has 0 FLEXOR Percentage 0"
## [1] "P20 has 30 ERRORS Percentage 6"
## [1] "P20 has 0 COACTIVATION.INDEX Percentage 0"
## [1] "P21 has 4 EXTENSOR Percentage 0.8"
## [1] "P21 has 1 FLEXOR Percentage 0.2"
## [1] "P21 has 30 ERRORS Percentage 6"
## [1] "P21 has 5 COACTIVATION.INDEX Percentage 1"
## [1] "P22 has 0 EXTENSOR Percentage 0"
## [1] "P22 has 0 FLEXOR Percentage 0"
## [1] "P22 has 50 ERRORS Percentage 10"
## [1] "P22 has 0 COACTIVATION.INDEX Percentage 0"
## [1] "P23 has 0 EXTENSOR Percentage 0"
## [1] "P23 has 0 FLEXOR Percentage 0"
## [1] "P23 has 21 ERRORS Percentage 4.2"
## [1] "P23 has 0 COACTIVATION.INDEX Percentage 0"
## [1] "P24 has 0 EXTENSOR Percentage 0"
## [1] "P24 has 0 FLEXOR Percentage 0"
## [1] "P24 has 108 ERRORS Percentage 21.6"
## [1] "P24 has 0 COACTIVATION.INDEX Percentage 0"
## [1] "P25 has 0 EXTENSOR Percentage 0"
## [1] "P25 has 0 FLEXOR Percentage 0"
## [1] "P25 has 61 ERRORS Percentage 12.2"
## [1] "P25 has 0 COACTIVATION.INDEX Percentage 0"
## [1] "P26 has 0 EXTENSOR Percentage 0"
## [1] "P26 has 0 FLEXOR Percentage 0"
## [1] "P26 has 53 ERRORS Percentage 10.6"
## [1] "P26 has 0 COACTIVATION.INDEX Percentage 0"
## [1] "P27 has 1 EXTENSOR Percentage 0.2"
## [1] "P27 has 0 FLEXOR Percentage 0"
## [1] "P27 has 10 ERRORS Percentage 2"
## [1] "P27 has 1 COACTIVATION.INDEX Percentage 0.2"
## [1] "P28 has 3 EXTENSOR Percentage 0.6"
## [1] "P28 has 0 FLEXOR Percentage 0"
## [1] "P28 has 10 ERRORS Percentage 2"
## [1] "P28 has 3 COACTIVATION.INDEX Percentage 0.6"
## [1] "P29 has 0 EXTENSOR Percentage 0"
## [1] "P29 has 0 FLEXOR Percentage 0"
## [1] "P29 has 30 ERRORS Percentage 6"
## [1] "P29 has 0 COACTIVATION.INDEX Percentage 0"
## [1] "P30 has 0 EXTENSOR Percentage 0"
## [1] "P30 has 1 FLEXOR Percentage 0.2"
## [1] "P30 has 27 ERRORS Percentage 5.4"
## [1] "P30 has 1 COACTIVATION.INDEX Percentage 0.2"
## [1] "P31 has 31 EXTENSOR Percentage 6.2"
## [1] "P31 has 6 FLEXOR Percentage 1.2"
## [1] "P31 has 79 ERRORS Percentage 15.8"
## [1] "P31 has 35 COACTIVATION.INDEX Percentage 7"
## [1] "P32 has 1 EXTENSOR Percentage 0.2"
## [1] "P32 has 0 FLEXOR Percentage 0"
## [1] "P32 has 87 ERRORS Percentage 17.4"
## [1] "P32 has 1 COACTIVATION.INDEX Percentage 0.2"
## [1] "P33 has 5 EXTENSOR Percentage 1"
## [1] "P33 has 0 FLEXOR Percentage 0"
## [1] "P33 has 39 ERRORS Percentage 7.8"
## [1] "P33 has 5 COACTIVATION.INDEX Percentage 1"
## [1] "P34 has 24 EXTENSOR Percentage 4.8"
## [1] "P34 has 2 FLEXOR Percentage 0.4"
## [1] "P34 has 58 ERRORS Percentage 11.6"
## [1] "P34 has 25 COACTIVATION.INDEX Percentage 5"
# max and min range per mean coact and condition
max_min_condition_1 <- Behav %>%
  filter(CONDITION == 1) %>%
  summarize(MAX_COACTIVATION_INDEX = max(MEAN.COACT, na.rm = TRUE),
            MIN_COACTIVATION_INDEX = min(MEAN.COACT, na.rm = TRUE))


max_min_condition_2 <- Behav %>%
  filter(CONDITION == 2) %>%
  summarize(MAX_COACTIVATION_INDEX = max(MEAN.COACT, na.rm = TRUE),
            MIN_COACTIVATION_INDEX = min(MEAN.COACT, na.rm = TRUE))


print("Condition 1:")
## [1] "Condition 1:"
print(max_min_condition_1)
## # A tibble: 1 × 2
##   MAX_COACTIVATION_INDEX MIN_COACTIVATION_INDEX
##                    <dbl>                  <dbl>
## 1                   101.                   97.8
print("Condition 2:")
## [1] "Condition 2:"
print(max_min_condition_2)
## # A tibble: 1 × 2
##   MAX_COACTIVATION_INDEX MIN_COACTIVATION_INDEX
##                    <dbl>                  <dbl>
## 1                   173.                   97.9

Factors for EMG & Behav.

#Factors for Behav
Behav$PARTICIPANT <- factor(Behav$PARTICIPANT)
Behav$BLOCK <- factor(Behav$BLOCK)
Behav$CONDITION <- factor(Behav$CONDITION)

#Factors for EMG
EMG$PARTICIPANT <- factor(EMG$PARTICIPANT)
EMG$BLOCK <- factor(EMG$BLOCK)
EMG$PHASE <- factor(EMG$PHASE)
EMG$CONDITION <- factor(EMG$CONDITION)

RT analysis

#RT
m.RT <- lmer(TIME ~ BLOCK * CONDITION + (1|PARTICIPANT), data = Behav)
anova(m.RT)
## Type III Analysis of Variance Table with Satterthwaite's method
##                 Sum Sq Mean Sq NumDF DenDF F value Pr(>F)    
## BLOCK           339994   37777     9   252 13.9721 <2e-16 ***
## CONDITION          100     100     1    28  0.0369 0.8490    
## BLOCK:CONDITION  21810    2423     9   252  0.8963 0.5292    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(m.RT)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: TIME ~ BLOCK * CONDITION + (1 | PARTICIPANT)
##    Data: Behav
## 
## REML criterion at convergence: 3155.8
## 
## Scaled residuals: 
##    Min     1Q Median     3Q    Max 
## -3.979 -0.539 -0.044  0.516  4.909 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  PARTICIPANT (Intercept) 7599     87.17   
##  Residual                2704     52.00   
## Number of obs: 300, groups:  PARTICIPANT, 30
## 
## Fixed effects:
##                    Estimate Std. Error      df t value Pr(>|t|)    
## (Intercept)          278.12      26.21   47.49  10.612 3.99e-14 ***
## BLOCK2               -52.96      18.99  252.00  -2.789 0.005686 ** 
## BLOCK3               -61.76      18.99  252.00  -3.253 0.001299 ** 
## BLOCK4               -70.12      18.99  252.00  -3.693 0.000272 ***
## BLOCK5               -73.60      18.99  252.00  -3.876 0.000135 ***
## BLOCK6               -55.48      18.99  252.00  -2.922 0.003793 ** 
## BLOCK7               -96.76      18.99  252.00  -5.096 6.81e-07 ***
## BLOCK8              -103.20      18.99  252.00  -5.435 1.29e-07 ***
## BLOCK9              -122.08      18.99  252.00  -6.430 6.37e-10 ***
## BLOCK10             -131.64      18.99  252.00  -6.933 3.44e-11 ***
## CONDITION2           -11.84      37.06   47.49  -0.319 0.750786    
## BLOCK2:CONDITION2     30.44      26.85  252.00   1.134 0.258021    
## BLOCK3:CONDITION2     31.96      26.85  252.00   1.190 0.235068    
## BLOCK4:CONDITION2     33.04      26.85  252.00   1.230 0.219667    
## BLOCK5:CONDITION2     14.52      26.85  252.00   0.541 0.589156    
## BLOCK6:CONDITION2    -16.60      26.85  252.00  -0.618 0.536991    
## BLOCK7:CONDITION2      3.00      26.85  252.00   0.112 0.911130    
## BLOCK8:CONDITION2     15.80      26.85  252.00   0.588 0.556776    
## BLOCK9:CONDITION2     38.80      26.85  252.00   1.445 0.149704    
## BLOCK10:CONDITION2    29.68      26.85  252.00   1.105 0.270066    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
  • significant effect of Block on TIME
emmeans(m.RT, pairwise ~ CONDITION | BLOCK)
## $emmeans
## BLOCK = 1:
##  CONDITION emmean   SE   df lower.CL upper.CL
##  1            278 26.2 47.5    225.4      331
##  2            266 26.2 47.5    213.6      319
## 
## BLOCK = 2:
##  CONDITION emmean   SE   df lower.CL upper.CL
##  1            225 26.2 47.5    172.5      278
##  2            244 26.2 47.5    191.1      296
## 
## BLOCK = 3:
##  CONDITION emmean   SE   df lower.CL upper.CL
##  1            216 26.2 47.5    163.7      269
##  2            236 26.2 47.5    183.8      289
## 
## BLOCK = 4:
##  CONDITION emmean   SE   df lower.CL upper.CL
##  1            208 26.2 47.5    155.3      261
##  2            229 26.2 47.5    176.5      282
## 
## BLOCK = 5:
##  CONDITION emmean   SE   df lower.CL upper.CL
##  1            205 26.2 47.5    151.8      257
##  2            207 26.2 47.5    154.5      260
## 
## BLOCK = 6:
##  CONDITION emmean   SE   df lower.CL upper.CL
##  1            223 26.2 47.5    169.9      275
##  2            194 26.2 47.5    141.5      247
## 
## BLOCK = 7:
##  CONDITION emmean   SE   df lower.CL upper.CL
##  1            181 26.2 47.5    128.7      234
##  2            173 26.2 47.5    119.8      225
## 
## BLOCK = 8:
##  CONDITION emmean   SE   df lower.CL upper.CL
##  1            175 26.2 47.5    122.2      228
##  2            179 26.2 47.5    126.2      232
## 
## BLOCK = 9:
##  CONDITION emmean   SE   df lower.CL upper.CL
##  1            156 26.2 47.5    103.3      209
##  2            183 26.2 47.5    130.3      236
## 
## BLOCK = 10:
##  CONDITION emmean   SE   df lower.CL upper.CL
##  1            146 26.2 47.5     93.8      199
##  2            164 26.2 47.5    111.6      217
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
## BLOCK = 1:
##  contrast                estimate   SE   df t.ratio p.value
##  CONDITION1 - CONDITION2    11.84 37.1 47.5   0.319  0.7508
## 
## BLOCK = 2:
##  contrast                estimate   SE   df t.ratio p.value
##  CONDITION1 - CONDITION2   -18.60 37.1 47.5  -0.502  0.6181
## 
## BLOCK = 3:
##  contrast                estimate   SE   df t.ratio p.value
##  CONDITION1 - CONDITION2   -20.12 37.1 47.5  -0.543  0.5898
## 
## BLOCK = 4:
##  contrast                estimate   SE   df t.ratio p.value
##  CONDITION1 - CONDITION2   -21.20 37.1 47.5  -0.572  0.5700
## 
## BLOCK = 5:
##  contrast                estimate   SE   df t.ratio p.value
##  CONDITION1 - CONDITION2    -2.68 37.1 47.5  -0.072  0.9427
## 
## BLOCK = 6:
##  contrast                estimate   SE   df t.ratio p.value
##  CONDITION1 - CONDITION2    28.44 37.1 47.5   0.767  0.4467
## 
## BLOCK = 7:
##  contrast                estimate   SE   df t.ratio p.value
##  CONDITION1 - CONDITION2     8.84 37.1 47.5   0.239  0.8125
## 
## BLOCK = 8:
##  contrast                estimate   SE   df t.ratio p.value
##  CONDITION1 - CONDITION2    -3.96 37.1 47.5  -0.107  0.9154
## 
## BLOCK = 9:
##  contrast                estimate   SE   df t.ratio p.value
##  CONDITION1 - CONDITION2   -26.96 37.1 47.5  -0.727  0.4706
## 
## BLOCK = 10:
##  contrast                estimate   SE   df t.ratio p.value
##  CONDITION1 - CONDITION2   -17.84 37.1 47.5  -0.481  0.6325
## 
## Degrees-of-freedom method: kenward-roger
  • for both condition it can bee seen that from block 1 to 10 the participants get faster = less time
emmeans(m.RT, pairwise ~ BLOCK)
## NOTE: Results may be misleading due to involvement in interactions
## $emmeans
##  BLOCK emmean   SE   df lower.CL upper.CL
##  1        272 18.5 47.5      235      309
##  2        234 18.5 47.5      197      272
##  3        226 18.5 47.5      189      264
##  4        219 18.5 47.5      181      256
##  5        206 18.5 47.5      169      243
##  6        208 18.5 47.5      171      246
##  7        177 18.5 47.5      140      214
##  8        177 18.5 47.5      140      214
##  9        170 18.5 47.5      132      207
##  10       155 18.5 47.5      118      193
## 
## Results are averaged over the levels of: CONDITION 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast         estimate   SE  df t.ratio p.value
##  BLOCK1 - BLOCK2     37.74 13.4 252   2.811  0.1384
##  BLOCK1 - BLOCK3     45.78 13.4 252   3.410  0.0258
##  BLOCK1 - BLOCK4     53.60 13.4 252   3.992  0.0034
##  BLOCK1 - BLOCK5     66.34 13.4 252   4.941  0.0001
##  BLOCK1 - BLOCK6     63.78 13.4 252   4.751  0.0001
##  BLOCK1 - BLOCK7     95.26 13.4 252   7.095  <.0001
##  BLOCK1 - BLOCK8     95.30 13.4 252   7.098  <.0001
##  BLOCK1 - BLOCK9    102.68 13.4 252   7.648  <.0001
##  BLOCK1 - BLOCK10   116.80 13.4 252   8.700  <.0001
##  BLOCK2 - BLOCK3      8.04 13.4 252   0.599  0.9999
##  BLOCK2 - BLOCK4     15.86 13.4 252   1.181  0.9746
##  BLOCK2 - BLOCK5     28.60 13.4 252   2.130  0.5080
##  BLOCK2 - BLOCK6     26.04 13.4 252   1.940  0.6420
##  BLOCK2 - BLOCK7     57.52 13.4 252   4.284  0.0011
##  BLOCK2 - BLOCK8     57.56 13.4 252   4.287  0.0011
##  BLOCK2 - BLOCK9     64.94 13.4 252   4.837  0.0001
##  BLOCK2 - BLOCK10    79.06 13.4 252   5.889  <.0001
##  BLOCK3 - BLOCK4      7.82 13.4 252   0.582  0.9999
##  BLOCK3 - BLOCK5     20.56 13.4 252   1.531  0.8784
##  BLOCK3 - BLOCK6     18.00 13.4 252   1.341  0.9431
##  BLOCK3 - BLOCK7     49.48 13.4 252   3.685  0.0103
##  BLOCK3 - BLOCK8     49.52 13.4 252   3.688  0.0102
##  BLOCK3 - BLOCK9     56.90 13.4 252   4.238  0.0013
##  BLOCK3 - BLOCK10    71.02 13.4 252   5.290  <.0001
##  BLOCK4 - BLOCK5     12.74 13.4 252   0.949  0.9946
##  BLOCK4 - BLOCK6     10.18 13.4 252   0.758  0.9990
##  BLOCK4 - BLOCK7     41.66 13.4 252   3.103  0.0645
##  BLOCK4 - BLOCK8     41.70 13.4 252   3.106  0.0640
##  BLOCK4 - BLOCK9     49.08 13.4 252   3.656  0.0114
##  BLOCK4 - BLOCK10    63.20 13.4 252   4.707  0.0002
##  BLOCK5 - BLOCK6     -2.56 13.4 252  -0.191  1.0000
##  BLOCK5 - BLOCK7     28.92 13.4 252   2.154  0.4913
##  BLOCK5 - BLOCK8     28.96 13.4 252   2.157  0.4892
##  BLOCK5 - BLOCK9     36.34 13.4 252   2.707  0.1766
##  BLOCK5 - BLOCK10    50.46 13.4 252   3.758  0.0080
##  BLOCK6 - BLOCK7     31.48 13.4 252   2.345  0.3641
##  BLOCK6 - BLOCK8     31.52 13.4 252   2.348  0.3623
##  BLOCK6 - BLOCK9     38.90 13.4 252   2.897  0.1117
##  BLOCK6 - BLOCK10    53.02 13.4 252   3.949  0.0040
##  BLOCK7 - BLOCK8      0.04 13.4 252   0.003  1.0000
##  BLOCK7 - BLOCK9      7.42 13.4 252   0.553  0.9999
##  BLOCK7 - BLOCK10    21.54 13.4 252   1.604  0.8451
##  BLOCK8 - BLOCK9      7.38 13.4 252   0.550  0.9999
##  BLOCK8 - BLOCK10    21.50 13.4 252   1.601  0.8465
##  BLOCK9 - BLOCK10    14.12 13.4 252   1.052  0.9886
## 
## Results are averaged over the levels of: CONDITION 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 10 estimates
  • from block 1 to 10 it can be seen a reduction in time = Faster
#Effects just on the RT model
ae.m.RT<-allEffects(m.RT)
ae.m.RT.df<-as.data.frame(ae.m.RT[[1]])
plot(ae.m.RT)

plot.m.RT <- ggplot(ae.m.RT.df, aes(x = BLOCK, y = fit, group = CONDITION)) +
  geom_ribbon(aes(ymin = lower, ymax = upper, fill = CONDITION), alpha = 0.2) +
  geom_line(aes(color = CONDITION), linewidth = 1) +
  geom_point(aes(color = CONDITION, shape = CONDITION, fill = CONDITION), size = 3.5) +
  ylab("Time on task") +
  xlab("Blocks") +
  ggtitle("Response time between groups") +
  scale_color_manual(name = "CONDITION", values = c("#56B4E9", "orange"), labels = c("Cold", "Ideal")) +
  scale_fill_manual(name = "CONDITION", values = c("#0072B2", "orange"), labels = c("Cold", "Ideal")) +
  guides(shape = FALSE) +
  theme_classic()
## Warning: The `<scale>` argument of `guides()` cannot be `FALSE`. Use "none" instead as
## of ggplot2 3.3.4.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
print(plot.m.RT)

