This is an R Markdown Notebook. When you execute code within the notebook, the results appear beneath the code.

Try executing this chunk by clicking the Run button within the chunk or by placing your cursor inside it and pressing Cmd+Shift+Enter.

Add a new chunk by clicking the Insert Chunk button on the toolbar or by pressing Cmd+Option+I.

When you save the notebook, an HTML file containing the code and output will be saved alongside it (click the Preview button or press Cmd+Shift+K to preview the HTML file).

The preview shows you a rendered HTML copy of the contents of the editor. Consequently, unlike Knit, Preview does not run any R code chunks. Instead, the output of the chunk when it was last run in the editor is displayed.

Descriptives

summary(LandBpracdata2023Nomissing)
       ID           Gender         Age            InstructionCond
 Min.   :  1.0   Male  :159   Min.   :13.00   Naturalistic:169   
 1st Qu.: 79.5   Female:151   1st Qu.:21.00   Analytic    :142   
 Median :164.0   NA's  :  1   Median :24.00                      
 Mean   :163.4                Mean   :32.75                      
 3rd Qu.:245.5                3rd Qu.:49.00                      
 Max.   :325.0                Max.   :76.00                      
    Presses           Taskrating     Controlrating   
 Min.   :   1.556   Min.   :  0.00   Min.   :  0.00  
 1st Qu.:  93.500   1st Qu.:  0.00   1st Qu.:  0.00  
 Median : 265.000   Median : 20.00   Median : 15.00  
 Mean   : 427.700   Mean   : 26.79   Mean   : 24.66  
 3rd Qu.: 541.500   3rd Qu.: 50.00   3rd Qu.: 50.00  
 Max.   :2864.000   Max.   :100.00   Max.   :100.00  
          Strategy       Drake       EverydayIllusions
 Yes, strategy:171   Min.   :11.00   Min.   :17.00    
 No strategy  :139   1st Qu.:21.00   1st Qu.:32.00    
 NA's         :  1   Median :31.00   Median :36.00    
                     Mean   :30.93   Mean   :35.61    
                     3rd Qu.:39.00   3rd Qu.:40.00    
                     Max.   :55.00   Max.   :56.00    
describeBy(LandBpracdata2023Nomissing, group = LandBpracdata2023Nomissing$InstructionCond)

 Descriptive statistics by group 
group: Naturalistic
------------------------------------------------------ 
group: Analytic

Hypothesis 1a & 1b:Subjective rating of task: 1: Participants in the naturalistic condition should rate the task as more controllable and that they personally exerted more control compared to the ones in the analytical condition.

t.test(Taskrating ~ InstructionCond, data=LandBpracdata2023Nomissing)

    Welch Two Sample t-test

data:  Taskrating by InstructionCond
t = 2.0639, df = 303.06, p-value = 0.03988
alternative hypothesis: true difference in means between group Naturalistic and group Analytic is not equal to 0
95 percent confidence interval:
  0.304916 12.792425
sample estimates:
mean in group Naturalistic     mean in group Analytic 
                  29.78107                   23.23239 
hist(LandBpracdata2023Nomissing$Taskrating)

cohensD(Taskrating ~ InstructionCond, LandBpracdata2023Nomissing)
[1] 0.2342429
t.test(Controlrating ~ InstructionCond, data=LandBpracdata2023Nomissing)

    Welch Two Sample t-test

data:  Controlrating by InstructionCond
t = 2.8669, df = 307.18, p-value = 0.004431
alternative hypothesis: true difference in means between group Naturalistic and group Analytic is not equal to 0
95 percent confidence interval:
  2.715474 14.599802
sample estimates:
mean in group Naturalistic     mean in group Analytic 
                  28.61538                   19.95775 
hist(LandBpracdata2023Nomissing$Controlrating)

cohensD(Controlrating ~ InstructionCond, LandBpracdata2023Nomissing)
[1] 0.3236142

