1AS-unitあたりの誤用数 (e_asunit)、誤用を含まないAS-unitの割合 (e_nashi_as_count_wariai)、誤用を含む節数 (e_ari_count)、誤用を含まない節数 (e_nashi_count)を使って分析した。
library(tidyverse)## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.2 ✔ readr 2.1.4
## ✔ forcats 1.0.0 ✔ stringr 1.5.0
## ✔ ggplot2 3.4.2 ✔ tibble 3.2.1
## ✔ lubridate 1.9.2 ✔ tidyr 1.3.0
## ✔ purrr 1.0.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(ggpubr)
library(rstatix)##
## Attaching package: 'rstatix'
##
## The following object is masked from 'package:stats':
##
## filter
library(readxl)
dat <- read_excel("/Users/riku/Library/CloudStorage/Dropbox/zemizemi/paper/caf/data_accuracy/accuracy0525.xlsx", sheet = "Sheet1")
dat$id <- as.factor(dat$id)
dat$trueid <- as.factor(dat$trueid)
dat$task <- ordered(dat$task, levels=c("L","M","H"))
dat$proficiency <- as.factor(dat$proficiency)
dat$proficiency <- ordered(dat$proficiency, levels=c("lower","middle","upper"))bxp <- ggboxplot(
dat, x = "task", y = "e_asunit", add = "jitter",
color = "proficiency", palette = "lancet"
)
bxp + ggtitle("e_asunit")bxp <- ggboxplot(
dat, x = "task", y = "e_nashi_as_count_wariai", add = "jitter",
color = "proficiency", palette = "lancet"
)
bxp + ggtitle("e_nashi_as_count_wariai")bxp <- ggboxplot(
dat, x = "task", y = "e_ari_count", add = "jitter",
color = "proficiency", palette = "lancet"
)
bxp + ggtitle("e_ari_count")bxp <- ggboxplot(
dat, x = "task", y = "e_nashi_count", add = "jitter",
color = "proficiency", palette = "lancet"
)
bxp + ggtitle("e_nashi_count")bxp <- ggboxplot(
dat, x = "task", y = "e_nashi_count_wariai", add = "jitter",
color = "proficiency", palette = "lancet"
)
bxp + ggtitle("e_nashi_count_wariai")dat_MH <- dat %>% filter(task == "M"| task == "H")
dat_MH$task <- ordered(dat_MH$task, levels=c("M","H"))bxp <- ggboxplot(
dat_MH, x = "task", y = "e_asunit", add = "jitter",
color = "proficiency", palette = "lancet"
)
bxp + ggtitle("e_asunit")dat_MH %>%
group_by(task, proficiency) %>%
identify_outliers(e_asunit)## # A tibble: 3 × 11
## task proficiency id trueid e_asunit e_nashi_as_count_wariai e_ari_count
## <ord> <ord> <fct> <fct> <dbl> <dbl> <dbl>
## 1 M upper 9 11 2.25 0.25 4
## 2 H middle 2 3 2.11 0 11
## 3 H middle 24 24 2.5 0 6
## # ℹ 4 more variables: e_nashi_count <dbl>, e_nashi_count_wariai <dbl>,
## # is.outlier <lgl>, is.extreme <lgl>
dat_MH %>%
group_by(task, proficiency) %>%
shapiro_test(e_asunit)## # A tibble: 6 × 5
## task proficiency variable statistic p
## <ord> <ord> <chr> <dbl> <dbl>
## 1 M lower e_asunit 0.899 0.181
## 2 M middle e_asunit 0.871 0.0678
## 3 M upper e_asunit 0.922 0.302
## 4 H lower e_asunit 0.927 0.378
## 5 H middle e_asunit 0.779 0.00542
## 6 H upper e_asunit 0.932 0.402
ggqqplot(dat_MH, "e_asunit", ggtheme = theme_bw()) +
facet_grid(task ~ proficiency)dat_MH %>%
group_by(task) %>%
levene_test(e_asunit ~ proficiency)## # A tibble: 2 × 5
## task df1 df2 statistic p
## <ord> <int> <int> <dbl> <dbl>
## 1 M 2 32 0.831 0.445
## 2 H 2 32 0.863 0.431
#remove trueid 3 24 for extreme outlier
dat_MH_easunit <- dat_MH %>% filter(!(trueid %in% c("3", "24")))res.aov <- anova_test(
data = dat_MH_easunit, dv = e_asunit, wid = trueid,
between = proficiency, within = task
)
get_anova_table(res.aov)## ANOVA Table (type III tests)
##
## Effect DFn DFd F p p<.05 ges
## 1 proficiency 2 30 0.320 0.728000 0.016
## 2 task 1 30 14.135 0.000736 * 0.107
## 3 proficiency:task 2 30 0.670 0.519000 0.011
interaction.plot(x.factor = dat_MH_easunit$task, trace.factor = dat_MH_easunit$proficiency,