## Error rate analysis

#Errors
m.error <- lmer(ERROR ~ BLOCK * CONDITION + (1|PARTICIPANT), data = Behav)
anova(m.error)
## Type III Analysis of Variance Table with Satterthwaite's method
##                 Sum Sq Mean Sq NumDF DenDF F value Pr(>F)    
## BLOCK           400362   44485     9   252 31.4318 <2e-16 ***
## CONDITION          532     532     1    28  0.3759 0.5448    
## BLOCK:CONDITION   7095     788     9   252  0.5570 0.8315    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(m.error)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: ERROR ~ BLOCK * CONDITION + (1 | PARTICIPANT)
##    Data: Behav
## 
## REML criterion at convergence: 2966
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3211 -0.5254 -0.0234  0.5024  3.5909 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  PARTICIPANT (Intercept) 2887     53.73   
##  Residual                1415     37.62   
## Number of obs: 300, groups:  PARTICIPANT, 30
## 
## Fixed effects:
##                    Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)         258.000     16.936   55.417  15.234  < 2e-16 ***
## BLOCK2              -57.267     13.737  252.000  -4.169 4.21e-05 ***
## BLOCK3              -69.200     13.737  252.000  -5.038 9.00e-07 ***
## BLOCK4              -77.667     13.737  252.000  -5.654 4.24e-08 ***
## BLOCK5              -84.067     13.737  252.000  -6.120 3.56e-09 ***
## BLOCK6             -107.533     13.737  252.000  -7.828 1.37e-13 ***
## BLOCK7             -108.533     13.737  252.000  -7.901 8.61e-14 ***
## BLOCK8             -121.267     13.737  252.000  -8.828  < 2e-16 ***
## BLOCK9             -122.800     13.737  252.000  -8.939  < 2e-16 ***
## BLOCK10            -127.200     13.737  252.000  -9.260  < 2e-16 ***
## CONDITION2          -17.000     23.951   55.417  -0.710    0.481    
## BLOCK2:CONDITION2    14.600     19.427  252.000   0.752    0.453    
## BLOCK3:CONDITION2     4.600     19.427  252.000   0.237    0.813    
## BLOCK4:CONDITION2     6.467     19.427  252.000   0.333    0.740    
## BLOCK5:CONDITION2    -7.133     19.427  252.000  -0.367    0.714    
## BLOCK6:CONDITION2    -6.000     19.427  252.000  -0.309    0.758    
## BLOCK7:CONDITION2   -10.667     19.427  252.000  -0.549    0.583    
## BLOCK8:CONDITION2    13.733     19.427  252.000   0.707    0.480    
## BLOCK9:CONDITION2    18.133     19.427  252.000   0.933    0.352    
## BLOCK10:CONDITION2   13.067     19.427  252.000   0.673    0.502    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
  • There is a significant effect of Block on Error
emmeans(m.error, pairwise ~ CONDITION | BLOCK)
## $emmeans
## BLOCK = 1:
##  CONDITION emmean   SE   df lower.CL upper.CL
##  1            258 16.9 55.4    224.1      292
##  2            241 16.9 55.4    207.1      275
## 
## BLOCK = 2:
##  CONDITION emmean   SE   df lower.CL upper.CL
##  1            201 16.9 55.4    166.8      235
##  2            198 16.9 55.4    164.4      232
## 
## BLOCK = 3:
##  CONDITION emmean   SE   df lower.CL upper.CL
##  1            189 16.9 55.4    154.9      223
##  2            176 16.9 55.4    142.5      210
## 
## BLOCK = 4:
##  CONDITION emmean   SE   df lower.CL upper.CL
##  1            180 16.9 55.4    146.4      214
##  2            170 16.9 55.4    135.9      204
## 
## BLOCK = 5:
##  CONDITION emmean   SE   df lower.CL upper.CL
##  1            174 16.9 55.4    140.0      208
##  2            150 16.9 55.4    115.9      184
## 
## BLOCK = 6:
##  CONDITION emmean   SE   df lower.CL upper.CL
##  1            150 16.9 55.4    116.5      184
##  2            127 16.9 55.4     93.5      161
## 
## BLOCK = 7:
##  CONDITION emmean   SE   df lower.CL upper.CL
##  1            149 16.9 55.4    115.5      183
##  2            122 16.9 55.4     87.9      156
## 
## BLOCK = 8:
##  CONDITION emmean   SE   df lower.CL upper.CL
##  1            137 16.9 55.4    102.8      171
##  2            133 16.9 55.4     99.5      167
## 
## BLOCK = 9:
##  CONDITION emmean   SE   df lower.CL upper.CL
##  1            135 16.9 55.4    101.3      169
##  2            136 16.9 55.4    102.4      170
## 
## BLOCK = 10:
##  CONDITION emmean   SE   df lower.CL upper.CL
##  1            131 16.9 55.4     96.9      165
##  2            127 16.9 55.4     92.9      161
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
## BLOCK = 1:
##  contrast                estimate SE   df t.ratio p.value
##  CONDITION1 - CONDITION2    17.00 24 55.4   0.710  0.4808
## 
## BLOCK = 2:
##  contrast                estimate SE   df t.ratio p.value
##  CONDITION1 - CONDITION2     2.40 24 55.4   0.100  0.9205
## 
## BLOCK = 3:
##  contrast                estimate SE   df t.ratio p.value
##  CONDITION1 - CONDITION2    12.40 24 55.4   0.518  0.6067
## 
## BLOCK = 4:
##  contrast                estimate SE   df t.ratio p.value
##  CONDITION1 - CONDITION2    10.53 24 55.4   0.440  0.6618
## 
## BLOCK = 5:
##  contrast                estimate SE   df t.ratio p.value
##  CONDITION1 - CONDITION2    24.13 24 55.4   1.008  0.3180
## 
## BLOCK = 6:
##  contrast                estimate SE   df t.ratio p.value
##  CONDITION1 - CONDITION2    23.00 24 55.4   0.960  0.3411
## 
## BLOCK = 7:
##  contrast                estimate SE   df t.ratio p.value
##  CONDITION1 - CONDITION2    27.67 24 55.4   1.155  0.2530
## 
## BLOCK = 8:
##  contrast                estimate SE   df t.ratio p.value
##  CONDITION1 - CONDITION2     3.27 24 55.4   0.136  0.8920
## 
## BLOCK = 9:
##  contrast                estimate SE   df t.ratio p.value
##  CONDITION1 - CONDITION2    -1.13 24 55.4  -0.047  0.9624
## 
## BLOCK = 10:
##  contrast                estimate SE   df t.ratio p.value
##  CONDITION1 - CONDITION2     3.93 24 55.4   0.164  0.8701
## 
## Degrees-of-freedom method: kenward-roger
emmeans(m.RT, pairwise ~ BLOCK)
## NOTE: Results may be misleading due to involvement in interactions
## $emmeans
##  BLOCK emmean   SE   df lower.CL upper.CL
##  1        272 18.5 47.5      235      309
##  2        234 18.5 47.5      197      272
##  3        226 18.5 47.5      189      264
##  4        219 18.5 47.5      181      256
##  5        206 18.5 47.5      169      243
##  6        208 18.5 47.5      171      246
##  7        177 18.5 47.5      140      214
##  8        177 18.5 47.5      140      214
##  9        170 18.5 47.5      132      207
##  10       155 18.5 47.5      118      193
## 
## Results are averaged over the levels of: CONDITION 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast         estimate   SE  df t.ratio p.value
##  BLOCK1 - BLOCK2     37.74 13.4 252   2.811  0.1384
##  BLOCK1 - BLOCK3     45.78 13.4 252   3.410  0.0258
##  BLOCK1 - BLOCK4     53.60 13.4 252   3.992  0.0034
##  BLOCK1 - BLOCK5     66.34 13.4 252   4.941  0.0001
##  BLOCK1 - BLOCK6     63.78 13.4 252   4.751  0.0001
##  BLOCK1 - BLOCK7     95.26 13.4 252   7.095  <.0001
##  BLOCK1 - BLOCK8     95.30 13.4 252   7.098  <.0001
##  BLOCK1 - BLOCK9    102.68 13.4 252   7.648  <.0001
##  BLOCK1 - BLOCK10   116.80 13.4 252   8.700  <.0001
##  BLOCK2 - BLOCK3      8.04 13.4 252   0.599  0.9999
##  BLOCK2 - BLOCK4     15.86 13.4 252   1.181  0.9746
##  BLOCK2 - BLOCK5     28.60 13.4 252   2.130  0.5080
##  BLOCK2 - BLOCK6     26.04 13.4 252   1.940  0.6420
##  BLOCK2 - BLOCK7     57.52 13.4 252   4.284  0.0011
##  BLOCK2 - BLOCK8     57.56 13.4 252   4.287  0.0011
##  BLOCK2 - BLOCK9     64.94 13.4 252   4.837  0.0001
##  BLOCK2 - BLOCK10    79.06 13.4 252   5.889  <.0001
##  BLOCK3 - BLOCK4      7.82 13.4 252   0.582  0.9999
##  BLOCK3 - BLOCK5     20.56 13.4 252   1.531  0.8784
##  BLOCK3 - BLOCK6     18.00 13.4 252   1.341  0.9431
##  BLOCK3 - BLOCK7     49.48 13.4 252   3.685  0.0103
##  BLOCK3 - BLOCK8     49.52 13.4 252   3.688  0.0102
##  BLOCK3 - BLOCK9     56.90 13.4 252   4.238  0.0013
##  BLOCK3 - BLOCK10    71.02 13.4 252   5.290  <.0001
##  BLOCK4 - BLOCK5     12.74 13.4 252   0.949  0.9946
##  BLOCK4 - BLOCK6     10.18 13.4 252   0.758  0.9990
##  BLOCK4 - BLOCK7     41.66 13.4 252   3.103  0.0645
##  BLOCK4 - BLOCK8     41.70 13.4 252   3.106  0.0640
##  BLOCK4 - BLOCK9     49.08 13.4 252   3.656  0.0114
##  BLOCK4 - BLOCK10    63.20 13.4 252   4.707  0.0002
##  BLOCK5 - BLOCK6     -2.56 13.4 252  -0.191  1.0000
##  BLOCK5 - BLOCK7     28.92 13.4 252   2.154  0.4913
##  BLOCK5 - BLOCK8     28.96 13.4 252   2.157  0.4892
##  BLOCK5 - BLOCK9     36.34 13.4 252   2.707  0.1766
##  BLOCK5 - BLOCK10    50.46 13.4 252   3.758  0.0080
##  BLOCK6 - BLOCK7     31.48 13.4 252   2.345  0.3641
##  BLOCK6 - BLOCK8     31.52 13.4 252   2.348  0.3623
##  BLOCK6 - BLOCK9     38.90 13.4 252   2.897  0.1117
##  BLOCK6 - BLOCK10    53.02 13.4 252   3.949  0.0040
##  BLOCK7 - BLOCK8      0.04 13.4 252   0.003  1.0000
##  BLOCK7 - BLOCK9      7.42 13.4 252   0.553  0.9999
##  BLOCK7 - BLOCK10    21.54 13.4 252   1.604  0.8451
##  BLOCK8 - BLOCK9      7.38 13.4 252   0.550  0.9999
##  BLOCK8 - BLOCK10    21.50 13.4 252   1.601  0.8465
##  BLOCK9 - BLOCK10    14.12 13.4 252   1.052  0.9886
## 
## Results are averaged over the levels of: CONDITION 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 10 estimates

From the post-hoc analysis it can be seen that from block 1 to block10 there is an improvement( less) in the errors of participants in both conditions

#Effects just on the RT model
ae.m.error<-allEffects(m.error)
ae.m.error.df<-as.data.frame(ae.m.error[[1]])
plot(ae.m.error)

#The plot
plot.m.error.blk <- ggplot(ae.m.error.df, aes(x= BLOCK, y=fit, group=CONDITION))+
  geom_ribbon(aes(ymin=lower, ymax=upper, fill=CONDITION), alpha = 0.2) +
  geom_line(aes(color=CONDITION), linewidth = 1) +
  geom_point(aes(color=CONDITION, shape=CONDITION), size = 3.5)+
  ylab("Error")+
  xlab("Block")+
  ggtitle("Error rate between groups")+
  scale_color_manual(name = "CONDITION", values = c("#56B4E9", "orange"), labels = c("Cold", "Ideal")) +
  scale_fill_manual(name = "CONDITION", values = c("#0072B2", "orange"), labels = c("Cold", "Ideal")) +
  guides(shape = FALSE) +
  theme_classic()

print (plot.m.error.blk)

Speed and Error Analysis

m.errorRT <- lm(TIME ~ ERROR, data = Behav)
anova(m.errorRT)
## Analysis of Variance Table
## 
## Response: TIME
##            Df  Sum Sq Mean Sq F value    Pr(>F)    
## ERROR       1  211040  211040  20.698 7.836e-06 ***
## Residuals 298 3038457   10196                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(m.errorRT)
## 
## Call:
## lm(formula = TIME ~ ERROR, data = Behav)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -152.42  -83.59  -24.52   74.85  445.60 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 145.23897   14.26530   10.18  < 2e-16 ***
## ERROR         0.36055    0.07925    4.55 7.84e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 101 on 298 degrees of freedom
## Multiple R-squared:  0.06495,    Adjusted R-squared:  0.06181 
## F-statistic:  20.7 on 1 and 298 DF,  p-value: 7.836e-06
  • There is an significant effect of Error on Time
 plot(m.errorRT)

#Effects just on the RT model
ae.m.errorRT<-allEffects(m.errorRT)
ae.m.errorRT.df<-as.data.frame(ae.m.errorRT[[1]])
plot(ae.m.errorRT)

ggplot(ae.m.errorRT.df, aes(x = fit, y = ERROR)) +
  geom_line(color = "#56B4E9", size = 1.5) +
  scale_y_continuous(limits = c(0, 550), expand = c(0, 0)) +
  xlab("Time") +
  ylab("Error") +
  theme_bw() +
  theme(panel.grid.major = element_blank(),
        panel.grid.minor = element_blank(),
        panel.border = element_blank(),
        axis.line = element_line(size = 1.2),
        axis.title = element_text(size = 14, face = "bold"),
        axis.text = element_text(size = 12),
        legend.position = "none")
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Warning: The `size` argument of `element_line()` is deprecated as of ggplot2 3.4.0.
## ℹ Please use the `linewidth` argument instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.

  • from the graph it can be seen that faster participants go (less time), less error they make

Speed and Error by CONDITION Analysis

m.errorRT.c <- lm(TIME ~ ERROR * CONDITION, data = Behav)
anova(m.errorRT.c)
## Analysis of Variance Table
## 
## Response: TIME
##                  Df  Sum Sq Mean Sq F value    Pr(>F)    
## ERROR             1  211040  211040 20.6334 8.107e-06 ***
## CONDITION         1    8592    8592  0.8401    0.3601    
## ERROR:CONDITION   1    2343    2343  0.2291    0.6325    
## Residuals       296 3027521   10228                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(m.errorRT.c)
## 
## Call:
## lm(formula = TIME ~ ERROR * CONDITION, data = Behav)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -149.36  -81.03  -21.18   75.62  433.95 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      145.31639   20.83849   6.973 2.02e-11 ***
## ERROR              0.32880    0.11225   2.929  0.00366 ** 
## CONDITION2        -1.78271   28.67023  -0.062  0.95046    
## ERROR:CONDITION2   0.07625    0.15931   0.479  0.63255    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 101.1 on 296 degrees of freedom
## Multiple R-squared:  0.06831,    Adjusted R-squared:  0.05887 
## F-statistic: 7.234 on 3 and 296 DF,  p-value: 0.0001063
  • There is an significant effect of Error on Time
 plot(m.errorRT.c)

#Effects just on the RT model
ae.m.errorRT.c<-allEffects(m.errorRT.c)
ae.m.errorRT.c.df<-as.data.frame(ae.m.errorRT.c,c[[1]])
plot(ae.m.errorRT.c)

ggplot(Behav, aes(x = TIME, y = ERROR, color = CONDITION)) +
  geom_line(size=1) +
  facet_grid(CONDITION ~ ., scales = "free_y") +
  labs(x = "TIME", y = "Error", color = "CONDITION") +
  ggtitle("Speed andErrors by Condition") +
  scale_color_manual(name = "Condition", 
                    labels = c("Cold", "Warm"), 
                    values = c("#56B4E9", "orange"))+
  theme_classic()

ae.m.errorRT.c.df <- data.frame(ae.m.errorRT.c)
error_condition <- ae.m.errorRT.c.df$ERROR.CONDITION

# Plot the data
ggplot(error_condition, aes(x = ERROR, y = fit, group = CONDITION)) +
  geom_ribbon(aes(ymin = lower, ymax = upper, fill = CONDITION), alpha = 0.2) +
  geom_line(aes(color = CONDITION), size = 1) +
  geom_point(aes(color = CONDITION, shape = CONDITION), size = 3.5) +
  ylab("Time on task") +
  xlab("Error") +
  ggtitle("Speed and Error rate between groups") +
  scale_color_manual(name = "CONDITION", values = c("#56B4E9", "orange"), labels = c("Cold", "Ideal")) +
  scale_fill_manual(name = "CONDITION", values = c("#0072B2", "orange"), labels = c("Cold", "Ideal")) +
  guides(shape = FALSE) +
  theme_classic()

RT and Error rate by Condition Analysis

#RT * Error model
m.RT.ER <- lmer(TIME ~ BLOCK * CONDITION * ERROR + (1|PARTICIPANT), data = Behav)
anova(m.RT.ER)
## Type III Analysis of Variance Table with Satterthwaite's method
##                       Sum Sq Mean Sq NumDF   DenDF F value    Pr(>F)    
## BLOCK                  31892    3544     9 232.618  1.4102    0.1845    
## CONDITION                 57      57     1  79.491  0.0228    0.8803    
## ERROR                  61589   61589     1 258.844 24.5100 1.334e-06 ***
## BLOCK:CONDITION        26070    2897     9 232.618  1.1527    0.3266    
## BLOCK:ERROR            14254    1584     9 233.357  0.6303    0.7707    
## CONDITION:ERROR         1014    1014     1 258.844  0.4035    0.5259    
## BLOCK:CONDITION:ERROR  25957    2884     9 233.357  1.1478    0.3300    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(m.RT.ER)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: TIME ~ BLOCK * CONDITION * ERROR + (1 | PARTICIPANT)
##    Data: Behav
## 
## REML criterion at convergence: 3139.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.5227 -0.4645 -0.0189  0.4155  4.8433 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  PARTICIPANT (Intercept) 8212     90.62   
##  Residual                2513     50.13   
## Number of obs: 300, groups:  PARTICIPANT, 30
## 
## Fixed effects:
##                            Estimate Std. Error         df t value Pr(>|t|)   
## (Intercept)               1.482e+02  5.391e+01  2.299e+02   2.748  0.00647 **
## BLOCK2                   -6.949e+00  5.744e+01  2.322e+02  -0.121  0.90381   
## BLOCK3                    2.443e+01  6.227e+01  2.324e+02   0.392  0.69513   
## BLOCK4                    2.862e+01  5.645e+01  2.323e+02   0.507  0.61261   
## BLOCK5                   -2.025e+00  5.543e+01  2.323e+02  -0.037  0.97089   
## BLOCK6                    8.758e+00  5.174e+01  2.337e+02   0.169  0.86573   
## BLOCK7                   -7.482e+00  5.605e+01  2.325e+02  -0.133  0.89393   
## BLOCK8                   -2.613e+01  6.669e+01  2.325e+02  -0.392  0.69556   
## BLOCK9                   -1.156e+02  5.680e+01  2.324e+02  -2.036  0.04293 * 
## BLOCK10                  -9.565e+01  6.108e+01  2.325e+02  -1.566  0.11871   
## CONDITION2                5.292e+01  6.771e+01  2.057e+02   0.781  0.43541   
## ERROR                     5.037e-01  1.815e-01  2.455e+02   2.776  0.00593 **
## BLOCK2:CONDITION2        -3.678e+01  7.361e+01  2.324e+02  -0.500  0.61782   
## BLOCK3:CONDITION2        -7.969e+01  7.970e+01  2.328e+02  -1.000  0.31840   
## BLOCK4:CONDITION2        -1.179e+02  7.686e+01  2.330e+02  -1.534  0.12635   
## BLOCK5:CONDITION2        -8.008e+01  7.643e+01  2.328e+02  -1.048  0.29583   
## BLOCK6:CONDITION2        -1.494e+02  7.335e+01  2.337e+02  -2.037  0.04275 * 
## BLOCK7:CONDITION2        -1.088e+02  7.523e+01  2.329e+02  -1.446  0.14940   
## BLOCK8:CONDITION2        -5.300e+01  8.245e+01  2.327e+02  -0.643  0.52095   
## BLOCK9:CONDITION2         2.985e+01  7.495e+01  2.325e+02   0.398  0.69081   
## BLOCK10:CONDITION2       -3.089e+00  8.315e+01  2.332e+02  -0.037  0.97040   
## BLOCK2:ERROR             -8.552e-02  2.399e-01  2.326e+02  -0.356  0.72185   
## BLOCK3:ERROR             -2.719e-01  2.810e-01  2.335e+02  -0.968  0.33414   
## BLOCK4:ERROR             -3.306e-01  2.488e-01  2.328e+02  -1.329  0.18527   
## BLOCK5:ERROR             -1.681e-01  2.468e-01  2.327e+02  -0.681  0.49648   
## BLOCK6:ERROR             -6.696e-02  2.280e-01  2.324e+02  -0.294  0.76925   
## BLOCK7:ERROR             -2.316e-01  2.777e-01  2.337e+02  -0.834  0.40525   
## BLOCK8:ERROR             -1.170e-01  4.014e-01  2.345e+02  -0.291  0.77103   
## BLOCK9:ERROR              4.096e-01  3.083e-01  2.348e+02   1.329  0.18518   
## BLOCK10:ERROR             2.147e-01  3.624e-01  2.354e+02   0.592  0.55409   
## CONDITION2:ERROR         -2.332e-01  2.225e-01  2.435e+02  -1.048  0.29572   
## BLOCK2:CONDITION2:ERROR   2.506e-01  3.111e-01  2.329e+02   0.806  0.42126   
## BLOCK3:CONDITION2:ERROR   5.153e-01  3.705e-01  2.343e+02   1.391  0.16560   
## BLOCK4:CONDITION2:ERROR   7.515e-01  3.646e-01  2.345e+02   2.061  0.04038 * 
## BLOCK5:CONDITION2:ERROR   4.865e-01  3.872e-01  2.344e+02   1.256  0.21027   
## BLOCK6:CONDITION2:ERROR   8.460e-01  4.094e-01  2.356e+02   2.067  0.03987 * 
## BLOCK7:CONDITION2:ERROR   6.814e-01  4.338e-01  2.355e+02   1.571  0.11757   
## BLOCK8:CONDITION2:ERROR   2.729e-01  4.968e-01  2.351e+02   0.549  0.58328   
## BLOCK9:CONDITION2:ERROR  -1.837e-01  4.225e-01  2.345e+02  -0.435  0.66403   
## BLOCK10:CONDITION2:ERROR  3.307e-03  5.282e-01  2.363e+02   0.006  0.99501   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 40 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
  • same as before there is a significant effect of Error on Time
#Effects just on the RT model
ae.m.RT.ER<-allEffects(m.RT.ER)
ae.m.RT.ER.df<-as.data.frame(ae.m.RT.ER)
plot(ae.m.RT.ER)

ggplot(Behav, aes(x = BLOCK, y = ERROR, fill = CONDITION)) +
  geom_boxplot() +
  facet_grid(CONDITION ~ ., scales = "free_y") +
  labs(x = "Block", y = "ERROR", fill = "CONDITION") +
  ggtitle("Boxplot of Errors by block for both conditions") +
  scale_fill_manual(name = "Condition", 
                    labels = c("Cold", "Warm"), 
                    values = c("#56B4E9", "orange"))

ggplot(Behav, aes(x = BLOCK, y = ERROR, fill = CONDITION)) +
  geom_boxplot(position = position_dodge(width = 0.8)) +
  labs(x = "BLOCK", y = "Error", fill = "Condition") +
  ggtitle("Error by condition for each block") +
  scale_fill_manual(name = "Condition",
                    labels = c("Cold", "Warm"),
                    values = c("#56B4E9", "orange")) +
  theme_classic()