Behavioural effects: Hypothesis 2 Participants who receive the naturalistic instructions should press the buttons more than those who receive the analytical instructions.

hist(LandBpracdata2023Nomissing$Presses)

t.test(Presses ~ InstructionCond, data=LandBpracdata2023Nomissing)

    Welch Two Sample t-test

data:  Presses by InstructionCond
t = -0.2854, df = 279.04, p-value = 0.7755
alternative hypothesis: true difference in means between group Naturalistic and group Analytic is not equal to 0
95 percent confidence interval:
 -125.95195   94.05454
sample estimates:
mean in group Naturalistic     mean in group Analytic 
                  420.4175                   436.3662 
cohensD(Presses ~ InstructionCond, LandBpracdata2023Nomissing)
[1] 0.03293285

Hypotheses 3: Perception of Strategy: People who are allocated to the naturalistic condition will be more likely to report a strategy than those in the analytical condition.

Confusion_Matrix <- table(LandBpracdata2023Nomissing$InstructionCond, LandBpracdata2023Nomissing$Strategy)
prop.table(Confusion_Matrix, margin=2) 
              
               Yes, strategy No strategy
  Naturalistic     0.6081871   0.4604317
  Analytic         0.3918129   0.5395683
chisq.test(Confusion_Matrix,correct=FALSE)

    Pearson's Chi-squared test

data:  Confusion_Matrix
X-squared = 6.7431, df = 1, p-value = 0.009411
table(LandBpracdata2023Nomissing$InstructionCond, LandBpracdata2023Nomissing$Strategy) 
              
               Yes, strategy No strategy
  Naturalistic           104          64
  Analytic                67          75

Hypotheses 4: The relationship between individual difference and experimental measures: 4a: Scores on the Drake and the Everyday beliefs about control scale will be positively associated with a greater experimental illusion of control.

4b: Scores on the Drake and the Everyday beliefs about control scale will be positively associated with a greater number of presses.

plot(LandBpracdata2023Nomissing$Drake, LandBpracdata2023Nomissing$Taskrating)

plot(LandBpracdata2023Nomissing$EverydayIllusions, LandBpracdata2023Nomissing$Taskrating)

plot(LandBpracdata2023Nomissing$Drake, LandBpracdata2023Nomissing$Controlrating)

plot(LandBpracdata2023Nomissing$EverydayIllusions, LandBpracdata2023Nomissing$Controlrating)

plot(LandBpracdata2023Nomissing$Drake, LandBpracdata2023Nomissing$Presses)

plot(LandBpracdata2023Nomissing$EverydayIllusions, LandBpracdata2023Nomissing$Presses)

cor.test(LandBpracdata2023Nomissing$Controlrating, LandBpracdata2023Nomissing$Drake)

    Pearson's product-moment correlation

data:  LandBpracdata2023Nomissing$Controlrating and LandBpracdata2023Nomissing$Drake
t = 0.82057, df = 309, p-value = 0.4125
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.0649244  0.1570326
sample estimates:
       cor 
0.04662962 
cor.test(LandBpracdata2023Nomissing$Taskrating, LandBpracdata2023Nomissing$Drake)

    Pearson's product-moment correlation

data:  LandBpracdata2023Nomissing$Taskrating and LandBpracdata2023Nomissing$Drake
t = 0.59589, df = 309, p-value = 0.5517
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.07763032  0.14455216
sample estimates:
       cor 
0.03387951 
cor.test(LandBpracdata2023Nomissing$Presses, LandBpracdata2023Nomissing$Drake)

    Pearson's product-moment correlation

data:  LandBpracdata2023Nomissing$Presses and LandBpracdata2023Nomissing$Drake
t = 2.2999, df = 309, p-value = 0.02212
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.01878618 0.23752267
sample estimates:
      cor 
0.1297324 
cor.test(LandBpracdata2023Nomissing$Controlrating, LandBpracdata2023Nomissing$EverydayIllusions)

