library(wooldridge)
data(hprice2)
head(force(hprice2),n=5)
## price crime nox rooms dist radial proptax stratio lowstat lprice lnox
## 1 24000 0.006 5.38 6.57 4.09 1 29.6 15.3 4.98 10.085809 1.682688
## 2 21599 0.027 4.69 6.42 4.97 2 24.2 17.8 9.14 9.980402 1.545433
## 3 34700 0.027 4.69 7.18 4.97 2 24.2 17.8 4.03 10.454495 1.545433
## 4 33400 0.032 4.58 7.00 6.06 3 22.2 18.7 2.94 10.416311 1.521699
## 5 36199 0.069 4.58 7.15 6.06 3 22.2 18.7 5.33 10.496787 1.521699
## lproptax
## 1 5.690360
## 2 5.488938
## 3 5.488938
## 4 5.402678
## 5 5.402678
library(stargazer)
modelo_estimado<-lm(formula = price ~ nox + dist + rooms+stratio, data = hprice2)
options(scipen = 9999)
stargazer(modelo_estimado, title = "Modelo estimado del precio", type = "html", digits = 5)
Dependent variable: | |
price | |
nox | -3,044.91300*** |
(353.67920) | |
dist | -965.49210*** |
(191.49620) | |
rooms | 6,808.76900*** |
(401.35540) | |
stratio | -1,269.16800*** |
(127.36590) | |
Constant | 23,716.16000*** |
(5,120.56400) | |
Observations | 506 |
R2 | 0.61981 |
Adjusted R2 | 0.61678 |
Residual Std. Error | 5,700.75500 (df = 501) |
F Statistic | 204.19130*** (df = 4; 501) |
Note: | p<0.1; p<0.05; p<0.01 |
library(tseries)
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
salida_JB<-jarque.bera.test(modelo_estimado$residuals)
salida_JB
##
## Jarque Bera Test
##
## data: modelo_estimado$residuals
## X-squared = 2356.3, df = 2, p-value < 0.00000000000000022
Se rechaza la H0 ya que p-value < 0.00000000000000022
library(nortest)
Prueba_KS<-lillie.test(modelo_estimado$residuals)
Prueba_KS
##
## Lilliefors (Kolmogorov-Smirnov) normality test
##
## data: modelo_estimado$residuals
## D = 0.10855, p-value = 0.000000000000001255
En este caso dado que p-value = 0.000000000000001255<0.5 (SE RECHAZA la H0)ya que los residuos no siguen una distribucion normal
#Prueba SW
salida_SW<-shapiro.test(modelo_estimado$residuals)
print(salida_SW)
##
## Shapiro-Wilk normality test
##
## data: modelo_estimado$residuals
## W = 0.86895, p-value < 0.00000000000000022
En este caso adado que 0.00000000000000022<0.5 Se rechaza la H0, por lo que los residuos no siguen distriducion normal.
library(mctest)
mctest::omcdiag(mod = modelo_estimado)
##
## Call:
## mctest::omcdiag(mod = modelo_estimado)
##
##
## Overall Multicollinearity Diagnostics
##
## MC Results detection
## Determinant |X'X|: 0.3118 0
## Farrar Chi-Square: 586.0025 1
## Red Indicator: 0.3958 0
## Sum of Lambda Inverse: 7.5541 0
## Theil's Method: -0.2934 0
## Condition Number: 50.1486 1
##
## 1 --> COLLINEARITY is detected by the test
## 0 --> COLLINEARITY is not detected by the test
Podemos persivir que la prueba detecto Colineabilidad, por lo tanto se concluye que se rechaza la H0
library(car)
## Loading required package: carData
VIFs_car<-vif(modelo_estimado)
print(VIFs_car)
## nox dist rooms stratio
## 2.608309 2.527668 1.235644 1.182437