  • in this box plot it can be seen that there are less errors from block 1 to 10 ( that also refers to Time) for both conditions

Coact on RT by condition Analysis

  • On excel i made the mean of the co activation per every block ( for obvious reason all results are really close to 100)
#RT
m.RT.coact <- lmer(TIME ~ BLOCK * CONDITION * MEAN.COACT  + (1|PARTICIPANT), data = Behav)
anova(m.RT.coact)
## Type III Analysis of Variance Table with Satterthwaite's method
##                            Sum Sq Mean Sq NumDF  DenDF F value  Pr(>F)  
## BLOCK                       20176  2241.7     9 234.44  0.8378 0.58195  
## CONDITION                    8979  8979.1     1 236.01  3.3557 0.06823 .
## MEAN.COACT                   6546  6546.3     1 236.00  2.4465 0.11912  
## BLOCK:CONDITION             34439  3826.6     9 234.44  1.4301 0.17591  
## BLOCK:MEAN.COACT            20309  2256.6     9 234.44  0.8433 0.57691  
## CONDITION:MEAN.COACT         8962  8962.3     1 236.00  3.3495 0.06849 .
## BLOCK:CONDITION:MEAN.COACT  34479  3830.9     9 234.44  1.4317 0.17523  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(m.RT.coact)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: TIME ~ BLOCK * CONDITION * MEAN.COACT + (1 | PARTICIPANT)
##    Data: Behav
## 
## REML criterion at convergence: 2948.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7709 -0.4977 -0.0134  0.4668  4.9113 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  PARTICIPANT (Intercept) 8051     89.72   
##  Residual                2676     51.73   
## Number of obs: 300, groups:  PARTICIPANT, 30
## 
## Fixed effects:
##                                Estimate Std. Error        df t value Pr(>|t|)  
## (Intercept)                   -17519.70   12881.69    234.11  -1.360   0.1751  
## BLOCK2                           963.01   16705.11    233.20   0.058   0.9541  
## BLOCK3                         17629.53   14018.89    233.49   1.258   0.2098  
## BLOCK4                         24322.34   17348.65    235.18   1.402   0.1622  
## BLOCK5                         -3532.08   23403.25    235.20  -0.151   0.8802  
## BLOCK6                         12995.76   28014.76    234.60   0.464   0.6432  
## BLOCK7                         24069.79   15226.57    234.97   1.581   0.1153  
## BLOCK8                         15392.25   33335.46    234.39   0.462   0.6447  
## BLOCK9                         21166.48   13223.31    234.37   1.601   0.1108  
## BLOCK10                       -39868.37   31355.66    234.86  -1.271   0.2048  
## CONDITION2                     24718.58   16451.80    234.02   1.502   0.1343  
## MEAN.COACT                       177.95     128.80    234.11   1.382   0.1684  
## BLOCK2:CONDITION2              -3152.65   19862.59    233.80  -0.159   0.8740  
## BLOCK3:CONDITION2             -26070.66   17589.41    233.71  -1.482   0.1396  
## BLOCK4:CONDITION2             -35483.20   21145.82    235.51  -1.678   0.0947 .
## BLOCK5:CONDITION2              -1847.49   25553.78    234.97  -0.072   0.9424  
## BLOCK6:CONDITION2             -20768.42   32516.37    235.35  -0.639   0.5236  
## BLOCK7:CONDITION2             -30578.30   18361.84    234.58  -1.665   0.0972 .
## BLOCK8:CONDITION2             -22265.97   34869.82    234.35  -0.639   0.5237  
## BLOCK9:CONDITION2             -28062.43   16719.37    234.18  -1.678   0.0946 .
## BLOCK10:CONDITION2             33347.38   32983.27    234.76   1.011   0.3130  
## BLOCK2:MEAN.COACT                -10.21     167.00    233.20  -0.061   0.9513  
## BLOCK3:MEAN.COACT               -176.89     140.16    233.49  -1.262   0.2082  
## BLOCK4:MEAN.COACT               -243.89     173.47    235.18  -1.406   0.1610  
## BLOCK5:MEAN.COACT                 34.53     233.96    235.20   0.148   0.8828  
## BLOCK6:MEAN.COACT               -130.50     280.09    234.60  -0.466   0.6417  
## BLOCK7:MEAN.COACT               -241.67     152.27    234.97  -1.587   0.1138  
## BLOCK8:MEAN.COACT               -154.93     333.32    234.39  -0.465   0.6425  
## BLOCK9:MEAN.COACT               -212.91     132.22    234.37  -1.610   0.1087  
## BLOCK10:MEAN.COACT               397.20     313.46    234.86   1.267   0.2064  
## CONDITION2:MEAN.COACT           -247.29     164.52    234.02  -1.503   0.1341  
## BLOCK2:CONDITION2:MEAN.COACT      31.84     198.60    233.80   0.160   0.8728  
## BLOCK3:CONDITION2:MEAN.COACT     261.04     175.89    233.71   1.484   0.1391  
## BLOCK4:CONDITION2:MEAN.COACT     355.16     211.46    235.51   1.680   0.0944 .
## BLOCK5:CONDITION2:MEAN.COACT      18.75     255.48    234.97   0.073   0.9416  
## BLOCK6:CONDITION2:MEAN.COACT     207.52     325.14    235.35   0.638   0.5239  
## BLOCK7:CONDITION2:MEAN.COACT     305.85     183.63    234.58   1.666   0.0971 .
## BLOCK8:CONDITION2:MEAN.COACT     222.84     348.67    234.35   0.639   0.5234  
## BLOCK9:CONDITION2:MEAN.COACT     281.11     167.20    234.18   1.681   0.0940 .
## BLOCK10:CONDITION2:MEAN.COACT   -332.96     329.75    234.76  -1.010   0.3137  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 40 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
emmeans(m.RT.coact,~ MEAN.COACT|CONDITION)
## NOTE: Results may be misleading due to involvement in interactions
## CONDITION = 1:
##  MEAN.COACT emmean   SE   df lower.CL upper.CL
##         100    239 32.5 90.7      174      304
## 
## CONDITION = 2:
##  MEAN.COACT emmean   SE   df lower.CL upper.CL
##         100    206 25.0 35.1      155      257
## 
## Results are averaged over the levels of: BLOCK 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95
#Effects just on the RT model
ae.m.RT.coact<-allEffects(m.RT.coact)
ae.m.RT.coact.df<-as.data.frame(ae.m.RT.coact[[1]])
plot(ae.m.RT.coact)

ggplot(Behav, aes(x = TIME, y = MEAN.COACT, color = CONDITION)) +
  geom_line(size=1) +
  facet_grid(CONDITION ~ ., scales = "free_y") +
  labs(x = "Time", y = "Coactivation", color = "CONDITION") +
  ggtitle("Coactivation on Time by Condition") +
  scale_color_manual(name = "Condition", 
                    labels = c("Cold", "Warm"), 
                    values = c("#56B4E9", "orange")) +
  scale_y_continuous(limits = c(80, 120)) +
  scale_x_continuous(limits = c(50, 450)) +
  theme_classic()
## Warning: Removed 2 rows containing missing values (`geom_line()`).

ggplot(Behav, aes(x = TIME, y = MEAN.COACT, color = CONDITION)) +
  geom_line(position = position_dodge(width = 0.8), size=0.5) +
  labs(x = "TIME", y = "Coactivation", fill = "Condition") +
  ggtitle("Coactivation by condition for each block") +
  scale_color_manual(name = "Condition",
                    labels = c("Cold", "Warm"),
                    values = c("#56B4E9", "orange")) +
  scale_y_continuous(limits = c(90, 140)) +
  theme(strip.text = element_text(margin = margin(b = 10))) +
  theme_classic()
## Warning: `position_dodge()` requires non-overlapping x intervals

  • no significant effects but plot shows less coactivation and more “fluid movments” on condition 2 (warm)
ggplot(Behav, aes(x = BLOCK, y = MEAN.COACT, color = CONDITION)) +
  geom_line(position = position_dodge(width = 0.3), size=1.5) +
  labs(x = "BLOCK", y = "Coactivation", fill = "Condition") +
  ggtitle("Coactivation by condition for each block") +
  scale_color_manual(name = "Condition",
                    labels = c("Cold", "Ideal"),
                    values = c("#56B4E9", "orange")) +
  scale_y_continuous(limits = c(90, 140)) +
  theme(strip.text = element_text(margin = margin(b = 10)))+
  theme_classic()

log analysis

m.RT.coact.log <- lmer(TIME ~ BLOCK * CONDITION * log(MEAN.COACT)  + (1|PARTICIPANT), data = Behav)
anova(m.RT.coact.log)
## Type III Analysis of Variance Table with Satterthwaite's method
##                                 Sum Sq Mean Sq NumDF  DenDF F value  Pr(>F)  
## BLOCK                            20339  2259.9     9 233.69  0.8446 0.57575  
## CONDITION                         8995  8994.8     1 235.39  3.3617 0.06799 .
## log(MEAN.COACT)                   6566  6565.6     1 235.36  2.4538 0.11858  
## BLOCK:CONDITION                  34401  3822.4     9 233.66  1.4286 0.17657  
## BLOCK:log(MEAN.COACT)            20368  2263.2     9 233.69  0.8458 0.57463  
## CONDITION:log(MEAN.COACT)         8991  8991.1     1 235.39  3.3604 0.06805 .
## BLOCK:CONDITION:log(MEAN.COACT)  34410  3823.3     9 233.66  1.4289 0.17642  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(m.RT.coact.log)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: TIME ~ BLOCK * CONDITION * log(MEAN.COACT) + (1 | PARTICIPANT)
##    Data: Behav
## 
## REML criterion at convergence: 2763.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7724 -0.4978 -0.0135  0.4680  4.9116 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  PARTICIPANT (Intercept) 8051     89.73   
##  Residual                2676     51.73   
## Number of obs: 300, groups:  PARTICIPANT, 30
## 
## Fixed effects:
##                                     Estimate Std. Error        df t value
## (Intercept)                         -81828.0    59339.2     229.7  -1.379
## BLOCK2                                4822.6    76938.7     230.5   0.063
## BLOCK3                               81554.4    64600.9     229.7   1.262
## BLOCK4                              112403.5    79879.9     232.1   1.407
## BLOCK5                              -15915.8   107788.4     232.7  -0.148
## BLOCK6                               60146.4   129046.9     232.2   0.466
## BLOCK7                              111270.5    70081.0     231.9   1.588
## BLOCK8                               71397.8   153529.6     232.1   0.465
## BLOCK9                               97913.1    60885.3     230.2   1.608
## BLOCK10                            -183204.6   144475.9     232.7  -1.268
## CONDITION2                          113791.0    75759.5     230.1   1.502
## log(MEAN.COACT)                      17828.5    12884.9     229.7   1.384
## BLOCK2:CONDITION2                   -14853.7    91443.7     231.1  -0.162
## BLOCK3:CONDITION2                  -120012.1    81002.6     230.2  -1.482
## BLOCK4:CONDITION2                  -163597.5    97351.7     232.6  -1.680
## BLOCK5:CONDITION2                    -8217.6   117684.2     232.3  -0.070
## BLOCK6:CONDITION2                   -95513.2   149735.4     233.1  -0.638
## BLOCK7:CONDITION2                  -140607.1    84517.0     231.5  -1.664
## BLOCK8:CONDITION2                  -102417.0   160586.7     231.9  -0.638
## BLOCK9:CONDITION2                  -128984.7    76969.4     230.4  -1.676
## BLOCK10:CONDITION2                  153917.0   151960.1     232.6   1.013
## BLOCK2:log(MEAN.COACT)               -1059.7    16706.0     230.5  -0.063
## BLOCK3:log(MEAN.COACT)              -17722.1    14027.2     229.7  -1.263
## BLOCK4:log(MEAN.COACT)              -24422.6    17345.3     232.1  -1.408
## BLOCK5:log(MEAN.COACT)                3439.0    23404.4     232.7   0.147
## BLOCK6:log(MEAN.COACT)              -13072.3    28020.8     232.2  -0.467
## BLOCK7:log(MEAN.COACT)              -24183.2    15218.0     231.9  -1.589
## BLOCK8:log(MEAN.COACT)              -15525.7    33337.8     232.1  -0.466
## BLOCK9:log(MEAN.COACT)              -21288.5    13220.8     230.2  -1.610
## BLOCK10:log(MEAN.COACT)              39750.2    31370.5     232.7   1.267
## CONDITION2:log(MEAN.COACT)          -24711.7    16450.9     230.1  -1.502
## BLOCK2:CONDITION2:log(MEAN.COACT)     3232.3    19856.3     231.1   0.163
## BLOCK3:CONDITION2:log(MEAN.COACT)    26067.6    17589.4     230.2   1.482
## BLOCK4:CONDITION2:log(MEAN.COACT)    35531.8    21139.6     232.6   1.681
## BLOCK5:CONDITION2:log(MEAN.COACT)     1790.3    25553.6     232.3   0.070
## BLOCK6:CONDITION2:log(MEAN.COACT)    20736.9    32514.1     233.1   0.638
## BLOCK7:CONDITION2:log(MEAN.COACT)    30533.9    18352.9     231.5   1.664
## BLOCK8:CONDITION2:log(MEAN.COACT)    22243.5    34870.4     231.9   0.638
## BLOCK9:CONDITION2:log(MEAN.COACT)    28019.1    16713.8     230.4   1.676
## BLOCK10:CONDITION2:log(MEAN.COACT)  -33411.5    32995.9     232.6  -1.013
##                                    Pr(>|t|)  
## (Intercept)                          0.1692  
## BLOCK2                               0.9501  
## BLOCK3                               0.2081  
## BLOCK4                               0.1607  
## BLOCK5                               0.8827  
## BLOCK6                               0.6416  
## BLOCK7                               0.1137  
## BLOCK8                               0.6423  
## BLOCK9                               0.1092  
## BLOCK10                              0.2060  
## CONDITION2                           0.1345  
## log(MEAN.COACT)                      0.1678  
## BLOCK2:CONDITION2                    0.8711  
## BLOCK3:CONDITION2                    0.1398  
## BLOCK4:CONDITION2                    0.0942 .
## BLOCK5:CONDITION2                    0.9444  
## BLOCK6:CONDITION2                    0.5242  
## BLOCK7:CONDITION2                    0.0975 .
## BLOCK8:CONDITION2                    0.5243  
## BLOCK9:CONDITION2                    0.0951 .
## BLOCK10:CONDITION2                   0.3122  
## BLOCK2:log(MEAN.COACT)               0.9495  
## BLOCK3:log(MEAN.COACT)               0.2077  
## BLOCK4:log(MEAN.COACT)               0.1605  
## BLOCK5:log(MEAN.COACT)               0.8833  
## BLOCK6:log(MEAN.COACT)               0.6413  
## BLOCK7:log(MEAN.COACT)               0.1134  
## BLOCK8:log(MEAN.COACT)               0.6419  
## BLOCK9:log(MEAN.COACT)               0.1087  
## BLOCK10:log(MEAN.COACT)              0.2064  
## CONDITION2:log(MEAN.COACT)           0.1344  
## BLOCK2:CONDITION2:log(MEAN.COACT)    0.8708  
## BLOCK3:CONDITION2:log(MEAN.COACT)    0.1397  
## BLOCK4:CONDITION2:log(MEAN.COACT)    0.0941 .
## BLOCK5:CONDITION2:log(MEAN.COACT)    0.9442  
## BLOCK6:CONDITION2:log(MEAN.COACT)    0.5242  
## BLOCK7:CONDITION2:log(MEAN.COACT)    0.0975 .
## BLOCK8:CONDITION2:log(MEAN.COACT)    0.5242  
## BLOCK9:CONDITION2:log(MEAN.COACT)    0.0950 .
## BLOCK10:CONDITION2:log(MEAN.COACT)   0.3123  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 40 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
#Effects just on the RT model
ae.m.RT.coact.log<-allEffects(m.RT.coact.log)
ae.m.RT.coact.df.og<-as.data.frame(ae.m.RT.coact.log[[1]])
plot(ae.m.RT.coact.log)

ggplot(Behav, aes(x = TIME, y = log(MEAN.COACT), color = CONDITION)) +
  geom_line(size = 1) +
  facet_grid(CONDITION ~ ., scales = "free_y") +
  labs(x = "Time", y = "Log Coactivation", color = "CONDITION") +
  ggtitle("Coactivation on Time by Condition") +
  scale_color_manual(name = "Condition",
                     labels = c("Cold", "Warm"),
                     values = c("#56B4E9", "orange")) +
  scale_y_continuous(limits = c(log(80), log(120))) +
  scale_x_continuous(limits = c(50, 450))
## Warning: Removed 2 rows containing missing values (`geom_line()`).

ggplot(Behav, aes(x = BLOCK, y = log(MEAN.COACT), color = CONDITION)) +
  geom_line() +
  facet_grid(CONDITION ~ ., scales = "free_y") +
  labs(x = "Block", y = "Coactivation", fill = "CONDITION") +
  ggtitle("Coactivation by block for both conditions") +
  scale_color_manual(name = "Condition", 
                    labels = c("Cold", "Warm"), 
                    values = c("#56B4E9", "orange")) +
  scale_y_continuous(limits = c(log(80), log(120))) +
  theme_classic()