    Pearson's product-moment correlation

data:  LandBpracdata2023Nomissing$Controlrating and LandBpracdata2023Nomissing$EverydayIllusions
t = 3.9296, df = 309, p-value = 0.000105
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.1096043 0.3215770
sample estimates:
      cor 
0.2181622 
cor.test(LandBpracdata2023Nomissing$Taskrating, LandBpracdata2023Nomissing$EverydayIllusions)

    Pearson's product-moment correlation

data:  LandBpracdata2023Nomissing$Taskrating and LandBpracdata2023Nomissing$EverydayIllusions
t = 2.5366, df = 309, p-value = 0.01169
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.03211299 0.25006548
sample estimates:
      cor 
0.1428202 
cor.test(LandBpracdata2023Nomissing$Presses, LandBpracdata2023Nomissing$EverydayIllusions)

    Pearson's product-moment correlation

data:  LandBpracdata2023Nomissing$Presses and LandBpracdata2023Nomissing$EverydayIllusions
t = 3.2795, df = 309, p-value = 0.001159
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.07368587 0.28872825
sample estimates:
      cor 
0.1834002 

Hypotheses 5: Association between experimental measures 5a: The number of button presses will be higher for those who report having found a strategy.

t.test(Presses ~ Strategy, data=LandBpracdata2023Nomissing)

    Welch Two Sample t-test

data:  Presses by Strategy
t = 1.349, df = 282.77, p-value = 0.1784
alternative hypothesis: true difference in means between group Yes, strategy and group No strategy is not equal to 0
95 percent confidence interval:
 -34.52567 184.93337
sample estimates:
mean in group Yes, strategy   mean in group No strategy 
                   462.1319                    386.9281 
cohensD(Presses ~ Strategy, LandBpracdata2023Nomissing)
[1] 0.1555362

5b:The two experimental measures of control (Is it controllable AND did the person’s rating of control) should be higher for those who reported finding a strategy.

t.test(Controlrating ~ Strategy, data=LandBpracdata2023Nomissing)

    Welch Two Sample t-test

data:  Controlrating by Strategy
t = 7.7525, df = 303.09, p-value = 1.376e-13
alternative hypothesis: true difference in means between group Yes, strategy and group No strategy is not equal to 0
95 percent confidence interval:
 15.92227 26.75517
sample estimates:
mean in group Yes, strategy   mean in group No strategy 
                   34.30994                    12.97122 
cohensD(Controlrating ~ Strategy, data=LandBpracdata2023Nomissing)
[1] 0.8559567
t.test(Taskrating~ Strategy, data=LandBpracdata2023Nomissing)

    Welch Two Sample t-test

data:  Taskrating by Strategy
t = 5.5632, df = 303.93, p-value = 5.814e-08
alternative hypothesis: true difference in means between group Yes, strategy and group No strategy is not equal to 0
95 percent confidence interval:
 10.92355 22.88082
sample estimates:
mean in group Yes, strategy   mean in group No strategy 
                   34.45614                    17.55396 
cohensD(Taskrating ~ Strategy, data=LandBpracdata2023Nomissing)
[1] 0.6292935

Hypothesis 6:Measure validity: Scores on the two illusion of control measures (i.e., Drake and Everyday Illusions) will be positively correlated.

cor.test(LandBpracdata2023Nomissing$Drake, LandBpracdata2023Nomissing$EverydayIllusions)

    Pearson's product-moment correlation

data:  LandBpracdata2023Nomissing$Drake and LandBpracdata2023Nomissing$EverydayIllusions
t = 2.1074, df = 309, p-value = 0.03589
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.00792127 0.22724266
sample estimates:
      cor 
0.1190337 
plot(LandBpracdata2023Nomissing$Drake, LandBpracdata2023Nomissing$EverydayIllusions)

