setwd("D:/stat")
getwd()
## [1] "D:/stat"
library(readxl)
## Warning: package 'readxl' was built under R version 4.2.3
Data<-read_excel("D:/stat//DataFinalExam.xlsx")
Data
## # A tibble: 163 × 33
## Age Gender Course T…¹ In1 In2 In3 In4 In5 In6 In7 In8 Ex1
## <dbl> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 22 Female BS Mathem… 4 3 2 1 4 7 6 7 4
## 2 23 Female BS Biology 6 6 4 4 4 5 4 7 4
## 3 20 Female BSED Engl… 5 5 3 3 2 6 5 7 5
## 4 22 Female BSED Biol… 4 5 4 3 3 6 6 7 5
## 5 23 Male BSED Engl… 7 6 5 5 4 6 4 7 7
## 6 22 Female BSED Biol… 6 6 6 6 6 7 7 7 7
## 7 20 Male BS Civil … 4 5 6 2 5 7 4 1 7
## 8 21 Female BS Electr… 5 6 5 6 5 7 6 7 7
## 9 21 Female BS Mathem… 6 7 5 5 5 7 7 7 7
## 10 22 Male BS Biology 6 7 5 6 7 7 7 7 5
## # … with 153 more rows, 21 more variables: Ex2 <dbl>, Ex3 <dbl>, Ex4 <dbl>,
## # Ex5 <dbl>, Ex6 <dbl>, Ex7 <dbl>, Ex8 <dbl>, Ex9 <dbl>, Ex10 <dbl>,
## # Ex11 <dbl>, TP1 <dbl>, TP2 <dbl>, TP3 <dbl>, TP4 <dbl>, TP5 <dbl>,
## # T6 <dbl>, CP1 <dbl>, CP2 <dbl>, CP3 <dbl>, CP4 <dbl>, CP5 <dbl>, and
## # abbreviated variable name ¹`Course Taken`
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(rmarkdown)
Data1<-Data%>%
group_by(`Course Taken`)%>%
summarise(Frequency=n(), 'Mean Age' = mean(Age))
Data1
## # A tibble: 6 × 3
## `Course Taken` Frequency `Mean Age`
## <chr> <int> <dbl>
## 1 BS Biology 33 21.6
## 2 BS Civil Engineering 16 21.4
## 3 BS Electrical Engineering 17 21.6
## 4 BS Mathematics 33 21.7
## 5 BSED Biology 32 21.5
## 6 BSED English 32 21.6
Data1<-Data%>%
group_by(`Course Taken`)%>%
summarise(Frequency=n(), 'Mean Age' = mean(Age), 'SD of age' = sd(Age) )
Data1
## # A tibble: 6 × 4
## `Course Taken` Frequency `Mean Age` `SD of age`
## <chr> <int> <dbl> <dbl>
## 1 BS Biology 33 21.6 0.751
## 2 BS Civil Engineering 16 21.4 0.727
## 3 BS Electrical Engineering 17 21.6 0.618
## 4 BS Mathematics 33 21.7 0.924
## 5 BSED Biology 32 21.5 0.803
## 6 BSED English 32 21.6 0.878
Data2<-Data%>%
group_by(`Course Taken`)%>%
summarise(Frequency=n(), 'Mean Intrinsic4' = mean(In4), 'Mean Extrinsic3' = mean(Ex3), 'Mean TP3' = mean(TP3), 'Mean CP3' = mean(CP3))
Data2
## # A tibble: 6 × 6
## `Course Taken` Frequency `Mean Intrinsic4` Mean E…¹ Mean …² Mean …³
## <chr> <int> <dbl> <dbl> <dbl> <dbl>
## 1 BS Biology 33 4.94 5.27 3.88 NA
## 2 BS Civil Engineering 16 4.06 5.5 3.31 4.38
## 3 BS Electrical Engineering 17 4.35 5 3.47 3.71
## 4 BS Mathematics 33 4.27 5.39 3.55 3.52
## 5 BSED Biology 32 4.34 5.22 3.25 3.62
## 6 BSED English 32 4.19 5.66 3.91 3.03
## # … with abbreviated variable names ¹`Mean Extrinsic3`, ²`Mean TP3`,
## # ³`Mean CP3`
“1 for”Strongly Disagree” “2” for “Disagree” “3” for “Moderately Disagree” “4” for “Neutral” “5” for “Moderately Agree” “6” for “Agree” “7” for “Strongly Agree”
Data<-Data%>%
mutate(In3=recode(`In3`,
"1" = "Strongly Disagree", "2" ="Disagree", "3" = "Moderately Disagree", "4" = "Neutral", "5"="Moderately Agree", "6" = "Agree", "7" = "Strongly Agree"))%>%
mutate(In4=recode(`In4`,
"1" = "Strongly Disagree", "2" ="Disagree", "3" = "Moderately Disagree", "4" = "Neutral", "5"="Moderately Agree", "6" = "Agree", "7" = "Strongly Agree"))
Data$In1=as.numeric(Data$In1)
Data$In2=as.numeric(Data$In2)
Data$In3=as.numeric(Data$In3)
## Warning: NAs introduced by coercion
Data$In4=as.numeric(Data$In4)
## Warning: NAs introduced by coercion
Data$In5=as.numeric(Data$In5)
Answer: There are no variables from In3 that are strongly agree at the same time moderately disagree in In4.
Answer: There are no variables from In3 that are strongly agree at the same time Neutral in variable In4.