EMG Analysis

By phase

m.coact <- lmer(COACTIVATION.INDEX ~ BLOCK * CONDITION * PHASE + (1|PARTICIPANT), data = EMG)
anova(m.coact)
## Type III Analysis of Variance Table with Satterthwaite's method
##                       Sum Sq Mean Sq NumDF   DenDF F value    Pr(>F)    
## BLOCK                   8260   917.7     9 14670.3  1.5468   0.12527    
## CONDITION                556   555.7     1    28.1  0.9367   0.34140    
## PHASE                  47077  5230.8     9 14670.1  8.8164 2.381e-13 ***
## BLOCK:CONDITION         9263  1029.2     9 14670.3  1.7347   0.07553 .  
## BLOCK:PHASE            44459   548.9    81 14670.1  0.9251   0.66837    
## CONDITION:PHASE         5384   598.3     9 14670.1  1.0084   0.43041    
## BLOCK:CONDITION:PHASE  44283   546.7    81 14670.1  0.9215   0.67720    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
  • there is a significant effect of Phase but not of Block on the coactivation index

  • there is a interaction effect of Block and condition which is not significant but its worth mentioning on the coactivation index

emmeans(m.coact, ~ PHASE | CONDITION)
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'pbkrtest.limit = 14898' (or larger)
## [or, globally, 'set emm_options(pbkrtest.limit = 14898)' or larger];
## but be warned that this may result in large computation time and memory use.
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'lmerTest.limit = 14898' (or larger)
## [or, globally, 'set emm_options(lmerTest.limit = 14898)' or larger];
## but be warned that this may result in large computation time and memory use.
## NOTE: Results may be misleading due to involvement in interactions
## CONDITION = 0:
##  PHASE emmean   SE  df asymp.LCL asymp.UCL
##  10     101.3 1.04 Inf      99.3       103
##  20     101.3 1.04 Inf      99.3       103
##  30      98.7 1.04 Inf      96.7       101
##  40     101.3 1.03 Inf      99.3       103
##  50      98.7 1.04 Inf      96.6       101
##  60     101.3 1.04 Inf      99.3       103
##  70      98.5 1.04 Inf      96.5       101
##  80     101.3 1.04 Inf      99.3       103
##  90      98.7 1.04 Inf      96.7       101
##  100     98.7 1.04 Inf      96.7       101
## 
## CONDITION = 1:
##  PHASE emmean   SE  df asymp.LCL asymp.UCL
##  10     105.1 1.04 Inf     103.1       107
##  20     101.9 1.04 Inf      99.8       104
##  30      98.4 1.03 Inf      96.4       100
##  40     103.5 1.04 Inf     101.4       105
##  50      98.8 1.03 Inf      96.8       101
##  60     101.8 1.04 Inf      99.8       104
##  70      98.8 1.03 Inf      96.7       101
##  80     102.5 1.04 Inf     100.5       105
##  90      98.6 1.04 Inf      96.6       101
##  100     98.8 1.04 Inf      96.8       101
## 
## Results are averaged over the levels of: BLOCK 
## Degrees-of-freedom method: asymptotic 
## Confidence level used: 0.95
emmeans(m.coact, ~ PHASE)
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'pbkrtest.limit = 14898' (or larger)
## [or, globally, 'set emm_options(pbkrtest.limit = 14898)' or larger];
## but be warned that this may result in large computation time and memory use.
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'lmerTest.limit = 14898' (or larger)
## [or, globally, 'set emm_options(lmerTest.limit = 14898)' or larger];
## but be warned that this may result in large computation time and memory use.
## NOTE: Results may be misleading due to involvement in interactions
##  PHASE emmean    SE  df asymp.LCL asymp.UCL
##  10     103.2 0.732 Inf     101.8       105
##  20     101.6 0.732 Inf     100.2       103
##  30      98.6 0.732 Inf      97.2       100
##  40     102.4 0.732 Inf     100.9       104
##  50      98.7 0.732 Inf      97.3       100
##  60     101.6 0.732 Inf     100.2       103
##  70      98.7 0.733 Inf      97.2       100
##  80     101.9 0.733 Inf     100.5       103
##  90      98.7 0.733 Inf      97.2       100
##  100     98.8 0.732 Inf      97.3       100
## 
## Results are averaged over the levels of: BLOCK, CONDITION 
## Degrees-of-freedom method: asymptotic 
## Confidence level used: 0.95
emmeans(m.coact, ~ PHASE | BLOCK)
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'pbkrtest.limit = 14898' (or larger)
## [or, globally, 'set emm_options(pbkrtest.limit = 14898)' or larger];
## but be warned that this may result in large computation time and memory use.
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'lmerTest.limit = 14898' (or larger)
## [or, globally, 'set emm_options(lmerTest.limit = 14898)' or larger];
## but be warned that this may result in large computation time and memory use.
## NOTE: Results may be misleading due to involvement in interactions
## BLOCK = 1:
##  PHASE emmean   SE  df asymp.LCL asymp.UCL
##  10     101.2 2.04 Inf      97.2       105
##  20     101.3 2.04 Inf      97.3       105
##  30      98.8 2.02 Inf      94.8       103
##  40     101.2 2.02 Inf      97.3       105
##  50      98.8 2.04 Inf      94.8       103
##  60     101.3 2.03 Inf      97.3       105
##  70      98.7 2.04 Inf      94.7       103
##  80     101.3 2.03 Inf      97.3       105
##  90      98.7 2.05 Inf      94.7       103
##  100     98.6 2.04 Inf      94.7       103
## 
## BLOCK = 2:
##  PHASE emmean   SE  df asymp.LCL asymp.UCL
##  10     101.2 2.04 Inf      97.2       105
##  20     100.9 2.04 Inf      96.9       105
##  30      98.8 2.04 Inf      94.7       103
##  40     102.0 2.03 Inf      98.1       106
##  50      98.5 2.03 Inf      94.5       102
##  60     101.1 2.03 Inf      97.1       105
##  70      98.0 2.04 Inf      94.0       102
##  80     101.6 2.03 Inf      97.6       106
##  90      98.7 2.03 Inf      94.8       103
##  100     98.9 2.03 Inf      94.9       103
## 
## BLOCK = 3:
##  PHASE emmean   SE  df asymp.LCL asymp.UCL
##  10     101.7 2.04 Inf      97.7       106
##  20     101.1 2.03 Inf      97.1       105
##  30      98.7 2.05 Inf      94.7       103
##  40     101.2 2.04 Inf      97.2       105
##  50      98.5 2.02 Inf      94.5       102
##  60     101.5 2.04 Inf      97.5       105
##  70      98.7 2.04 Inf      94.7       103
##  80     101.3 2.02 Inf      97.3       105
##  90      98.1 2.03 Inf      94.1       102
##  100     98.8 2.03 Inf      94.8       103
## 
## BLOCK = 4:
##  PHASE emmean   SE  df asymp.LCL asymp.UCL
##  10     101.0 2.02 Inf      97.1       105
##  20     101.4 2.02 Inf      97.4       105
##  30      98.7 2.02 Inf      94.8       103
##  40     101.2 2.03 Inf      97.3       105
##  50      98.7 2.03 Inf      94.8       103
##  60     101.4 2.03 Inf      97.4       105
##  70      98.7 2.03 Inf      94.7       103
##  80     101.3 2.04 Inf      97.2       105
##  90      98.7 2.04 Inf      94.7       103
##  100     98.7 2.03 Inf      94.7       103
## 
## BLOCK = 5:
##  PHASE emmean   SE  df asymp.LCL asymp.UCL
##  10     102.8 2.02 Inf      98.8       107
##  20     101.0 2.02 Inf      97.1       105
##  30      98.7 2.02 Inf      94.7       103
##  40     102.0 2.02 Inf      98.1       106
##  50      98.7 2.03 Inf      94.8       103
##  60     101.3 2.02 Inf      97.4       105
##  70      98.6 2.03 Inf      94.7       103
##  80     101.3 2.02 Inf      97.3       105
##  90      98.7 2.03 Inf      94.7       103
##  100     98.7 2.03 Inf      94.7       103
## 
## BLOCK = 6:
##  PHASE emmean   SE  df asymp.LCL asymp.UCL
##  10     101.0 2.04 Inf      97.0       105
##  20     101.5 2.03 Inf      97.5       105
##  30      98.7 2.02 Inf      94.8       103
##  40     101.3 2.03 Inf      97.3       105
##  50      98.7 2.02 Inf      94.7       103
##  60     101.2 2.02 Inf      97.2       105
##  70      98.8 2.03 Inf      94.8       103
##  80     101.3 2.03 Inf      97.3       105
##  90      98.7 2.02 Inf      94.8       103
##  100     98.7 2.02 Inf      94.8       103
## 
## BLOCK = 7:
##  PHASE emmean   SE  df asymp.LCL asymp.UCL
##  10     101.9 2.02 Inf      97.9       106
##  20     101.3 2.02 Inf      97.3       105
##  30      98.8 2.03 Inf      94.8       103
##  40     101.2 2.04 Inf      97.2       105
##  50      98.7 2.02 Inf      94.8       103
##  60     101.0 2.04 Inf      97.0       105
##  70      98.6 2.04 Inf      94.6       103
##  80     102.7 2.03 Inf      98.7       107
##  90      98.7 2.02 Inf      94.8       103
##  100     98.7 2.04 Inf      94.7       103
## 
## BLOCK = 8:
##  PHASE emmean   SE  df asymp.LCL asymp.UCL
##  10     101.6 2.02 Inf      97.6       106
##  20     101.8 2.03 Inf      97.8       106
##  30      97.6 2.02 Inf      93.6       102
##  40     108.8 2.03 Inf     104.8       113
##  50      98.8 2.03 Inf      94.9       103
##  60     102.5 2.04 Inf      98.5       107
##  70      98.7 2.02 Inf      94.7       103
##  80     102.4 2.04 Inf      98.4       106
##  90      99.5 2.03 Inf      95.5       103
##  100     99.1 2.02 Inf      95.1       103
## 
## BLOCK = 9:
##  PHASE emmean   SE  df asymp.LCL asymp.UCL
##  10     118.9 2.04 Inf     114.9       123
##  20     103.7 2.02 Inf      99.7       108
##  30      97.9 2.02 Inf      94.0       102
##  40     103.9 2.02 Inf      99.9       108
##  50      98.4 2.02 Inf      94.4       102
##  60     101.4 2.02 Inf      97.4       105
##  70      99.0 2.04 Inf      95.0       103
##  80     104.4 2.04 Inf     100.4       108
##  90      98.1 2.02 Inf      94.1       102
##  100     98.5 2.03 Inf      94.5       102
## 
## BLOCK = 10:
##  PHASE emmean   SE  df asymp.LCL asymp.UCL
##  10     100.8 2.02 Inf      96.9       105
##  20     101.9 2.02 Inf      98.0       106
##  30      99.2 2.02 Inf      95.3       103
##  40     100.9 2.02 Inf      96.9       105
##  50      99.5 2.03 Inf      95.5       104
##  60     103.2 2.03 Inf      99.3       107
##  70      98.8 2.03 Inf      94.8       103
##  80     101.6 2.02 Inf      97.6       106
##  90      98.8 2.03 Inf      94.8       103
##  100     99.0 2.02 Inf      95.0       103
## 
## Results are averaged over the levels of: CONDITION 
## Degrees-of-freedom method: asymptotic 
## Confidence level used: 0.95
emmeans(m.coact, ~ BLOCK * CONDITION)
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'pbkrtest.limit = 14898' (or larger)
## [or, globally, 'set emm_options(pbkrtest.limit = 14898)' or larger];
## but be warned that this may result in large computation time and memory use.
## Note: D.f. calculations have been disabled because the number of observations exceeds 3000.
## To enable adjustments, add the argument 'lmerTest.limit = 14898' (or larger)
## [or, globally, 'set emm_options(lmerTest.limit = 14898)' or larger];
## but be warned that this may result in large computation time and memory use.
## NOTE: Results may be misleading due to involvement in interactions
##  BLOCK CONDITION emmean   SE  df asymp.LCL asymp.UCL
##  1     0          100.0 1.04 Inf      98.0       102
##  2     0          100.0 1.04 Inf      98.0       102
##  3     0          100.1 1.04 Inf      98.0       102
##  4     0          100.0 1.04 Inf      98.0       102
##  5     0          100.0 1.03 Inf      98.0       102
##  6     0          100.0 1.03 Inf      98.0       102
##  7     0          100.0 1.03 Inf      97.9       102
##  8     0          100.0 1.04 Inf      98.0       102
##  9     0           99.9 1.04 Inf      97.8       102
##  10    0          100.0 1.03 Inf      98.0       102
##  1     1          100.0 1.04 Inf      97.9       102
##  2     1           99.9 1.03 Inf      97.9       102
##  3     1           99.8 1.04 Inf      97.8       102
##  4     1          100.0 1.04 Inf      97.9       102
##  5     1          100.4 1.04 Inf      98.3       102
##  6     1          100.0 1.04 Inf      97.9       102
##  7     1          100.4 1.04 Inf      98.3       102
##  8     1          102.2 1.04 Inf     100.1       104
##  9     1          105.0 1.04 Inf     102.9       107
##  10    1          100.7 1.03 Inf      98.7       103
## 
## Results are averaged over the levels of: PHASE 
## Degrees-of-freedom method: asymptotic 
## Confidence level used: 0.95
ae.m.coact<-allEffects(m.coact)
ae.m.coact.df<-as.data.frame(ae.m.coact[[1]])
plot(ae.m.coact)

By Block

#Coactivation
m.coact.blk <- lmer(COACTIVATION.INDEX ~ BLOCK * CONDITION  + (1|PARTICIPANT), data = EMG)
anova(m.coact.blk)
## Type III Analysis of Variance Table with Satterthwaite's method
##                 Sum Sq Mean Sq NumDF   DenDF F value  Pr(>F)  
## BLOCK           7989.2  887.69     9 14850.3  1.4906 0.14483  
## CONDITION        540.4  540.41     1    28.1  0.9074 0.34893  
## BLOCK:CONDITION 8989.6  998.85     9 14850.3  1.6772 0.08847 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ae.m.coact.blk<-allEffects(m.coact.blk)
ae.m.coact.blk.df<-as.data.frame(ae.m.coact.blk[[1]])
plot(ae.m.coact.blk)

Plots

Block and trials included

ggplot(EMG, aes(x = INTERVALS , y = COACTIVATION.INDEX, color = CONDITION)) +
  geom_line(size=0.8) +
  facet_grid(CONDITION ~ ., scales = "free_y") +
  labs(x = "Block", y = "Coactivation", color = "CONDITION") +
  ggtitle("Coactivation by Block/Trial and Condition") +
  geom_vline(xintercept = seq(0, max(EMG$INTERVALS), by = 5), 
             linetype = "dotted") +
  scale_color_manual(name = "Condition", 
                     labels = c("Cold", "Warm"), 
                     values = c("#56B4E9", "orange")) +
  scale_y_continuous(limits = c(70, 130)) +
  scale_x_continuous(breaks = seq(0, max(EMG$INTERVALS), by = 5), 
                     labels = c("0","1", "2", "3", "4", "5", "6", "7", "8", "9", "10")) +
  theme_classic()

ggplot(EMG, aes(x = INTERVALS, y = COACTIVATION.INDEX, color = CONDITION)) +
  geom_line(size = 0.4) +
  labs(x = "Block", y = "Coactivation", color = "Condition") +
  ggtitle("Coactivation by Block/Trial and Condition") +
  geom_vline(xintercept = seq(0, max(EMG$INTERVALS), by = 5), linetype = "dotted") +
  scale_color_manual(name = "Condition",
                     labels = c("Cold", "Warm"),
                     values = c("#56B4E9", "orange")) +
  scale_y_continuous(limits = c(70, 130)) +
  scale_x_continuous(breaks = seq(0, max(EMG$INTERVALS), by = 5),
                     labels = c("0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10")) +
  theme_classic()

block plot

ggplot(EMG, aes(x = BLOCK, y = COACTIVATION.INDEX, color = CONDITION)) +
  geom_line(size=1) +
  facet_grid(CONDITION ~ ., scales = "free_y") +
  labs(x = "Block", y = "Coactivation", color = "CONDITION") +
  ggtitle("Coactivation by Block and Condition") +
  scale_color_manual(name = "Condition", 
                    labels = c("Cold", "Warm"), 
                    values = c("#56B4E9", "orange")) +
  scale_y_continuous(limits = c(70, 130)) +
  theme_classic()

ggplot(EMG, aes(x = BLOCK, y = COACTIVATION.INDEX, color = CONDITION)) +
  geom_line(position = position_dodge(width = 0.3), size=1.5) +
  labs(x = "Block", y = "Coactivation", color = "CONDITION") +
  ggtitle("Coactivation by Block and Condition") +
  scale_color_manual(name = "Condition",
                    labels = c("Cold", "Warm"),
                    values = c("#56B4E9", "orange")) +
  scale_y_continuous(limits = c(70, 130)) +
  theme(strip.text = element_text(margin = margin(b = 10)))+
  theme_classic()

phase plot

ggplot(EMG, aes(x = PHASE , y = COACTIVATION.INDEX, color = CONDITION)) +
  geom_line(size=1) +
  facet_grid(CONDITION ~ ., scales = "free_y") +
  labs(x = "Phase", y = "Coactivation", color = "CONDITION") +
  ggtitle(" Coactivation by Phase and Condition") +
  scale_color_manual(name = "Condition", 
                    labels = c("Cold", "Warm"), 
                    values = c("#56B4E9", "orange")) +
  scale_y_continuous(limits = c(70, 130))+
  theme_classic()
## Warning: Removed 1 row containing missing values (`geom_line()`).

ggplot(EMG, aes(x = PHASE , y = COACTIVATION.INDEX, color = CONDITION)) +
  geom_line(position = position_dodge(width = 0.3), size=1.5) +
  labs(x = "Phase", y = "Coactivation", color = "CONDITION") +
  ggtitle("Coactivation by Phase and Condition") +
  scale_color_manual(name = "Condition",
                    labels = c("Cold", "Warm"),
                    values = c("#56B4E9", "orange")) +
  scale_y_continuous(limits = c(70, 130)) +
  theme(strip.text = element_text(margin = margin(b = 10)))+
  theme_classic()
## Warning: Removed 1 row containing missing values (`geom_line()`).