LS0tCnRpdGxlOiAiUiBOb3RlYm9vayIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKVGhpcyBpcyBhbiBbUiBNYXJrZG93bl0oaHR0cDovL3JtYXJrZG93bi5yc3R1ZGlvLmNvbSkgTm90ZWJvb2suIFdoZW4geW91IGV4ZWN1dGUgY29kZSB3aXRoaW4gdGhlIG5vdGVib29rLCB0aGUgcmVzdWx0cyBhcHBlYXIgYmVuZWF0aCB0aGUgY29kZS4gCgpUcnkgZXhlY3V0aW5nIHRoaXMgY2h1bmsgYnkgY2xpY2tpbmcgdGhlICpSdW4qIGJ1dHRvbiB3aXRoaW4gdGhlIGNodW5rIG9yIGJ5IHBsYWNpbmcgeW91ciBjdXJzb3IgaW5zaWRlIGl0IGFuZCBwcmVzc2luZyAqQ21kK1NoaWZ0K0VudGVyKi4gCgoKQWRkIGEgbmV3IGNodW5rIGJ5IGNsaWNraW5nIHRoZSAqSW5zZXJ0IENodW5rKiBidXR0b24gb24gdGhlIHRvb2xiYXIgb3IgYnkgcHJlc3NpbmcgKkNtZCtPcHRpb24rSSouCgpXaGVuIHlvdSBzYXZlIHRoZSBub3RlYm9vaywgYW4gSFRNTCBmaWxlIGNvbnRhaW5pbmcgdGhlIGNvZGUgYW5kIG91dHB1dCB3aWxsIGJlIHNhdmVkIGFsb25nc2lkZSBpdCAoY2xpY2sgdGhlICpQcmV2aWV3KiBidXR0b24gb3IgcHJlc3MgKkNtZCtTaGlmdCtLKiB0byBwcmV2aWV3IHRoZSBIVE1MIGZpbGUpLiAKClRoZSBwcmV2aWV3IHNob3dzIHlvdSBhIHJlbmRlcmVkIEhUTUwgY29weSBvZiB0aGUgY29udGVudHMgb2YgdGhlIGVkaXRvci4gQ29uc2VxdWVudGx5LCB1bmxpa2UgKktuaXQqLCAqUHJldmlldyogZG9lcyBub3QgcnVuIGFueSBSIGNvZGUgY2h1bmtzLiBJbnN0ZWFkLCB0aGUgb3V0cHV0IG9mIHRoZSBjaHVuayB3aGVuIGl0IHdhcyBsYXN0IHJ1biBpbiB0aGUgZWRpdG9yIGlzIGRpc3BsYXllZC4KCkRlc2NyaXB0aXZlcwoKYGBge3J9CnN1bW1hcnkoTGFuZEJwcmFjZGF0YTIwMjNOb21pc3NpbmcpCmBgYAoKCmBgYHtyfQpkZXNjcmliZUJ5KExhbmRCcHJhY2RhdGEyMDIzTm9taXNzaW5nLCBncm91cCA9IExhbmRCcHJhY2RhdGEyMDIzTm9taXNzaW5nJEluc3RydWN0aW9uQ29uZCkKYGBgCgoKSHlwb3RoZXNpcyAxYSAmIDFiOlN1YmplY3RpdmUgcmF0aW5nIG9mIHRhc2s6CjE6IFBhcnRpY2lwYW50cyBpbiB0aGUgbmF0dXJhbGlzdGljIGNvbmRpdGlvbiBzaG91bGQgcmF0ZSB0aGUgdGFzayBhcyBtb3JlIGNvbnRyb2xsYWJsZSBhbmQgdGhhdCB0aGV5IHBlcnNvbmFsbHkgZXhlcnRlZCBtb3JlIGNvbnRyb2wgY29tcGFyZWQgdG8gdGhlIG9uZXMgaW4gdGhlIGFuYWx5dGljYWwgY29uZGl0