EMG only on EXTENSOR as an agonist

m.coact.ext <- lmer(COACT.EXT ~ BLOCK * CONDITION * PHASE + (1|PARTICIPANT), data = EMG)
anova(m.coact.ext)
## Type III Analysis of Variance Table with Satterthwaite's method
##                        Sum Sq Mean Sq NumDF   DenDF F value Pr(>F)
## BLOCK                  505692   56188     9 14667.7  0.9834 0.4512
## CONDITION               56954   56954     1    28.1  0.9968 0.3266
## PHASE                  478105   53123     9 14667.4  0.9297 0.4976
## BLOCK:CONDITION        504887   56099     9 14667.7  0.9818 0.4526
## BLOCK:PHASE           4675546   57723    81 14667.4  1.0103 0.4535
## CONDITION:PHASE        476410   52934     9 14667.4  0.9264 0.5005
## BLOCK:CONDITION:PHASE 4680219   57780    81 14667.4  1.0113 0.4510
summary(m.coact.ext)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: COACT.EXT ~ BLOCK * CONDITION * PHASE + (1 | PARTICIPANT)
##    Data: EMG
## 
## REML criterion at convergence: 203538.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
##  -1.799   0.000   0.001   0.009 119.424 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  PARTICIPANT (Intercept)    89.95   9.484 
##  Residual                57137.03 239.034 
## Number of obs: 14895, groups:  PARTICIPANT, 30
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                  1.013e+02  2.789e+01  1.302e+04   3.631 0.000283
## BLOCK2                       7.140e-02  3.943e+01  1.467e+04   0.002 0.998555
## BLOCK3                       1.335e-01  3.930e+01  1.467e+04   0.003 0.997290
## BLOCK4                       9.961e-04  3.917e+01  1.467e+04   0.000 0.999980
## BLOCK5                       2.207e-02  3.917e+01  1.467e+04   0.001 0.999550
## BLOCK6                      -5.079e-02  3.930e+01  1.467e+04  -0.001 0.998969
## BLOCK7                       1.304e-01  3.917e+01  1.467e+04   0.003 0.997343
## BLOCK8                       2.570e-02  3.917e+01  1.467e+04   0.001 0.999476
## BLOCK9                      -4.207e-02  3.917e+01  1.467e+04  -0.001 0.999143
## BLOCK10                     -4.613e-02  3.917e+01  1.467e+04  -0.001 0.999060
## CONDITION1                  -1.632e-01  3.945e+01  1.302e+04  -0.004 0.996699
## PHASE20                      1.217e-01  3.957e+01  1.467e+04   0.003 0.997547
## PHASE30                      1.284e-02  3.917e+01  1.467e+04   0.000 0.999738
## PHASE40                     -2.741e-02  3.917e+01  1.467e+04  -0.001 0.999442
## PHASE50                      1.165e-01  3.943e+01  1.467e+04   0.003 0.997643
## PHASE60                     -4.090e-02  3.930e+01  1.467e+04  -0.001 0.999170
## PHASE70                      1.779e-02  3.943e+01  1.467e+04   0.000 0.999640
## PHASE80                      2.106e-01  3.930e+01  1.467e+04   0.005 0.995724
## PHASE90                      8.012e-02  3.943e+01  1.467e+04   0.002 0.998379
## PHASE100                     7.006e-03  3.930e+01  1.467e+04   0.000 0.999858
## BLOCK2:CONDITION1           -2.033e-01  5.558e+01  1.467e+04  -0.004 0.997081
## BLOCK3:CONDITION1            6.285e-01  5.557e+01  1.467e+04   0.011 0.990977
## BLOCK4:CONDITION1           -3.649e-01  5.539e+01  1.467e+04  -0.007 0.994744
## BLOCK5:CONDITION1            3.094e+00  5.539e+01  1.467e+04   0.056 0.955459
## BLOCK6:CONDITION1           -3.820e-01  5.557e+01  1.467e+04  -0.007 0.994516
## BLOCK7:CONDITION1            1.074e+00  5.539e+01  1.467e+04   0.019 0.984529
## BLOCK8:CONDITION1            7.240e-01  5.539e+01  1.467e+04   0.013 0.989570
## BLOCK9:CONDITION1            3.549e+01  5.558e+01  1.467e+04   0.639 0.523111
## BLOCK10:CONDITION1          -6.345e-01  5.539e+01  1.467e+04  -0.011 0.990860
## BLOCK2:PHASE20              -2.501e-01  5.586e+01  1.467e+04  -0.004 0.996427
## BLOCK3:PHASE20              -8.887e-02  5.567e+01  1.467e+04  -0.002 0.998726
## BLOCK4:PHASE20              -2.202e-01  5.558e+01  1.467e+04  -0.004 0.996839
## BLOCK5:PHASE20              -1.539e-01  5.558e+01  1.467e+04  -0.003 0.997790
## BLOCK6:PHASE20               7.647e-02  5.567e+01  1.467e+04   0.001 0.998904
## BLOCK7:PHASE20              -2.889e-01  5.558e+01  1.467e+04  -0.005 0.995853
## BLOCK8:PHASE20              -1.740e-01  5.558e+01  1.467e+04  -0.003 0.997502
## BLOCK9:PHASE20              -7.608e-02  5.558e+01  1.467e+04  -0.001 0.998908
## BLOCK10:PHASE20             -2.990e-02  5.558e+01  1.467e+04  -0.001 0.999571
## BLOCK2:PHASE30              -2.425e-01  5.577e+01  1.467e+04  -0.004 0.996531
## BLOCK3:PHASE30              -1.699e-01  5.558e+01  1.467e+04  -0.003 0.997561
## BLOCK4:PHASE30              -1.079e-02  5.530e+01  1.467e+04   0.000 0.999844
## BLOCK5:PHASE30              -1.053e-01  5.530e+01  1.467e+04  -0.002 0.998481
## BLOCK6:PHASE30               1.159e-03  5.539e+01  1.467e+04   0.000 0.999983
## BLOCK7:PHASE30              -8.808e-02  5.530e+01  1.467e+04  -0.002 0.998729
## BLOCK8:PHASE30              -2.848e-02  5.530e+01  1.467e+04  -0.001 0.999589
## BLOCK9:PHASE30               2.676e-02  5.530e+01  1.467e+04   0.000 0.999614
## BLOCK10:PHASE30              1.773e-02  5.530e+01  1.467e+04   0.000 0.999744
## BLOCK2:PHASE40               1.817e-01  5.558e+01  1.467e+04   0.003 0.997392
## BLOCK3:PHASE40              -9.939e-02  5.558e+01  1.467e+04  -0.002 0.998573
## BLOCK4:PHASE40               5.111e-02  5.530e+01  1.467e+04   0.001 0.999263
## BLOCK5:PHASE40               2.080e-02  5.530e+01  1.467e+04   0.000 0.999700
## BLOCK6:PHASE40               6.756e-02  5.539e+01  1.467e+04   0.001 0.999027
## BLOCK7:PHASE40              -3.249e-01  5.530e+01  1.467e+04  -0.006 0.995311
## BLOCK8:PHASE40              -6.031e-02  5.530e+01  1.467e+04  -0.001 0.999130
## BLOCK9:PHASE40               4.361e-02  5.530e+01  1.467e+04   0.001 0.999371
## BLOCK10:PHASE40              1.283e-01  5.530e+01  1.467e+04   0.002 0.998149
## BLOCK2:PHASE50               2.010e-02  5.576e+01  1.467e+04   0.000 0.999712
## BLOCK3:PHASE50              -2.337e-01  5.558e+01  1.467e+04  -0.004 0.996646
## BLOCK4:PHASE50              -6.058e-02  5.548e+01  1.467e+04  -0.001 0.999129
## BLOCK5:PHASE50              -2.622e-01  5.548e+01  1.467e+04  -0.005 0.996230
## BLOCK6:PHASE50              -4.532e-02  5.558e+01  1.467e+04  -0.001 0.999349
## BLOCK7:PHASE50              -1.523e-01  5.548e+01  1.467e+04  -0.003 0.997809
## BLOCK8:PHASE50              -3.057e-03  5.558e+01  1.467e+04   0.000 0.999956
## BLOCK9:PHASE50              -4.020e-02  5.548e+01  1.467e+04  -0.001 0.999422
## BLOCK10:PHASE50             -1.017e-01  5.558e+01  1.467e+04  -0.002 0.998540
## BLOCK2:PHASE60               8.737e-03  5.567e+01  1.467e+04   0.000 0.999875
## BLOCK3:PHASE60               1.077e-01  5.557e+01  1.467e+04   0.002 0.998454
## BLOCK4:PHASE60               1.038e-02  5.548e+01  1.467e+04   0.000 0.999851
## BLOCK5:PHASE60               1.740e-01  5.539e+01  1.467e+04   0.003 0.997493
## BLOCK6:PHASE60              -1.066e-02  5.548e+01  1.467e+04   0.000 0.999847
## BLOCK7:PHASE60              -1.375e-01  5.539e+01  1.467e+04  -0.002 0.998019
## BLOCK8:PHASE60               1.930e-01  5.558e+01  1.467e+04   0.003 0.997230
## BLOCK9:PHASE60               9.197e-02  5.539e+01  1.467e+04   0.002 0.998675
## BLOCK10:PHASE60              1.908e-01  5.539e+01  1.467e+04   0.003 0.997252
## BLOCK2:PHASE70              -9.650e-02  5.586e+01  1.467e+04  -0.002 0.998622
## BLOCK3:PHASE70              -6.764e-02  5.576e+01  1.467e+04  -0.001 0.999032
## BLOCK4:PHASE70               1.367e-02  5.558e+01  1.467e+04   0.000 0.999804
## BLOCK5:PHASE70               1.359e-01  5.548e+01  1.467e+04   0.002 0.998046
## BLOCK6:PHASE70              -3.086e-02  5.567e+01  1.467e+04  -0.001 0.999558
## BLOCK7:PHASE70               8.192e-02  5.567e+01  1.467e+04   0.001 0.998826
## BLOCK8:PHASE70              -4.026e-02  5.548e+01  1.467e+04  -0.001 0.999421
## BLOCK9:PHASE70               6.530e-02  5.567e+01  1.467e+04   0.001 0.999064
## BLOCK10:PHASE70              2.591e-02  5.558e+01  1.467e+04   0.000 0.999628
## BLOCK2:PHASE80              -2.356e-01  5.567e+01  1.467e+04  -0.004 0.996623
## BLOCK3:PHASE80              -3.961e-01  5.548e+01  1.467e+04  -0.007 0.994304
## BLOCK4:PHASE80              -1.222e-01  5.539e+01  1.467e+04  -0.002 0.998240
## BLOCK5:PHASE80              -2.231e-01  5.539e+01  1.467e+04  -0.004 0.996787
## BLOCK6:PHASE80              -1.259e-01  5.548e+01  1.467e+04  -0.002 0.998190
## BLOCK7:PHASE80              -3.470e-01  5.548e+01  1.467e+04  -0.006 0.995010
## BLOCK8:PHASE80              -2.109e-01  5.548e+01  1.467e+04  -0.004 0.996967
## BLOCK9:PHASE80              -1.866e-01  5.558e+01  1.467e+04  -0.003 0.997321
## BLOCK10:PHASE80             -1.825e-01  5.539e+01  1.467e+04  -0.003 0.997371
## BLOCK2:PHASE90              -1.422e-01  5.576e+01  1.467e+04  -0.003 0.997966
## BLOCK3:PHASE90              -1.949e-01  5.558e+01  1.467e+04  -0.004 0.997201
## BLOCK4:PHASE90              -1.542e-01  5.558e+01  1.467e+04  -0.003 0.997786
## BLOCK5:PHASE90              -1.113e-01  5.548e+01  1.467e+04  -0.002 0.998400
## BLOCK6:PHASE90              -5.554e-02  5.558e+01  1.467e+04  -0.001 0.999203
## BLOCK7:PHASE90              -2.246e-01  5.548e+01  1.467e+04  -0.004 0.996770
## BLOCK8:PHASE90              -3.887e-02  5.548e+01  1.467e+04  -0.001 0.999441
## BLOCK9:PHASE90              -6.211e-02  5.548e+01  1.467e+04  -0.001 0.999107
## BLOCK10:PHASE90             -1.408e-02  5.558e+01  1.467e+04   0.000 0.999798
## BLOCK2:PHASE100             -7.555e-02  5.567e+01  1.467e+04  -0.001 0.998917
## BLOCK3:PHASE100             -2.623e-01  5.548e+01  1.467e+04  -0.005 0.996228
## BLOCK4:PHASE100              3.511e-02  5.548e+01  1.467e+04   0.001 0.999495
## BLOCK5:PHASE100             -7.721e-02  5.539e+01  1.467e+04  -0.001 0.998888
## BLOCK6:PHASE100              3.007e-02  5.548e+01  1.467e+04   0.001 0.999568
## BLOCK7:PHASE100             -8.403e-02  5.539e+01  1.467e+04  -0.002 0.998790
## BLOCK8:PHASE100             -1.381e-01  5.539e+01  1.467e+04  -0.002 0.998011
## BLOCK9:PHASE100              1.670e-02  5.548e+01  1.467e+04   0.000 0.999760
## BLOCK10:PHASE100             2.105e-02  5.539e+01  1.467e+04   0.000 0.999697
## CONDITION1:PHASE20          -3.653e-02  5.567e+01  1.467e+04  -0.001 0.999476
## CONDITION1:PHASE30           3.078e-02  5.539e+01  1.467e+04   0.001 0.999557
## CONDITION1:PHASE40           6.999e-02  5.539e+01  1.467e+04   0.001 0.998992
## CONDITION1:PHASE50          -1.030e-01  5.558e+01  1.467e+04  -0.002 0.998522
## CONDITION1:PHASE60           2.170e-01  5.548e+01  1.467e+04   0.004 0.996879
## CONDITION1:PHASE70           2.694e-01  5.558e+01  1.467e+04   0.005 0.996132
## CONDITION1:PHASE80          -2.134e-01  5.548e+01  1.467e+04  -0.004 0.996931
## CONDITION1:PHASE90          -5.721e-02  5.576e+01  1.467e+04  -0.001 0.999181
## CONDITION1:PHASE100          2.899e-01  5.557e+01  1.467e+04   0.005 0.995838
## BLOCK2:CONDITION1:PHASE20   -2.560e-01  7.873e+01  1.467e+04  -0.003 0.997406
## BLOCK3:CONDITION1:PHASE20   -1.184e+00  7.860e+01  1.467e+04  -0.015 0.987979
## BLOCK4:CONDITION1:PHASE20    8.758e-01  7.840e+01  1.467e+04   0.011 0.991088
## BLOCK5:CONDITION1:PHASE20   -3.366e+00  7.840e+01  1.467e+04  -0.043 0.965751
## BLOCK6:CONDITION1:PHASE20    6.253e-01  7.860e+01  1.467e+04   0.008 0.993652
## BLOCK7:CONDITION1:PHASE20   -8.267e-01  7.840e+01  1.467e+04  -0.011 0.991587
## BLOCK8:CONDITION1:PHASE20    5.203e-01  7.847e+01  1.467e+04   0.007 0.994710
## BLOCK9:CONDITION1:PHASE20   -3.054e+01  7.854e+01  1.467e+04  -0.389 0.697427
## BLOCK10:CONDITION1:PHASE20   2.020e+00  7.840e+01  1.467e+04   0.026 0.979443
## BLOCK2:CONDITION1:PHASE30    6.244e-01  7.854e+01  1.467e+04   0.008 0.993657
## BLOCK3:CONDITION1:PHASE30    1.147e-01  7.860e+01  1.467e+04   0.001 0.998836
## BLOCK4:CONDITION1:PHASE30    4.867e-01  7.820e+01  1.467e+04   0.006 0.995034
## BLOCK5:CONDITION1:PHASE30   -2.741e+00  7.820e+01  1.467e+04  -0.035 0.972036
## BLOCK6:CONDITION1:PHASE30    5.483e-01  7.833e+01  1.467e+04   0.007 0.994415
## BLOCK7:CONDITION1:PHASE30   -1.228e+00  7.827e+01  1.467e+04  -0.016 0.987484
## BLOCK8:CONDITION1:PHASE30    8.433e+00  7.820e+01  1.467e+04   0.108 0.914127
## BLOCK9:CONDITION1:PHASE30   -2.854e+01  7.833e+01  1.467e+04  -0.364 0.715608
## BLOCK10:CONDITION1:PHASE30   3.697e-01  7.820e+01  1.467e+04   0.005 0.996228
## BLOCK2:CONDITION1:PHASE40    1.329e+00  7.840e+01  1.467e+04   0.017 0.986471
## BLOCK3:CONDITION1:PHASE40   -7.920e-01  7.853e+01  1.467e+04  -0.010 0.991954
## BLOCK4:CONDITION1:PHASE40    2.961e-01  7.827e+01  1.467e+04   0.004 0.996982
## BLOCK5:CONDITION1:PHASE40   -1.556e+00  7.820e+01  1.467e+04  -0.020 0.984121
## BLOCK6:CONDITION1:PHASE40    4.313e-01  7.840e+01  1.467e+04   0.006 0.995611
## BLOCK7:CONDITION1:PHASE40   -7.790e-01  7.840e+01  1.467e+04  -0.010 0.992073
## BLOCK8:CONDITION1:PHASE40    1.448e+01  7.827e+01  1.467e+04   0.185 0.853241
## BLOCK9:CONDITION1:PHASE40   -3.021e+01  7.833e+01  1.467e+04  -0.386 0.699732
## BLOCK10:CONDITION1:PHASE40  -1.751e-01  7.820e+01  1.467e+04  -0.002 0.998213
## BLOCK2:CONDITION1:PHASE50    6.425e-01  7.853e+01  1.467e+04   0.008 0.993472
## BLOCK3:CONDITION1:PHASE50    2.434e-01  7.846e+01  1.467e+04   0.003 0.997525
## BLOCK4:CONDITION1:PHASE50    4.684e-01  7.840e+01  1.467e+04   0.006 0.995233
## BLOCK5:CONDITION1:PHASE50   -2.653e+00  7.840e+01  1.467e+04  -0.034 0.973008
## BLOCK6:CONDITION1:PHASE50    6.575e-01  7.846e+01  1.467e+04   0.008 0.993314
## BLOCK7:CONDITION1:PHASE50   -9.785e-01  7.833e+01  1.467e+04  -0.012 0.990033
## BLOCK8:CONDITION1:PHASE50   -1.861e-01  7.840e+01  1.467e+04  -0.002 0.998106
## BLOCK9:CONDITION1:PHASE50   -3.354e+01  7.847e+01  1.467e+04  -0.427 0.669058
## BLOCK10:CONDITION1:PHASE50  -2.120e-01  7.846e+01  1.467e+04  -0.003 0.997845
## BLOCK2:CONDITION1:PHASE60   -3.562e-01  7.846e+01  1.467e+04  -0.005 0.996378
## BLOCK3:CONDITION1:PHASE60   -6.904e-01  7.853e+01  1.467e+04  -0.009 0.992986
## BLOCK4:CONDITION1:PHASE60    5.676e-01  7.833e+01  1.467e+04   0.007 0.994219
## BLOCK5:CONDITION1:PHASE60   -3.408e+00  7.827e+01  1.467e+04  -0.044 0.965272
## BLOCK6:CONDITION1:PHASE60    2.711e-01  7.840e+01  1.467e+04   0.003 0.997241
## BLOCK7:CONDITION1:PHASE60   -1.632e+00  7.840e+01  1.467e+04  -0.021 0.983396
## BLOCK8:CONDITION1:PHASE60    1.339e+00  7.840e+01  1.467e+04   0.017 0.986376
## BLOCK9:CONDITION1:PHASE60   -3.535e+01  7.840e+01  1.467e+04  -0.451 0.652070
## BLOCK10:CONDITION1:PHASE60   4.233e+00  7.833e+01  1.467e+04   0.054 0.956907
## BLOCK2:CONDITION1:PHASE70    3.919e+02  7.866e+01  1.467e+04   4.982 6.38e-07
## BLOCK3:CONDITION1:PHASE70   -9.207e-01  7.860e+01  1.467e+04  -0.012 0.990654
## BLOCK4:CONDITION1:PHASE70    2.021e-01  7.840e+01  1.467e+04   0.003 0.997943
## BLOCK5:CONDITION1:PHASE70   -3.411e+00  7.840e+01  1.467e+04  -0.044 0.965299
## BLOCK6:CONDITION1:PHASE70    2.787e-01  7.853e+01  1.467e+04   0.004 0.997168
## BLOCK7:CONDITION1:PHASE70   -1.294e+00  7.847e+01  1.467e+04  -0.016 0.986838
## BLOCK8:CONDITION1:PHASE70   -3.594e-01  7.833e+01  1.467e+04  -0.005 0.996340
## BLOCK9:CONDITION1:PHASE70   -3.695e+01  7.867e+01  1.467e+04  -0.470 0.638609
## BLOCK10:CONDITION1:PHASE70   3.862e-01  7.840e+01  1.467e+04   0.005 0.996070
## BLOCK2:CONDITION1:PHASE80    1.025e+00  7.846e+01  1.467e+04   0.013 0.989578
## BLOCK3:CONDITION1:PHASE80   -1.832e-01  7.840e+01  1.467e+04  -0.002 0.998135
## BLOCK4:CONDITION1:PHASE80    4.214e-01  7.847e+01  1.467e+04   0.005 0.995715
## BLOCK5:CONDITION1:PHASE80   -2.720e+00  7.827e+01  1.467e+04  -0.035 0.972280
## BLOCK6:CONDITION1:PHASE80    6.873e-01  7.846e+01  1.467e+04   0.009 0.993011
## BLOCK7:CONDITION1:PHASE80    2.058e+00  7.833e+01  1.467e+04   0.026 0.979042
## BLOCK8:CONDITION1:PHASE80    1.871e+00  7.840e+01  1.467e+04   0.024 0.980957
## BLOCK9:CONDITION1:PHASE80   -2.885e+01  7.860e+01  1.467e+04  -0.367 0.713557
## BLOCK10:CONDITION1:PHASE80   1.569e+00  7.827e+01  1.467e+04   0.020 0.984011
## BLOCK2:CONDITION1:PHASE90    4.550e-01  7.866e+01  1.467e+04   0.006 0.995385
## BLOCK3:CONDITION1:PHASE90   -5.228e-01  7.873e+01  1.467e+04  -0.007 0.994701
## BLOCK4:CONDITION1:PHASE90    6.700e-01  7.866e+01  1.467e+04   0.009 0.993204
## BLOCK5:CONDITION1:PHASE90   -2.892e+00  7.853e+01  1.467e+04  -0.037 0.970623
## BLOCK6:CONDITION1:PHASE90    6.161e-01  7.860e+01  1.467e+04   0.008 0.993746
## BLOCK7:CONDITION1:PHASE90   -8.670e-01  7.847e+01  1.467e+04  -0.011 0.991185
## BLOCK8:CONDITION1:PHASE90   -1.405e+00  7.853e+01  1.467e+04  -0.018 0.985728
## BLOCK9:CONDITION1:PHASE90   -3.290e+00  7.860e+01  1.467e+04  -0.042 0.966613
## BLOCK10:CONDITION1:PHASE90   7.198e-01  7.853e+01  1.467e+04   0.009 0.992687
## BLOCK2:CONDITION1:PHASE100  -1.702e-01  7.853e+01  1.467e+04  -0.002 0.998271
## BLOCK3:CONDITION1:PHASE100  -6.393e-01  7.853e+01  1.467e+04  -0.008 0.993505
## BLOCK4:CONDITION1:PHASE100   2.809e-01  7.840e+01  1.467e+04   0.004 0.997141
## BLOCK5:CONDITION1:PHASE100  -3.136e+00  7.840e+01  1.467e+04  -0.040 0.968091
## BLOCK6:CONDITION1:PHASE100   2.556e-01  7.846e+01  1.467e+04   0.003 0.997401
## BLOCK7:CONDITION1:PHASE100  -1.360e+00  7.846e+01  1.467e+04  -0.017 0.986173
## BLOCK8:CONDITION1:PHASE100  -9.165e-01  7.833e+01  1.467e+04  -0.012 0.990664
## BLOCK9:CONDITION1:PHASE100  -3.266e+01  7.853e+01  1.467e+04  -0.416 0.677472
## BLOCK10:CONDITION1:PHASE100  2.513e-01  7.833e+01  1.467e+04   0.003 0.997440
##                                
## (Intercept)                 ***
## BLOCK2                         
## BLOCK3                         
## BLOCK4                         
## BLOCK5                         
## BLOCK6                         
## BLOCK7                         
## BLOCK8                         
## BLOCK9                         
## BLOCK10                        
## CONDITION1                     
## PHASE20                        
## PHASE30                        
## PHASE40                        
## PHASE50                        
## PHASE60                        
## PHASE70                        
## PHASE80                        
## PHASE90                        
## PHASE100                       
## BLOCK2:CONDITION1              
## BLOCK3:CONDITION1              
## BLOCK4:CONDITION1              
## BLOCK5:CONDITION1              
## BLOCK6:CONDITION1              
## BLOCK7:CONDITION1              
## BLOCK8:CONDITION1              
## BLOCK9:CONDITION1              
## BLOCK10:CONDITION1             
## BLOCK2:PHASE20                 
## BLOCK3:PHASE20                 
## BLOCK4:PHASE20                 
## BLOCK5:PHASE20                 
## BLOCK6:PHASE20                 
## BLOCK7:PHASE20                 
## BLOCK8:PHASE20                 
## BLOCK9:PHASE20                 
## BLOCK10:PHASE20                
## BLOCK2:PHASE30                 
## BLOCK3:PHASE30                 
## BLOCK4:PHASE30                 
## BLOCK5:PHASE30                 
## BLOCK6:PHASE30                 
## BLOCK7:PHASE30                 
## BLOCK8:PHASE30                 
## BLOCK9:PHASE30                 
## BLOCK10:PHASE30                
## BLOCK2:PHASE40                 
## BLOCK3:PHASE40                 
## BLOCK4:PHASE40                 
## BLOCK5:PHASE40                 
## BLOCK6:PHASE40                 
## BLOCK7:PHASE40                 
## BLOCK8:PHASE40                 
## BLOCK9:PHASE40                 
## BLOCK10:PHASE40                
## BLOCK2:PHASE50                 
## BLOCK3:PHASE50                 
## BLOCK4:PHASE50                 
## BLOCK5:PHASE50                 
## BLOCK6:PHASE50                 
## BLOCK7:PHASE50                 
## BLOCK8:PHASE50                 
## BLOCK9:PHASE50                 
## BLOCK10:PHASE50                
## BLOCK2:PHASE60                 
## BLOCK3:PHASE60                 
## BLOCK4:PHASE60                 
## BLOCK5:PHASE60                 
## BLOCK6:PHASE60                 
## BLOCK7:PHASE60                 
## BLOCK8:PHASE60                 
## BLOCK9:PHASE60                 
## BLOCK10:PHASE60                
## BLOCK2:PHASE70                 
## BLOCK3:PHASE70                 
## BLOCK4:PHASE70                 
## BLOCK5:PHASE70                 
## BLOCK6:PHASE70                 
## BLOCK7:PHASE70                 
## BLOCK8:PHASE70                 
## BLOCK9:PHASE70                 
## BLOCK10:PHASE70                
## BLOCK2:PHASE80                 
## BLOCK3:PHASE80                 
## BLOCK4:PHASE80                 
## BLOCK5:PHASE80                 
## BLOCK6:PHASE80                 
## BLOCK7:PHASE80                 
## BLOCK8:PHASE80                 
## BLOCK9:PHASE80                 
## BLOCK10:PHASE80                
## BLOCK2:PHASE90                 
## BLOCK3:PHASE90                 
## BLOCK4:PHASE90                 
## BLOCK5:PHASE90                 
## BLOCK6:PHASE90                 
## BLOCK7:PHASE90                 
## BLOCK8:PHASE90                 
## BLOCK9:PHASE90                 
## BLOCK10:PHASE90                
## BLOCK2:PHASE100                
## BLOCK3:PHASE100                
## BLOCK4:PHASE100                
## BLOCK5:PHASE100                
## BLOCK6:PHASE100                
## BLOCK7:PHASE100                
## BLOCK8:PHASE100                
## BLOCK9:PHASE100                
## BLOCK10:PHASE100               
## CONDITION1:PHASE20             
## CONDITION1:PHASE30             
## CONDITION1:PHASE40             
## CONDITION1:PHASE50             
## CONDITION1:PHASE60             
## CONDITION1:PHASE70             
## CONDITION1:PHASE80             
## CONDITION1:PHASE90             
## CONDITION1:PHASE100            
## BLOCK2:CONDITION1:PHASE20      
## BLOCK3:CONDITION1:PHASE20      
## BLOCK4:CONDITION1:PHASE20      
## BLOCK5:CONDITION1:PHASE20      
## BLOCK6:CONDITION1:PHASE20      
## BLOCK7:CONDITION1:PHASE20      
## BLOCK8:CONDITION1:PHASE20      
## BLOCK9:CONDITION1:PHASE20      
## BLOCK10:CONDITION1:PHASE20     
## BLOCK2:CONDITION1:PHASE30      
## BLOCK3:CONDITION1:PHASE30      
## BLOCK4:CONDITION1:PHASE30      
## BLOCK5:CONDITION1:PHASE30      
## BLOCK6:CONDITION1:PHASE30      
## BLOCK7:CONDITION1:PHASE30      
## BLOCK8:CONDITION1:PHASE30      
## BLOCK9:CONDITION1:PHASE30      
## BLOCK10:CONDITION1:PHASE30     
## BLOCK2:CONDITION1:PHASE40      
## BLOCK3:CONDITION1:PHASE40      
## BLOCK4:CONDITION1:PHASE40      
## BLOCK5:CONDITION1:PHASE40      
## BLOCK6:CONDITION1:PHASE40      
## BLOCK7:CONDITION1:PHASE40      
## BLOCK8:CONDITION1:PHASE40      
## BLOCK9:CONDITION1:PHASE40      
## BLOCK10:CONDITION1:PHASE40     
## BLOCK2:CONDITION1:PHASE50      
## BLOCK3:CONDITION1:PHASE50      
## BLOCK4:CONDITION1:PHASE50      
## BLOCK5:CONDITION1:PHASE50      
## BLOCK6:CONDITION1:PHASE50      
## BLOCK7:CONDITION1:PHASE50      
## BLOCK8:CONDITION1:PHASE50      
## BLOCK9:CONDITION1:PHASE50      
## BLOCK10:CONDITION1:PHASE50     
## BLOCK2:CONDITION1:PHASE60      
## BLOCK3:CONDITION1:PHASE60      
## BLOCK4:CONDITION1:PHASE60      
## BLOCK5:CONDITION1:PHASE60      
## BLOCK6:CONDITION1:PHASE60      
## BLOCK7:CONDITION1:PHASE60      
## BLOCK8:CONDITION1:PHASE60      
## BLOCK9:CONDITION1:PHASE60      
## BLOCK10:CONDITION1:PHASE60     
## BLOCK2:CONDITION1:PHASE70   ***
## BLOCK3:CONDITION1:PHASE70      
## BLOCK4:CONDITION1:PHASE70      
## BLOCK5:CONDITION1:PHASE70      
## BLOCK6:CONDITION1:PHASE70      
## BLOCK7:CONDITION1:PHASE70      
## BLOCK8:CONDITION1:PHASE70      
## BLOCK9:CONDITION1:PHASE70      
## BLOCK10:CONDITION1:PHASE70     
## BLOCK2:CONDITION1:PHASE80      
## BLOCK3:CONDITION1:PHASE80      
## BLOCK4:CONDITION1:PHASE80      
## BLOCK5:CONDITION1:PHASE80      
## BLOCK6:CONDITION1:PHASE80      
## BLOCK7:CONDITION1:PHASE80      
## BLOCK8:CONDITION1:PHASE80      
## BLOCK9:CONDITION1:PHASE80      
## BLOCK10:CONDITION1:PHASE80     
## BLOCK2:CONDITION1:PHASE90      
## BLOCK3:CONDITION1:PHASE90      
## BLOCK4:CONDITION1:PHASE90      
## BLOCK5:CONDITION1:PHASE90      
## BLOCK6:CONDITION1:PHASE90      
## BLOCK7:CONDITION1:PHASE90      
## BLOCK8:CONDITION1:PHASE90      
## BLOCK9:CONDITION1:PHASE90      
## BLOCK10:CONDITION1:PHASE90     
## BLOCK2:CONDITION1:PHASE100     
## BLOCK3:CONDITION1:PHASE100     
## BLOCK4:CONDITION1:PHASE100     
## BLOCK5:CONDITION1:PHASE100     
## BLOCK6:CONDITION1:PHASE100     
## BLOCK7:CONDITION1:PHASE100     
## BLOCK8:CONDITION1:PHASE100     
## BLOCK9:CONDITION1:PHASE100     
## BLOCK10:CONDITION1:PHASE100    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 200 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
ae.m.coact.ext<-allEffects(m.coact.ext)
ae.m.coact.ext.df<-as.data.frame(ae.m.coact.ext[[1]])
plot(ae.m.coact.ext)

EMG EXTENSOR only on block & condition

m.coact.ext.blk <- lmer(COACT.EXT ~ BLOCK * CONDITION  + (1|PARTICIPANT), data = EMG)
anova(m.coact.ext.blk)
## Type III Analysis of Variance Table with Satterthwaite's method
##                 Sum Sq Mean Sq NumDF   DenDF F value Pr(>F)
## BLOCK           496407   55156     9 14847.7  0.9652 0.4667
## CONDITION        56003   56003     1    28.1  0.9801 0.3306
## BLOCK:CONDITION 495576   55064     9 14847.7  0.9636 0.4681
summary(m.coact.ext.blk)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: COACT.EXT ~ BLOCK * CONDITION + (1 | PARTICIPANT)
##    Data: EMG
## 
## REML criterion at convergence: 205292.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
##  -0.490  -0.001   0.000   0.008 120.895 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  PARTICIPANT (Intercept)    90.14   9.494 
##  Residual                57142.20 239.044 
## Number of obs: 14895, groups:  PARTICIPANT, 30
## 
## Fixed effects:
##                      Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)         1.013e+02  9.141e+00  9.985e+02  11.087   <2e-16 ***
## BLOCK2             -1.081e-02  1.246e+01  1.485e+04  -0.001   0.9993    
## BLOCK3             -6.776e-03  1.243e+01  1.485e+04  -0.001   0.9996    
## BLOCK4             -4.427e-02  1.242e+01  1.485e+04  -0.004   0.9972    
## BLOCK5             -3.771e-02  1.240e+01  1.485e+04  -0.003   0.9976    
## BLOCK6             -5.953e-02  1.241e+01  1.485e+04  -0.005   0.9962    
## BLOCK7             -2.622e-02  1.241e+01  1.485e+04  -0.002   0.9983    
## BLOCK8             -2.453e-02  1.242e+01  1.485e+04  -0.002   0.9984    
## BLOCK9             -5.377e-02  1.242e+01  1.485e+04  -0.004   0.9965    
## BLOCK10            -4.008e-02  1.241e+01  1.485e+04  -0.003   0.9974    
## CONDITION1         -1.159e-01  1.289e+01  9.886e+02  -0.009   0.9928    
## BLOCK2:CONDITION1   3.895e+01  1.756e+01  1.485e+04   2.218   0.0266 *  
## BLOCK3:CONDITION1   1.710e-01  1.756e+01  1.485e+04   0.010   0.9922    
## BLOCK4:CONDITION1   6.249e-02  1.754e+01  1.485e+04   0.004   0.9972    
## BLOCK5:CONDITION1   5.070e-01  1.752e+01  1.485e+04   0.029   0.9769    
## BLOCK6:CONDITION1   5.489e-02  1.753e+01  1.485e+04   0.003   0.9975    
## BLOCK7:CONDITION1   3.886e-01  1.754e+01  1.485e+04   0.022   0.9823    
## BLOCK8:CONDITION1   3.094e+00  1.753e+01  1.485e+04   0.177   0.8599    
## BLOCK9:CONDITION1   9.445e+00  1.753e+01  1.485e+04   0.539   0.5901    
## BLOCK10:CONDITION1  2.776e-01  1.752e+01  1.485e+04   0.016   0.9874    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
ae.m.coact.ext.blk<-allEffects(m.coact.ext.blk)
ae.m.coact.ext.blk.df<-as.data.frame(ae.m.coact.ext.blk[[1]])
plot(ae.m.coact.ext.blk)

Plots

ggplot(EMG, aes(x = INTERVALS , y = COACT.EXT, color = CONDITION)) +
  geom_line(size=0.5) +
  facet_grid(CONDITION ~ ., scales = "free_y") +
  labs(x = "Block", y = "Coactivation", color = "CONDITION") +
  ggtitle("Coactivation by Block/Trial and Condition") +
  geom_vline(xintercept = seq(0, max(EMG$INTERVALS), by = 5), 
             linetype = "dotted") +
  scale_color_manual(name = "Condition", 
                     labels = c("Cold", "Warm"), 
                     values = c("#56B4E9", "orange")) +
  scale_y_continuous(limits = c(70, 130)) +
  scale_x_continuous(breaks = seq(0, max(EMG$INTERVALS), by = 5), 
                     labels = c("0","1", "2", "3", "4", "5", "6", "7", "8", "9", "10"))

ggplot(EMG, aes(x = BLOCK, y = COACT.EXT, color = CONDITION)) +
  geom_point(size=1) +
  facet_grid(CONDITION ~ ., scales = "free_y") +
  labs(x = "Block", y = "Coactivation", color = "CONDITION") +
  ggtitle("Scatterplot of Coactivation by Block and Condition") +
  scale_color_manual(name = "Condition", 
                    labels = c("Cold", "Warm"), 
                    values = c("#56B4E9", "orange")) +
  scale_y_continuous(limits = c(70, 130))
## Warning: Removed 171 rows containing missing values (`geom_point()`).

ggplot(EMG, aes(x = PHASE , y = COACT.EXT, color = CONDITION)) +
  geom_point(size=1) +
  facet_grid(CONDITION ~ ., scales = "free_y") +
  labs(x = "Paase", y = "Coactivation", color = "CONDITION") +
  ggtitle("Scatterplot of Coactivation by Phase and Condition") +
  scale_color_manual(name = "Condition", 
                    labels = c("Cold", "Warm"), 
                    values = c("#56B4E9", "orange")) +
  scale_y_continuous(limits = c(70, 130))
## Warning: Removed 171 rows containing missing values (`geom_point()`).