aW9uLgoKCmBgYHtyfQp0LnRlc3QoVGFza3JhdGluZyB+IEluc3RydWN0aW9uQ29uZCwgZGF0YT1MYW5kQnByYWNkYXRhMjAyM05vbWlzc2luZykKaGlzdChMYW5kQnByYWNkYXRhMjAyM05vbWlzc2luZyRUYXNrcmF0aW5nKQpjb2hlbnNEKFRhc2tyYXRpbmcgfiBJbnN0cnVjdGlvbkNvbmQsIExhbmRCcHJhY2RhdGEyMDIzTm9taXNzaW5nKQpgYGAKCgpgYGB7cn0KdC50ZXN0KENvbnRyb2xyYXRpbmcgfiBJbnN0cnVjdGlvbkNvbmQsIGRhdGE9TGFuZEJwcmFjZGF0YTIwMjNOb21pc3NpbmcpCmhpc3QoTGFuZEJwcmFjZGF0YTIwMjNOb21pc3NpbmckQ29udHJvbHJhdGluZykKY29oZW5zRChDb250cm9scmF0aW5nIH4gSW5zdHJ1Y3Rpb25Db25kLCBMYW5kQnByYWNkYXRhMjAyM05vbWlzc2luZykKYGBgCgoKQmVoYXZpb3VyYWwgZWZmZWN0czogSHlwb3RoZXNpcyAyClBhcnRpY2lwYW50cyB3aG8gcmVjZWl2ZSB0aGUgbmF0dXJhbGlzdGljIGluc3RydWN0aW9ucyBzaG91bGQgcHJlc3MgdGhlIGJ1dHRvbnMgbW9yZSB0aGFuIHRob3NlIHdobyByZWNlaXZlIHRoZSBhbmFseXRpY2FsIGluc3RydWN0aW9ucy4KCmBgYHtyfQpoaXN0KExhbmRCcHJhY2RhdGEyMDIzTm9taXNzaW5nJFByZXNzZXMpCnQudGVzdChQcmVzc2VzIH4gSW5zdHJ1Y3Rpb25Db25kLCBkYXRhPUxhbmRCcHJhY2RhdGEyMDIzTm9taXNzaW5nKQpjb2hlbnNEKFByZXNzZXMgfiBJbnN0cnVjdGlvbkNvbmQsIExhbmRCcHJhY2RhdGEyMDIzTm9taXNzaW5nKQpgYGAKCgpIeXBvdGhlc2VzIDM6IFBlcmNlcHRpb24gb2YgU3RyYXRlZ3k6ClBlb3BsZSB3aG8gYXJlIGFsbG9jYXRlZCB0byB0aGUgbmF0dXJhbGlzdGljIGNvbmRpdGlvbiB3aWxsIGJlIG1vcmUgbGlrZWx5IHRvIHJlcG9ydCBhIHN0cmF0ZWd5IHRoYW4gdGhvc2UgaW4gdGhlIGFuYWx5dGljYWwgY29uZGl0aW9uLiAKCgpgYGB7cn0KQ29uZnVzaW9uX01hdHJpeCA8LSB0YWJsZShMYW5kQnByYWNkYXRhMjAyM05vbWlzc2luZyRJbnN0cnVjdGlvbkNvbmQsIExhbmRCcHJhY2RhdGEyMDIzTm9taXNzaW5nJFN0cmF0ZWd5KQpwcm9wLnRhYmxlKENvbmZ1c2lvbl9NYXRyaXgsIG1hcmdpbj0yKSAKY2hpc3EudGVzdChDb25mdXNpb25fTWF0cml4LGNvcnJlY3Q9RkFMU0UpCnRhYmxlKExhbmRCcHJhY2RhdGEyMDIzTm9taXNzaW5nJEluc3RydWN0aW9uQ29uZCwgTGFuZEJwcmFjZGF0YTIwMjNOb21pc3NpbmckU3RyYXRlZ3kpIApgYGAKCgoKSHlwb3RoZXNlcyA0OiBUaGUgcmVsYXRpb25zaGlwIGJldHdlZW4gaW5kaXZpZHVhbCBkaWZmZXJlbmNlIGFuZCBleHBlcmltZW50YWwgbWVhc3VyZXM6IAo0YTogU2NvcmVzIG9uIHRoZSBEcmFrZSBhbmQgdGhlIEV2ZXJ5ZGF5IGJlbGllZnMgYWJvdXQgY29udHJvbCBzY2FsZSB3aWxsIGJlIHBvc2l0aXZlbHkgYXNzb2NpYXRlZCB3aXRoIGEgZ3JlYXRlciBleHBlcmltZW50YWwgaWxsdXNpb24gb2YgY29udHJvbC4KCjRiOiAgU2NvcmVzIG9uIHRoZSBEcmFrZSBhbmQgdGhlIEV2ZXJ5ZGF5IGJlbGllZnMgYWJvdXQgY29udHJvbCBzY2FsZSB3aWxsIGJlIHBvc2l0aXZlbHkgYXNzb2NpYXRlZCB3aXRoIGEgZ3JlYXRlciBudW1iZXIgb2YgcHJlc3Nlcy4KCmBgYHtyfQpwbG90KExhbmRCcHJhY2RhdGEyMDIzTm9taXNzaW5nJERyYWtlLCBMYW5kQnByYWNkYXRhMjAyM05vbWlzc2luZyRUYXNrcmF0aW5nKQpwbG90KExhbmRCcHJhY2RhdGEyMDIzTm9taXNzaW5nJEV2ZXJ5ZGF5SWxsdXNpb25zLCBMYW5kQnByYWNkYXRhMjAyM05vbWlzc2luZyRUYXNrcmF0aW5nKQpgYGAKCgpgYGB7cn0KcGxvdChMYW5kQnByYWNkYXRhMjAyM05vbWlzc2luZyREcmFrZSwgTGFuZEJwcmFjZGF0YTIwMjNOb21pc3NpbmckQ29udHJvbHJhdGluZykKcGxvdChMYW5kQnByYWNkYXRhMjAyM05vbWlzc2luZyRFdmVyeWRheUlsbHVzaW9ucywgTGFuZEJwcmFjZGF0YTIwMjNOb21pc3NpbmckQ29udHJvbHJhdGluZykKYGBgCgoKCmBgYHtyfQpwbG90KExhbmRCcHJhY2RhdGEyMDIzTm9taXNzaW5nJERyYWtlLCBMYW5kQnByYWNkYXRhMjAyM05vbWlzc2luZyRQcmVzc2VzKQpwbG90KExhbmRCcHJhY2RhdGEyMDIzTm9taXNzaW5nJEV2ZXJ5ZGF5SWxsdXNpb25zLCBMYW5kQnByYWNkYXRhMjAyM05vbWlzc2luZyRQcmVzc2VzKQpgYGAKCgpgYGB7cn0KY29yLnRlc3QoTGFuZEJwcmFjZGF0YTIwMjNOb21pc3NpbmckQ29udHJvbHJhdGluZywgTGFuZEJwcmFjZGF0YTIwMjNOb21pc3NpbmckRHJha2UpCmNvci50ZXN0KExhbmRCcHJhY2RhdGEyMDIzTm9taXNzaW5nJFRhc2tyYXRpbmcsIExhbmRCcHJhY2RhdGEyMDIzTm9taXNzaW5nJERyYWtlKQpjb3IudGVzdChMYW5kQnByYWNkYXRhMjAyM05vbWlzc2luZyRQcmVzc2VzLCBMYW5kQnByYWNkYXRhMjAyM05vbWlzc2luZyREcmFrZSkKYGBgCgoKYGBge3J9CmNvci50ZXN0KExhbmRCcHJhY2RhdGEyMDIzTm9taXNzaW5nJENvbnRyb2xyYXRpbmcsIExhbmRCcHJhY2RhdGEyMDIzTm9taXNzaW5nJEV2ZXJ5ZGF5SWxsdXNpb25