EMG only on FLEXOR as an agonist

#Coactivation
m.coact.flex <- lmer(COACT.FLEX ~ BLOCK * CONDITION * PHASE + (1|PARTICIPANT), data = EMG)
anova(m.coact.flex)
## Type III Analysis of Variance Table with Satterthwaite's method
##                        Sum Sq Mean Sq NumDF   DenDF F value Pr(>F)
## BLOCK                  394.12  43.791     9 14675.8  1.3462 0.2070
## CONDITION                9.81   9.812     1    26.2  0.3016 0.5875
## PHASE                  191.80  21.311     9 14675.4  0.6551 0.7502
## BLOCK:CONDITION        315.06  35.006     9 14675.8  1.0762 0.3766
## BLOCK:PHASE           1896.49  23.413    81 14675.4  0.7198 0.9730
## CONDITION:PHASE        212.22  23.580     9 14675.4  0.7249 0.6865
## BLOCK:CONDITION:PHASE 2195.83  27.109    81 14675.4  0.8334 0.8577
summary(m.coact.flex)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: COACT.FLEX ~ BLOCK * CONDITION * PHASE + (1 | PARTICIPANT)
##    Data: EMG
## 
## REML criterion at convergence: 93809.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -17.494  -0.034   0.002   0.058  43.921 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  PARTICIPANT (Intercept)  0.03319 0.1822  
##  Residual                32.52856 5.7034  
## Number of obs: 14905, groups:  PARTICIPANT, 30
## 
## Fixed effects:
##                               Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                  9.873e+01  6.647e-01  1.343e+04 148.533   <2e-16
## BLOCK2                      -6.944e-02  9.408e-01  1.468e+04  -0.074   0.9412
## BLOCK3                      -1.208e-01  9.376e-01  1.468e+04  -0.129   0.8975
## BLOCK4                      -1.598e-03  9.345e-01  1.468e+04  -0.002   0.9986
## BLOCK5                      -2.418e-02  9.345e-01  1.468e+04  -0.026   0.9794
## BLOCK6                       4.803e-02  9.376e-01  1.468e+04   0.051   0.9591
## BLOCK7                      -1.261e-01  9.345e-01  1.468e+04  -0.135   0.8927
## BLOCK8                      -2.810e-02  9.345e-01  1.468e+04  -0.030   0.9760
## BLOCK9                       3.848e-02  9.345e-01  1.468e+04   0.041   0.9672
## BLOCK10                      4.238e-02  9.345e-01  1.468e+04   0.045   0.9638
## CONDITION1                   1.368e-01  9.400e-01  1.343e+04   0.146   0.8843
## PHASE20                     -1.164e-01  9.441e-01  1.468e+04  -0.123   0.9019
## PHASE30                     -1.329e-02  9.345e-01  1.468e+04  -0.014   0.9887
## PHASE40                      2.658e-02  9.345e-01  1.468e+04   0.028   0.9773
## PHASE50                     -1.116e-01  9.408e-01  1.468e+04  -0.119   0.9055
## PHASE60                      4.757e-02  9.376e-01  1.468e+04   0.051   0.9595
## PHASE70                     -7.792e-03  9.408e-01  1.468e+04  -0.008   0.9934
## PHASE80                     -1.814e-01  9.376e-01  1.468e+04  -0.193   0.8466
## PHASE90                     -7.777e-02  9.408e-01  1.468e+04  -0.083   0.9341
## PHASE100                    -4.870e-03  9.376e-01  1.468e+04  -0.005   0.9959
## BLOCK2:CONDITION1            3.873e-01  1.326e+00  1.468e+04   0.292   0.7702
## BLOCK3:CONDITION1           -4.411e-01  1.326e+00  1.468e+04  -0.333   0.7394
## BLOCK4:CONDITION1            6.999e-01  1.322e+00  1.468e+04   0.530   0.5964
## BLOCK5:CONDITION1           -1.025e+00  1.322e+00  1.468e+04  -0.776   0.4379
## BLOCK6:CONDITION1            5.748e-01  1.326e+00  1.468e+04   0.433   0.6647
## BLOCK7:CONDITION1           -5.900e-01  1.322e+00  1.468e+04  -0.446   0.6553
## BLOCK8:CONDITION1           -3.098e-01  1.322e+00  1.468e+04  -0.234   0.8147
## BLOCK9:CONDITION1            1.779e+00  1.326e+00  1.468e+04   1.342   0.1797
## BLOCK10:CONDITION1           1.035e+00  1.322e+00  1.468e+04   0.783   0.4334
## BLOCK2:PHASE20               2.482e-01  1.333e+00  1.468e+04   0.186   0.8523
## BLOCK3:PHASE20               8.300e-02  1.328e+00  1.468e+04   0.062   0.9502
## BLOCK4:PHASE20               2.158e-01  1.326e+00  1.468e+04   0.163   0.8707
## BLOCK5:PHASE20               1.512e-01  1.326e+00  1.468e+04   0.114   0.9092
## BLOCK6:PHASE20              -6.909e-02  1.328e+00  1.468e+04  -0.052   0.9585
## BLOCK7:PHASE20               2.763e-01  1.326e+00  1.468e+04   0.208   0.8349
## BLOCK8:PHASE20               1.683e-01  1.326e+00  1.468e+04   0.127   0.8990
## BLOCK9:PHASE20               7.174e-02  1.326e+00  1.468e+04   0.054   0.9569
## BLOCK10:PHASE20              2.680e-02  1.326e+00  1.468e+04   0.020   0.9839
## BLOCK2:PHASE30               2.524e-01  1.331e+00  1.468e+04   0.190   0.8496
## BLOCK3:PHASE30               1.527e-01  1.326e+00  1.468e+04   0.115   0.9083
## BLOCK4:PHASE30               1.031e-02  1.319e+00  1.468e+04   0.008   0.9938
## BLOCK5:PHASE30               1.069e-01  1.319e+00  1.468e+04   0.081   0.9355
## BLOCK6:PHASE30              -7.386e-04  1.322e+00  1.468e+04  -0.001   0.9996
## BLOCK7:PHASE30               8.331e-02  1.319e+00  1.468e+04   0.063   0.9497
## BLOCK8:PHASE30               2.884e-02  1.319e+00  1.468e+04   0.022   0.9826
## BLOCK9:PHASE30              -2.598e-02  1.319e+00  1.468e+04  -0.020   0.9843
## BLOCK10:PHASE30             -1.647e-02  1.319e+00  1.468e+04  -0.012   0.9900
## BLOCK2:PHASE40              -1.772e-01  1.326e+00  1.468e+04  -0.134   0.8937
## BLOCK3:PHASE40               8.895e-02  1.326e+00  1.468e+04   0.067   0.9465
## BLOCK4:PHASE40              -4.833e-02  1.319e+00  1.468e+04  -0.037   0.9708
## BLOCK5:PHASE40              -2.025e-02  1.319e+00  1.468e+04  -0.015   0.9878
## BLOCK6:PHASE40              -6.729e-02  1.322e+00  1.468e+04  -0.051   0.9594
## BLOCK7:PHASE40               3.435e-01  1.319e+00  1.468e+04   0.260   0.7946
## BLOCK8:PHASE40               6.073e-02  1.319e+00  1.468e+04   0.046   0.9633
## BLOCK9:PHASE40              -4.305e-02  1.319e+00  1.468e+04  -0.033   0.9740
## BLOCK10:PHASE40             -1.254e-01  1.319e+00  1.468e+04  -0.095   0.9243
## BLOCK2:PHASE50              -1.905e-02  1.331e+00  1.468e+04  -0.014   0.9886
## BLOCK3:PHASE50               2.252e-01  1.326e+00  1.468e+04   0.170   0.8652
## BLOCK4:PHASE50               5.702e-02  1.324e+00  1.468e+04   0.043   0.9656
## BLOCK5:PHASE50               2.556e-01  1.324e+00  1.468e+04   0.193   0.8469
## BLOCK6:PHASE50               4.419e-02  1.326e+00  1.468e+04   0.033   0.9734
## BLOCK7:PHASE50               1.516e-01  1.324e+00  1.468e+04   0.114   0.9089
## BLOCK8:PHASE50               1.209e-02  1.326e+00  1.468e+04   0.009   0.9927
## BLOCK9:PHASE50               3.759e-02  1.324e+00  1.468e+04   0.028   0.9773
## BLOCK10:PHASE50              9.867e-02  1.326e+00  1.468e+04   0.074   0.9407
## BLOCK2:PHASE60              -1.039e-02  1.328e+00  1.468e+04  -0.008   0.9938
## BLOCK3:PHASE60              -1.093e-01  1.326e+00  1.468e+04  -0.082   0.9343
## BLOCK4:PHASE60              -1.430e-02  1.324e+00  1.468e+04  -0.011   0.9914
## BLOCK5:PHASE60              -1.749e-01  1.322e+00  1.468e+04  -0.132   0.8947
## BLOCK6:PHASE60               3.792e-03  1.324e+00  1.468e+04   0.003   0.9977
## BLOCK7:PHASE60               1.387e-01  1.322e+00  1.468e+04   0.105   0.9164
## BLOCK8:PHASE60              -1.882e-01  1.326e+00  1.468e+04  -0.142   0.8872
## BLOCK9:PHASE60              -9.712e-02  1.322e+00  1.468e+04  -0.073   0.9414
## BLOCK10:PHASE60             -1.913e-01  1.322e+00  1.468e+04  -0.145   0.8849
## BLOCK2:PHASE70               8.760e-02  1.333e+00  1.468e+04   0.066   0.9476
## BLOCK3:PHASE70               5.153e-02  1.331e+00  1.468e+04   0.039   0.9691
## BLOCK4:PHASE70              -2.066e-02  1.326e+00  1.468e+04  -0.016   0.9876
## BLOCK5:PHASE70              -1.382e-01  1.324e+00  1.468e+04  -0.104   0.9168
## BLOCK6:PHASE70               2.342e-02  1.328e+00  1.468e+04   0.018   0.9859
## BLOCK7:PHASE70              -9.062e-02  1.328e+00  1.468e+04  -0.068   0.9456
## BLOCK8:PHASE70               3.235e-02  1.324e+00  1.468e+04   0.024   0.9805
## BLOCK9:PHASE70              -1.409e+00  1.326e+00  1.468e+04  -1.062   0.2881
## BLOCK10:PHASE70             -3.636e-02  1.326e+00  1.468e+04  -0.027   0.9781
## BLOCK2:PHASE80               2.085e-01  1.328e+00  1.468e+04   0.157   0.8752
## BLOCK3:PHASE80               3.554e-01  1.324e+00  1.468e+04   0.269   0.7883
## BLOCK4:PHASE80               9.477e-02  1.322e+00  1.468e+04   0.072   0.9428
## BLOCK5:PHASE80               1.942e-01  1.322e+00  1.468e+04   0.147   0.8832
## BLOCK6:PHASE80               9.723e-02  1.324e+00  1.468e+04   0.073   0.9414
## BLOCK7:PHASE80               3.093e-01  1.324e+00  1.468e+04   0.234   0.8152
## BLOCK8:PHASE80               1.822e-01  1.324e+00  1.468e+04   0.138   0.8905
## BLOCK9:PHASE80              -1.175e+00  1.324e+00  1.468e+04  -0.888   0.3746
## BLOCK10:PHASE80              1.548e-01  1.322e+00  1.468e+04   0.117   0.9067
## BLOCK2:PHASE90               1.437e-01  1.331e+00  1.468e+04   0.108   0.9140
## BLOCK3:PHASE90               1.895e-01  1.326e+00  1.468e+04   0.143   0.8864
## BLOCK4:PHASE90               1.514e-01  1.326e+00  1.468e+04   0.114   0.9091
## BLOCK5:PHASE90               1.098e-01  1.324e+00  1.468e+04   0.083   0.9339
## BLOCK6:PHASE90               5.256e-02  1.326e+00  1.468e+04   0.040   0.9684
## BLOCK7:PHASE90               2.152e-01  1.324e+00  1.468e+04   0.163   0.8709
## BLOCK8:PHASE90               3.771e-02  1.324e+00  1.468e+04   0.028   0.9773
## BLOCK9:PHASE90               6.026e-02  1.324e+00  1.468e+04   0.046   0.9637
## BLOCK10:PHASE90              1.143e-02  1.326e+00  1.468e+04   0.009   0.9931
## BLOCK2:PHASE100              7.327e-02  1.328e+00  1.468e+04   0.055   0.9560
## BLOCK3:PHASE100              2.478e-01  1.324e+00  1.468e+04   0.187   0.8515
## BLOCK4:PHASE100             -3.676e-02  1.324e+00  1.468e+04  -0.028   0.9778
## BLOCK5:PHASE100              7.407e-02  1.322e+00  1.468e+04   0.056   0.9553
## BLOCK6:PHASE100             -3.253e-02  1.324e+00  1.468e+04  -0.025   0.9804
## BLOCK7:PHASE100              7.598e-02  1.322e+00  1.468e+04   0.057   0.9542
## BLOCK8:PHASE100              1.329e-01  1.322e+00  1.468e+04   0.101   0.9199
## BLOCK9:PHASE100             -1.922e-02  1.324e+00  1.468e+04  -0.015   0.9884
## BLOCK10:PHASE100            -2.284e-02  1.322e+00  1.468e+04  -0.017   0.9862
## CONDITION1:PHASE20           5.636e-02  1.328e+00  1.468e+04   0.042   0.9662
## CONDITION1:PHASE30          -6.737e-06  1.322e+00  1.468e+04   0.000   1.0000
## CONDITION1:PHASE40          -4.318e-02  1.322e+00  1.468e+04  -0.033   0.9739
## CONDITION1:PHASE50           1.370e-01  1.326e+00  1.468e+04   0.103   0.9177
## CONDITION1:PHASE60          -1.700e-01  1.324e+00  1.468e+04  -0.128   0.8978
## CONDITION1:PHASE70          -2.308e-01  1.326e+00  1.468e+04  -0.174   0.8618
## CONDITION1:PHASE80           2.133e-01  1.324e+00  1.468e+04   0.161   0.8720
## CONDITION1:PHASE90           1.535e-02  1.331e+00  1.468e+04   0.012   0.9908
## CONDITION1:PHASE100         -2.833e-01  1.326e+00  1.468e+04  -0.214   0.8308
## BLOCK2:CONDITION1:PHASE20   -2.158e+00  1.875e+00  1.468e+04  -1.150   0.2500
## BLOCK3:CONDITION1:PHASE20   -1.695e-01  1.874e+00  1.468e+04  -0.090   0.9279
## BLOCK4:CONDITION1:PHASE20   -1.178e+00  1.871e+00  1.468e+04  -0.630   0.5290
## BLOCK5:CONDITION1:PHASE20    1.492e+00  1.871e+00  1.468e+04   0.798   0.4251
## BLOCK6:CONDITION1:PHASE20   -8.105e-01  1.875e+00  1.468e+04  -0.432   0.6656
## BLOCK7:CONDITION1:PHASE20    3.616e-01  1.871e+00  1.468e+04   0.193   0.8467
## BLOCK8:CONDITION1:PHASE20   -6.104e-01  1.872e+00  1.468e+04  -0.326   0.7444
## BLOCK9:CONDITION1:PHASE20   -3.465e+00  1.874e+00  1.468e+04  -1.849   0.0645
## BLOCK10:CONDITION1:PHASE20  -1.795e+00  1.871e+00  1.468e+04  -0.959   0.3374
## BLOCK2:CONDITION1:PHASE30   -8.117e-01  1.874e+00  1.468e+04  -0.433   0.6649
## BLOCK3:CONDITION1:PHASE30    1.091e-01  1.875e+00  1.468e+04   0.058   0.9536
## BLOCK4:CONDITION1:PHASE30   -8.252e-01  1.866e+00  1.468e+04  -0.442   0.6583
## BLOCK5:CONDITION1:PHASE30    6.923e-01  1.866e+00  1.468e+04   0.371   0.7106
## BLOCK6:CONDITION1:PHASE30   -7.398e-01  1.869e+00  1.468e+04  -0.396   0.6922
## BLOCK7:CONDITION1:PHASE30    7.260e-01  1.867e+00  1.468e+04   0.389   0.6975
## BLOCK8:CONDITION1:PHASE30   -2.047e+00  1.866e+00  1.468e+04  -1.097   0.2726
## BLOCK9:CONDITION1:PHASE30   -3.518e+00  1.869e+00  1.468e+04  -1.882   0.0598
## BLOCK10:CONDITION1:PHASE30  -2.075e-01  1.866e+00  1.468e+04  -0.111   0.9115
## BLOCK2:CONDITION1:PHASE40   -8.329e-01  1.871e+00  1.468e+04  -0.445   0.6562
## BLOCK3:CONDITION1:PHASE40    5.610e-01  1.874e+00  1.468e+04   0.299   0.7646
## BLOCK4:CONDITION1:PHASE40   -6.718e-01  1.867e+00  1.468e+04  -0.360   0.7190
## BLOCK5:CONDITION1:PHASE40    3.102e-01  1.866e+00  1.468e+04   0.166   0.8680
## BLOCK6:CONDITION1:PHASE40   -1.972e+00  1.869e+00  1.468e+04  -1.055   0.2913
## BLOCK7:CONDITION1:PHASE40    1.765e-01  1.871e+00  1.468e+04   0.094   0.9248
## BLOCK8:CONDITION1:PHASE40   -1.850e+00  1.867e+00  1.468e+04  -0.991   0.3218
## BLOCK9:CONDITION1:PHASE40   -3.557e+00  1.869e+00  1.468e+04  -1.903   0.0570
## BLOCK10:CONDITION1:PHASE40   1.701e+00  1.866e+00  1.468e+04   0.912   0.3619
## BLOCK2:CONDITION1:PHASE50   -6.829e-01  1.874e+00  1.468e+04  -0.364   0.7155
## BLOCK3:CONDITION1:PHASE50   -2.739e-01  1.872e+00  1.468e+04  -0.146   0.8837
## BLOCK4:CONDITION1:PHASE50   -8.504e-01  1.871e+00  1.468e+04  -0.455   0.6494
## BLOCK5:CONDITION1:PHASE50    5.472e-01  1.871e+00  1.468e+04   0.293   0.7699
## BLOCK6:CONDITION1:PHASE50   -8.593e-01  1.872e+00  1.468e+04  -0.459   0.6463
## BLOCK7:CONDITION1:PHASE50    4.775e-01  1.869e+00  1.468e+04   0.255   0.7983
## BLOCK8:CONDITION1:PHASE50    5.364e-01  1.871e+00  1.468e+04   0.287   0.7743
## BLOCK9:CONDITION1:PHASE50   -2.614e+00  1.872e+00  1.468e+04  -1.396   0.1626
## BLOCK10:CONDITION1:PHASE50   2.244e-01  1.871e+00  1.468e+04   0.120   0.9045
## BLOCK2:CONDITION1:PHASE60    3.480e-01  1.872e+00  1.468e+04   0.186   0.8525
## BLOCK3:CONDITION1:PHASE60   -8.713e-01  1.872e+00  1.468e+04  -0.465   0.6417
## BLOCK4:CONDITION1:PHASE60   -9.173e-01  1.869e+00  1.468e+04  -0.491   0.6236
## BLOCK5:CONDITION1:PHASE60    1.312e+00  1.867e+00  1.468e+04   0.703   0.4824
## BLOCK6:CONDITION1:PHASE60   -4.867e-01  1.871e+00  1.468e+04  -0.260   0.7947
## BLOCK7:CONDITION1:PHASE60   -1.059e-01  1.869e+00  1.468e+04  -0.057   0.9548
## BLOCK8:CONDITION1:PHASE60   -9.120e-01  1.871e+00  1.468e+04  -0.488   0.6259
## BLOCK9:CONDITION1:PHASE60   -2.502e-01  1.871e+00  1.468e+04  -0.134   0.8936
## BLOCK10:CONDITION1:PHASE60  -1.457e+00  1.869e+00  1.468e+04  -0.780   0.4356
## BLOCK2:CONDITION1:PHASE70   -1.841e+00  1.877e+00  1.468e+04  -0.981   0.3266
## BLOCK3:CONDITION1:PHASE70    7.119e-01  1.875e+00  1.468e+04   0.380   0.7042
## BLOCK4:CONDITION1:PHASE70   -5.500e-01  1.871e+00  1.468e+04  -0.294   0.7687
## BLOCK5:CONDITION1:PHASE70    1.285e+00  1.871e+00  1.468e+04   0.687   0.4922
## BLOCK6:CONDITION1:PHASE70   -4.876e-01  1.874e+00  1.468e+04  -0.260   0.7947
## BLOCK7:CONDITION1:PHASE70    8.082e-01  1.872e+00  1.468e+04   0.432   0.6660
## BLOCK8:CONDITION1:PHASE70    2.724e-01  1.869e+00  1.468e+04   0.146   0.8841
## BLOCK9:CONDITION1:PHASE70    1.671e+00  1.875e+00  1.468e+04   0.891   0.3729
## BLOCK10:CONDITION1:PHASE70  -7.853e-01  1.871e+00  1.468e+04  -0.420   0.6746
## BLOCK2:CONDITION1:PHASE80   -9.148e-01  1.872e+00  1.468e+04  -0.489   0.6251
## BLOCK3:CONDITION1:PHASE80    2.190e-02  1.871e+00  1.468e+04   0.012   0.9907
## BLOCK4:CONDITION1:PHASE80   -8.526e-01  1.872e+00  1.468e+04  -0.455   0.6488
## BLOCK5:CONDITION1:PHASE80    6.773e-01  1.867e+00  1.468e+04   0.363   0.7168
## BLOCK6:CONDITION1:PHASE80   -8.924e-01  1.872e+00  1.468e+04  -0.477   0.6336
## BLOCK7:CONDITION1:PHASE80   -6.211e-01  1.869e+00  1.468e+04  -0.332   0.7397
## BLOCK8:CONDITION1:PHASE80   -9.097e-01  1.871e+00  1.468e+04  -0.486   0.6267
## BLOCK9:CONDITION1:PHASE80   -1.604e+00  1.874e+00  1.468e+04  -0.856   0.3919
## BLOCK10:CONDITION1:PHASE80  -1.383e+00  1.867e+00  1.468e+04  -0.740   0.4591
## BLOCK2:CONDITION1:PHASE90   -5.181e-01  1.877e+00  1.468e+04  -0.276   0.7825
## BLOCK3:CONDITION1:PHASE90   -1.011e+00  1.877e+00  1.468e+04  -0.539   0.5900
## BLOCK4:CONDITION1:PHASE90   -1.010e+00  1.877e+00  1.468e+04  -0.538   0.5904
## BLOCK5:CONDITION1:PHASE90    8.545e-01  1.874e+00  1.468e+04   0.456   0.6484
## BLOCK6:CONDITION1:PHASE90   -7.405e-01  1.875e+00  1.468e+04  -0.395   0.6930
## BLOCK7:CONDITION1:PHASE90    4.505e-01  1.872e+00  1.468e+04   0.241   0.8098
## BLOCK8:CONDITION1:PHASE90    1.805e+00  1.874e+00  1.468e+04   0.963   0.3353
## BLOCK9:CONDITION1:PHASE90   -3.284e+00  1.875e+00  1.468e+04  -1.751   0.0799
## BLOCK10:CONDITION1:PHASE90  -1.025e+00  1.874e+00  1.468e+04  -0.547   0.5843
## BLOCK2:CONDITION1:PHASE100   7.838e-02  1.874e+00  1.468e+04   0.042   0.9666
## BLOCK3:CONDITION1:PHASE100   4.338e-01  1.874e+00  1.468e+04   0.232   0.8169
## BLOCK4:CONDITION1:PHASE100  -5.928e-01  1.871e+00  1.468e+04  -0.317   0.7513
## BLOCK5:CONDITION1:PHASE100   1.054e+00  1.871e+00  1.468e+04   0.563   0.5732
## BLOCK6:CONDITION1:PHASE100  -4.283e-01  1.872e+00  1.468e+04  -0.229   0.8191
## BLOCK7:CONDITION1:PHASE100   8.162e-01  1.872e+00  1.468e+04   0.436   0.6629
## BLOCK8:CONDITION1:PHASE100   9.946e-01  1.869e+00  1.468e+04   0.532   0.5946
## BLOCK9:CONDITION1:PHASE100  -2.180e+00  1.874e+00  1.468e+04  -1.164   0.2446
## BLOCK10:CONDITION1:PHASE100 -4.094e-01  1.869e+00  1.468e+04  -0.219   0.8266
##                                
## (Intercept)                 ***
## BLOCK2                         
## BLOCK3                         
## BLOCK4                         
## BLOCK5                         
## BLOCK6                         
## BLOCK7                         
## BLOCK8                         
## BLOCK9                         
## BLOCK10                        
## CONDITION1                     
## PHASE20                        
## PHASE30                        
## PHASE40                        
## PHASE50                        
## PHASE60                        
## PHASE70                        
## PHASE80                        
## PHASE90                        
## PHASE100                       
## BLOCK2:CONDITION1              
## BLOCK3:CONDITION1              
## BLOCK4:CONDITION1              
## BLOCK5:CONDITION1              
## BLOCK6:CONDITION1              
## BLOCK7:CONDITION1              
## BLOCK8:CONDITION1              
## BLOCK9:CONDITION1              
## BLOCK10:CONDITION1             
## BLOCK2:PHASE20                 
## BLOCK3:PHASE20                 
## BLOCK4:PHASE20                 
## BLOCK5:PHASE20                 
## BLOCK6:PHASE20                 
## BLOCK7:PHASE20                 
## BLOCK8:PHASE20                 
## BLOCK9:PHASE20                 
## BLOCK10:PHASE20                
## BLOCK2:PHASE30                 
## BLOCK3:PHASE30                 
## BLOCK4:PHASE30                 
## BLOCK5:PHASE30                 
## BLOCK6:PHASE30                 
## BLOCK7:PHASE30                 
## BLOCK8:PHASE30                 
## BLOCK9:PHASE30                 
## BLOCK10:PHASE30                
## BLOCK2:PHASE40                 
## BLOCK3:PHASE40                 
## BLOCK4:PHASE40                 
## BLOCK5:PHASE40                 
## BLOCK6:PHASE40                 
## BLOCK7:PHASE40                 
## BLOCK8:PHASE40                 
## BLOCK9:PHASE40                 
## BLOCK10:PHASE40                
## BLOCK2:PHASE50                 
## BLOCK3:PHASE50                 
## BLOCK4:PHASE50                 
## BLOCK5:PHASE50                 
## BLOCK6:PHASE50                 
## BLOCK7:PHASE50                 
## BLOCK8:PHASE50                 
## BLOCK9:PHASE50                 
## BLOCK10:PHASE50                
## BLOCK2:PHASE60                 
## BLOCK3:PHASE60                 
## BLOCK4:PHASE60                 
## BLOCK5:PHASE60                 
## BLOCK6:PHASE60                 
## BLOCK7:PHASE60                 
## BLOCK8:PHASE60                 
## BLOCK9:PHASE60                 
## BLOCK10:PHASE60                
## BLOCK2:PHASE70                 
## BLOCK3:PHASE70                 
## BLOCK4:PHASE70                 
## BLOCK5:PHASE70                 
## BLOCK6:PHASE70                 
## BLOCK7:PHASE70                 
## BLOCK8:PHASE70                 
## BLOCK9:PHASE70                 
## BLOCK10:PHASE70                
## BLOCK2:PHASE80                 
## BLOCK3:PHASE80                 
## BLOCK4:PHASE80                 
## BLOCK5:PHASE80                 
## BLOCK6:PHASE80                 
## BLOCK7:PHASE80                 
## BLOCK8:PHASE80                 
## BLOCK9:PHASE80                 
## BLOCK10:PHASE80                
## BLOCK2:PHASE90                 
## BLOCK3:PHASE90                 
## BLOCK4:PHASE90                 
## BLOCK5:PHASE90                 
## BLOCK6:PHASE90                 
## BLOCK7:PHASE90                 
## BLOCK8:PHASE90                 
## BLOCK9:PHASE90                 
## BLOCK10:PHASE90                
## BLOCK2:PHASE100                
## BLOCK3:PHASE100                
## BLOCK4:PHASE100                
## BLOCK5:PHASE100                
## BLOCK6:PHASE100                
## BLOCK7:PHASE100                
## BLOCK8:PHASE100                
## BLOCK9:PHASE100                
## BLOCK10:PHASE100               
## CONDITION1:PHASE20             
## CONDITION1:PHASE30             
## CONDITION1:PHASE40             
## CONDITION1:PHASE50             
## CONDITION1:PHASE60             
## CONDITION1:PHASE70             
## CONDITION1:PHASE80             
## CONDITION1:PHASE90             
## CONDITION1:PHASE100            
## BLOCK2:CONDITION1:PHASE20      
## BLOCK3:CONDITION1:PHASE20      
## BLOCK4:CONDITION1:PHASE20      
## BLOCK5:CONDITION1:PHASE20      
## BLOCK6:CONDITION1:PHASE20      
## BLOCK7:CONDITION1:PHASE20      
## BLOCK8:CONDITION1:PHASE20      
## BLOCK9:CONDITION1:PHASE20   .  
## BLOCK10:CONDITION1:PHASE20     
## BLOCK2:CONDITION1:PHASE30      
## BLOCK3:CONDITION1:PHASE30      
## BLOCK4:CONDITION1:PHASE30      
## BLOCK5:CONDITION1:PHASE30      
## BLOCK6:CONDITION1:PHASE30      
## BLOCK7:CONDITION1:PHASE30      
## BLOCK8:CONDITION1:PHASE30      
## BLOCK9:CONDITION1:PHASE30   .  
## BLOCK10:CONDITION1:PHASE30     
## BLOCK2:CONDITION1:PHASE40      
## BLOCK3:CONDITION1:PHASE40      
## BLOCK4:CONDITION1:PHASE40      
## BLOCK5:CONDITION1:PHASE40      
## BLOCK6:CONDITION1:PHASE40      
## BLOCK7:CONDITION1:PHASE40      
## BLOCK8:CONDITION1:PHASE40      
## BLOCK9:CONDITION1:PHASE40   .  
## BLOCK10:CONDITION1:PHASE40     
## BLOCK2:CONDITION1:PHASE50      
## BLOCK3:CONDITION1:PHASE50      
## BLOCK4:CONDITION1:PHASE50      
## BLOCK5:CONDITION1:PHASE50      
## BLOCK6:CONDITION1:PHASE50      
## BLOCK7:CONDITION1:PHASE50      
## BLOCK8:CONDITION1:PHASE50      
## BLOCK9:CONDITION1:PHASE50      
## BLOCK10:CONDITION1:PHASE50     
## BLOCK2:CONDITION1:PHASE60      
## BLOCK3:CONDITION1:PHASE60      
## BLOCK4:CONDITION1:PHASE60      
## BLOCK5:CONDITION1:PHASE60      
## BLOCK6:CONDITION1:PHASE60      
## BLOCK7:CONDITION1:PHASE60      
## BLOCK8:CONDITION1:PHASE60      
## BLOCK9:CONDITION1:PHASE60      
## BLOCK10:CONDITION1:PHASE60     
## BLOCK2:CONDITION1:PHASE70      
## BLOCK3:CONDITION1:PHASE70      
## BLOCK4:CONDITION1:PHASE70      
## BLOCK5:CONDITION1:PHASE70      
## BLOCK6:CONDITION1:PHASE70      
## BLOCK7:CONDITION1:PHASE70      
## BLOCK8:CONDITION1:PHASE70      
## BLOCK9:CONDITION1:PHASE70      
## BLOCK10:CONDITION1:PHASE70     
## BLOCK2:CONDITION1:PHASE80      
## BLOCK3:CONDITION1:PHASE80      
## BLOCK4:CONDITION1:PHASE80      
## BLOCK5:CONDITION1:PHASE80      
## BLOCK6:CONDITION1:PHASE80      
## BLOCK7:CONDITION1:PHASE80      
## BLOCK8:CONDITION1:PHASE80      
## BLOCK9:CONDITION1:PHASE80      
## BLOCK10:CONDITION1:PHASE80     
## BLOCK2:CONDITION1:PHASE90      
## BLOCK3:CONDITION1:PHASE90      
## BLOCK4:CONDITION1:PHASE90      
## BLOCK5:CONDITION1:PHASE90      
## BLOCK6:CONDITION1:PHASE90      
## BLOCK7:CONDITION1:PHASE90      
## BLOCK8:CONDITION1:PHASE90      
## BLOCK9:CONDITION1:PHASE90   .  
## BLOCK10:CONDITION1:PHASE90     
## BLOCK2:CONDITION1:PHASE100     
## BLOCK3:CONDITION1:PHASE100     
## BLOCK4:CONDITION1:PHASE100     
## BLOCK5:CONDITION1:PHASE100     
## BLOCK6:CONDITION1:PHASE100     
## BLOCK7:CONDITION1:PHASE100     
## BLOCK8:CONDITION1:PHASE100     
## BLOCK9:CONDITION1:PHASE100     
## BLOCK10:CONDITION1:PHASE100    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 200 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
ae.m.coact.flex<-allEffects(m.coact.flex)
ae.m.coact.flex.df<-as.data.frame(ae.m.coact.flex[[1]])
plot(ae.m.coact.flex)