zKQpjb3IudGVzdChMYW5kQnByYWNkYXRhMjAyM05vbWlzc2luZyRUYXNrcmF0aW5nLCBMYW5kQnByYWNkYXRhMjAyM05vbWlzc2luZyRFdmVyeWRheUlsbHVzaW9ucykKY29yLnRlc3QoTGFuZEJwcmFjZGF0YTIwMjNOb21pc3NpbmckUHJlc3NlcywgTGFuZEJwcmFjZGF0YTIwMjNOb21pc3NpbmckRXZlcnlkYXlJbGx1c2lvbnMpCmBgYAoKCgpIeXBvdGhlc2VzIDU6IEFzc29jaWF0aW9uIGJldHdlZW4gZXhwZXJpbWVudGFsIG1lYXN1cmVzCjVhOiBUaGUgbnVtYmVyIG9mIGJ1dHRvbiBwcmVzc2VzIHdpbGwgYmUgaGlnaGVyIGZvciB0aG9zZSB3aG8gcmVwb3J0IGhhdmluZyBmb3VuZCBhIHN0cmF0ZWd5LiAKCgpgYGB7cn0KdC50ZXN0KFByZXNzZXMgfiBTdHJhdGVneSwgZGF0YT1MYW5kQnByYWNkYXRhMjAyM05vbWlzc2luZykKY29oZW5zRChQcmVzc2VzIH4gU3RyYXRlZ3ksIExhbmRCcHJhY2RhdGEyMDIzTm9taXNzaW5nKQpgYGAKCgo1YjpUaGUgdHdvIGV4cGVyaW1lbnRhbCBtZWFzdXJlcyBvZiBjb250cm9sIChJcyBpdCBjb250cm9sbGFibGUgQU5EIGRpZCB0aGUgcGVyc29u4oCZcyByYXRpbmcgb2YgY29udHJvbCkgc2hvdWxkIGJlIGhpZ2hlciBmb3IgdGhvc2Ugd2hvIHJlcG9ydGVkIGZpbmRpbmcgYSBzdHJhdGVneS4KCgpgYGB7cn0KdC50ZXN0KENvbnRyb2xyYXRpbmcgfiBTdHJhdGVneSwgZGF0YT1MYW5kQnByYWNkYXRhMjAyM05vbWlzc2luZykKY29oZW5zRChDb250cm9scmF0aW5nIH4gU3RyYXRlZ3ksIGRhdGE9TGFuZEJwcmFjZGF0YTIwMjNOb21pc3NpbmcpCnQudGVzdChUYXNrcmF0aW5nfiBTdHJhdGVneSwgZGF0YT1MYW5kQnByYWNkYXRhMjAyM05vbWlzc2luZykKY29oZW5zRChUYXNrcmF0aW5nIH4gU3RyYXRlZ3ksIGRhdGE9TGFuZEJwcmFjZGF0YTIwMjNOb21pc3NpbmcpCmBgYAoKCkh5cG90aGVzaXMgNjpNZWFzdXJlIHZhbGlkaXR5OiBTY29yZXMgb24gdGhlIHR3byBpbGx1c2lvbiBvZiBjb250cm9sIG1lYXN1cmVzIChpLmUuLCBEcmFrZSBhbmQgRXZlcnlkYXkgSWxsdXNpb25zKSB3aWxsIGJlIHBvc2l0aXZlbHkgY29ycmVsYXRlZC4KCgpgYGB7cn0KY29yLnRlc3QoTGFuZEJwcmFjZGF0YTIwMjNOb21pc3NpbmckRHJha2UsIExhbmRCcHJhY2RhdGEyMDIzTm9taXNzaW5nJEV2ZXJ5ZGF5SWxsdXNpb25zKQpwbG90KExhbmRCcHJhY2RhdGEyMDIzTm9taXNzaW5nJERyYWtlLCBMYW5kQnByYWNkYXRhMjAyM05vbWlzc2luZyRFdmVyeWRheUlsbHVzaW9ucykKYGBgCg==