EMG FLEXOR only on block & condition

#Coactivation
m.coact.flex.blk <- lmer(COACT.FLEX ~ BLOCK * CONDITION  + (1|PARTICIPANT), data = EMG)
anova(m.coact.flex.blk)
## Type III Analysis of Variance Table with Satterthwaite's method
##                 Sum Sq Mean Sq NumDF   DenDF F value Pr(>F)
## BLOCK           396.50  44.056     9 14855.8  1.3582 0.2011
## CONDITION        10.01  10.011     1    26.3  0.3086 0.5832
## BLOCK:CONDITION 315.66  35.074     9 14855.8  1.0813 0.3727
summary(m.coact.flex.blk)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: COACT.FLEX ~ BLOCK * CONDITION + (1 | PARTICIPANT)
##    Data: EMG
## 
## REML criterion at convergence: 94174.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -17.349  -0.023   0.010   0.052  44.374 
## 
## Random effects:
##  Groups      Name        Variance Std.Dev.
##  PARTICIPANT (Intercept)  0.03484 0.1866  
##  Residual                32.43593 5.6953  
## Number of obs: 14905, groups:  PARTICIPANT, 30
## 
## Fixed effects:
##                      Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)         9.868e+01  2.153e-01  1.192e+03 458.433   <2e-16 ***
## BLOCK2              1.027e-02  2.968e-01  1.486e+04   0.035    0.972    
## BLOCK3              7.440e-03  2.962e-01  1.486e+04   0.025    0.980    
## BLOCK4              3.883e-02  2.958e-01  1.486e+04   0.131    0.896    
## BLOCK5              3.122e-02  2.954e-01  1.486e+04   0.106    0.916    
## BLOCK6              5.262e-02  2.956e-01  1.486e+04   0.178    0.859    
## BLOCK7              2.431e-02  2.957e-01  1.486e+04   0.082    0.934    
## BLOCK8              1.870e-02  2.958e-01  1.486e+04   0.063    0.950    
## BLOCK9             -2.194e-01  2.957e-01  1.486e+04  -0.742    0.458    
## BLOCK10             3.183e-02  2.957e-01  1.486e+04   0.108    0.914    
## CONDITION1          1.060e-01  3.035e-01  1.180e+03   0.349    0.727    
## BLOCK2:CONDITION1  -3.434e-01  4.182e-01  1.486e+04  -0.821    0.412    
## BLOCK3:CONDITION1  -4.907e-01  4.181e-01  1.486e+04  -1.174    0.241    
## BLOCK4:CONDITION1  -4.464e-02  4.179e-01  1.486e+04  -0.107    0.915    
## BLOCK5:CONDITION1  -2.030e-01  4.174e-01  1.486e+04  -0.486    0.627    
## BLOCK6:CONDITION1  -1.676e-01  4.175e-01  1.486e+04  -0.401    0.688    
## BLOCK7:CONDITION1  -2.824e-01  4.178e-01  1.486e+04  -0.676    0.499    
## BLOCK8:CONDITION1  -5.822e-01  4.177e-01  1.486e+04  -1.394    0.163    
## BLOCK9:CONDITION1  -1.113e-01  4.176e-01  1.486e+04  -0.267    0.790    
## BLOCK10:CONDITION1  5.236e-01  4.174e-01  1.486e+04   1.255    0.210    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
ae.m.coact.flex.blk<-allEffects(m.coact.flex.blk)
ae.m.coact.flex.blk.df<-as.data.frame(ae.m.coact.flex.blk[[1]])
plot(ae.m.coact.flex.blk)

Plots

ggplot(EMG, aes(x = INTERVALS , y = COACT.FLEX, color = CONDITION)) +
  geom_line(size=0.5) +
  facet_grid(CONDITION ~ ., scales = "free_y") +
  labs(x = "Block", y = "Coactivation", color = "CONDITION") +
  ggtitle("Coactivation by Block/Trial and Condition") +
  geom_vline(xintercept = seq(0, max(EMG$INTERVALS), by = 5), 
             linetype = "dotted") +
  scale_color_manual(name = "Condition", 
                     labels = c("Cold", "Warm"), 
                     values = c("#56B4E9", "orange")) +
  scale_y_continuous(limits = c(70, 130)) +
  scale_x_continuous(breaks = seq(0, max(EMG$INTERVALS), by = 5), 
                     labels = c("0","1", "2", "3", "4", "5", "6", "7", "8", "9", "10"))

ggplot(EMG, aes(x = BLOCK, y = COACT.FLEX, color = CONDITION)) +
  geom_point(size=1) +
  facet_grid(CONDITION ~ ., scales = "free_y") +
  labs(x = "Block", y = "Coactivation", color = "CONDITION") +
  ggtitle("Scatterplot of Coactivation by Block and Condition") +
  scale_color_manual(name = "Condition", 
                    labels = c("Cold", "Warm"), 
                    values = c("#56B4E9", "orange")) +
  scale_y_continuous(limits = c(70, 130))
## Warning: Removed 174 rows containing missing values (`geom_point()`).

ggplot(EMG, aes(x = PHASE , y = COACT.FLEX, color = CONDITION)) +
  geom_point(size=1) +
  facet_grid(CONDITION ~ ., scales = "free_y") +
  labs(x = "Paase", y = "Coactivation", color = "CONDITION") +
  ggtitle("Scatterplot of Coactivation by Phase and Condition") +
  scale_color_manual(name = "Condition", 
                    labels = c("Cold", "Warm"), 
                    values = c("#56B4E9", "orange")) +
  scale_y_continuous(limits = c(70, 130))
## Warning: Removed 174 rows containing missing values (`geom_point()`).

TRY NEW PART STATISTICS

glmer(TIME ~ BLOCK * CONDITION + (1 | PARTICIPANT), data = Behav, family = gaussian(link = "log"))
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
## Model failed to converge with max|grad| = 0.00244372 (tol = 0.002, component 1)
## Generalized linear mixed model fit by maximum likelihood (Laplace
##   Approximation) [glmerMod]
##  Family: gaussian  ( log )
## Formula: TIME ~ BLOCK * CONDITION + (1 | PARTICIPANT)
##    Data: Behav
##       AIC       BIC    logLik  deviance  df.resid 
##  3566.273  3647.756 -1761.137  3522.273       278 
## Random effects:
##  Groups      Name        Std.Dev.
##  PARTICIPANT (Intercept) 22.38   
##  Residual                46.18   
## Number of obs: 300, groups:  PARTICIPANT, 30
## Fixed Effects:
##        (Intercept)              BLOCK2              BLOCK3              BLOCK4  
##            5.51861            -0.18872            -0.22554            -0.25900  
##             BLOCK5              BLOCK6              BLOCK7              BLOCK8  
##           -0.29032            -0.19368            -0.39851            -0.43212  
##             BLOCK9             BLOCK10          CONDITION2   BLOCK2:CONDITION2  
##           -0.58145            -0.64762            -0.04869             0.08169  
##  BLOCK3:CONDITION2   BLOCK4:CONDITION2   BLOCK5:CONDITION2   BLOCK6:CONDITION2  
##            0.10648             0.09559             0.02500            -0.13579  
##  BLOCK7:CONDITION2   BLOCK8:CONDITION2   BLOCK9:CONDITION2  BLOCK10:CONDITION2  
##           -0.03972             0.05257             0.22681             0.18657  
## optimizer (Nelder_Mead) convergence code: 0 (OK) ; 0 optimizer warnings; 1 lme4 warnings

i tried this but it does not work, R made me install new packages that do not work and are not recognised

#brm(ERROR ~ BLOCK * CONDITION + (1 | PARTICIPANT), family = negbinomial(link = "log"), data = Behav)

#model.try<- brm(ERROR ~ 1 + CONDITION + TIME, family = poisson(), data = Behav)
#coef(model.try, mean.func = exp)
Behav$BLOCK <- factor(Behav$BLOCK)
Behav$CONDITION <- factor(Behav$CONDITION)

# Calculate the mean time per condition for each block
mean_time_per_block <- Behav %>%
  group_by(BLOCK, CONDITION) %>%
  summarize(mean_time = mean(TIME))
## `summarise()` has grouped output by 'BLOCK'. You can override using the
## `.groups` argument.
# Plot the learning curve with mean time per condition for each block
ggplot(mean_time_per_block, aes(x = BLOCK, y = mean_time, color = CONDITION)) +
  geom_line() +
  geom_point() +
  labs(x = "Block", y = "Mean Time", title = "Learning Curve by Block and Condition") +
  scale_color_manual(values = c("#56B4E9", "orange"), name = "Condition", labels = c("Cold", "Ideal"))
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?

mean_error_per_block <- Behav %>%
  group_by(BLOCK, CONDITION) %>%
  summarize(mean_error = mean(ERROR))
## `summarise()` has grouped output by 'BLOCK'. You can override using the
## `.groups` argument.
# Plot the learning curve with mean error per condition for each block
ggplot(mean_error_per_block, aes(x = BLOCK, y = mean_error, color = CONDITION)) +
  geom_line() +
  geom_point() +
  labs(x = "Block", y = "Mean Error", title = "Learning Curve by Block and Condition") +
  scale_color_manual(values = c("#56B4E9", "orange"), name = "Condition", labels = c("Cold", "Ideal"))
## `geom_line()`: Each group consists of only one observation.
## ℹ Do you need to adjust the group aesthetic?

plot_data <- Behav %>%
  group_by(BLOCK, CONDITION) %>%
  summarize(mean_time = mean(TIME), mean_error = mean(ERROR))
## `summarise()` has grouped output by 'BLOCK'. You can override using the
## `.groups` argument.
ggplot(plot_data, aes(x = mean_time, y = mean_error, color = CONDITION)) +
  geom_point() +
  labs(x = "Mean Time", y = "Mean Error", title = "Learning Curve by Block and Condition") +
  scale_color_manual(values = c("#56B4E9", "orange"), name = "Condition", labels = c("Cold", "Ideal")) +
  facet_wrap(~BLOCK, ncol = 5)