response = dat_MH_easunit$e_asunit, fun = mean,
type = "b", legend = TRUE, trace.label = "TASK")前回なかったが、今回 M > H
bxp <- ggboxplot(
dat_MH, x = "task", y = "e_nashi_as_count_wariai", add = "jitter",
color = "proficiency", palette = "lancet"
)
bxp + ggtitle("e_nashi_as_count_wariai")dat_MH %>%
group_by(task, proficiency) %>%
identify_outliers(e_nashi_as_count_wariai)## # A tibble: 2 × 11
## task proficiency id trueid e_asunit e_nashi_as_count_wariai e_ari_count
## <ord> <ord> <fct> <fct> <dbl> <dbl> <dbl>
## 1 M middle 16 15 0 1 0
## 2 M upper 4 6 0 1 0
## # ℹ 4 more variables: e_nashi_count <dbl>, e_nashi_count_wariai <dbl>,
## # is.outlier <lgl>, is.extreme <lgl>
dat_MH %>%
group_by(task, proficiency) %>%
shapiro_test(e_nashi_as_count_wariai)## # A tibble: 6 × 5
## task proficiency variable statistic p
## <ord> <ord> <chr> <dbl> <dbl>
## 1 M lower e_nashi_as_count_wariai 0.885 0.119
## 2 M middle e_nashi_as_count_wariai 0.934 0.423
## 3 M upper e_nashi_as_count_wariai 0.946 0.584
## 4 H lower e_nashi_as_count_wariai 0.918 0.303
## 5 H middle e_nashi_as_count_wariai 0.940 0.498
## 6 H upper e_nashi_as_count_wariai 0.933 0.418
ggqqplot(dat_MH, "e_nashi_as_count_wariai", ggtheme = theme_bw()) +
facet_grid(task ~ proficiency)dat_MH %>%
group_by(task) %>%
levene_test(e_nashi_as_count_wariai ~ proficiency)## # A tibble: 2 × 5
## task df1 df2 statistic p
## <ord> <int> <int> <dbl> <dbl>
## 1 M 2 32 0.153 0.859
## 2 H 2 32 0.777 0.468
res.aov <- anova_test(
data = dat_MH, dv = e_nashi_as_count_wariai, wid = trueid,
between = proficiency, within = task
)
get_anova_table(res.aov)## ANOVA Table (type III tests)
##
## Effect DFn DFd F p p<.05 ges
## 1 proficiency 2 32 0.224 0.801 0.009
## 2 task 1 32 2.842 0.102 0.027
## 3 proficiency:task 2 32 1.183 0.320 0.023
interaction.plot(x.factor = dat_MH$task, trace.factor = dat_MH$proficiency,
response = dat_MH$e_nashi_as_count_wariai, fun = mean,
type = "b", legend = TRUE, trace.label = "TASK")bxp <- ggboxplot(
dat_MH, x = "task", y = "e_ari_count", add = "jitter",
color = "proficiency", palette = "lancet"
)
bxp + ggtitle("e_ari_count")dat_MH %>%
group_by(task, proficiency) %>%
identify_outliers(e_ari_count)## # A tibble: 3 × 11
## task proficiency id trueid e_asunit e_nashi_as_count_wariai e_ari_count
## <ord> <ord> <fct> <fct> <dbl> <dbl> <dbl>
## 1 M upper 4 6 0 1 0
## 2 H lower 21 20 1 0.364 10
## 3 H middle 2 3 2.11 0 11
## # ℹ 4 more variables: e_nashi_count <dbl>, e_nashi_count_wariai <dbl>,
## # is.outlier <lgl>, is.extreme <lgl>
dat_MH %>%
group_by(task, proficiency) %>%
shapiro_test(e_ari_count)## # A tibble: 6 × 5
## task proficiency variable statistic p
## <ord> <ord> <chr> <dbl> <dbl>
## 1 M lower e_ari_count 0.865 0.0674
## 2 M middle e_ari_count 0.956 0.728
## 3 M upper e_ari_count 0.861 0.0505
## 4 H lower e_ari_count 0.828 0.0218
## 5 H middle e_ari_count 0.860 0.0485
## 6 H upper e_ari_count 0.910 0.212
ggqqplot(dat_MH, "e_ari_count", ggtheme = theme_bw()) +
facet_grid(task ~ proficiency)dat_MH %>%
group_by(task) %>%
levene_test(e_ari_count ~ proficiency)## # A tibble: 2 × 5
## task df1 df2 statistic p
## <ord> <int> <int> <dbl> <dbl>
## 1 M 2 32 1.98 0.154
## 2 H 2 32 0.124 0.884
res.aov <- anova_test(
data = dat_MH, dv = e_ari_count, wid = trueid,
between = proficiency, within = task
)
get_anova_table(res.aov)## ANOVA Table (type III tests)
##
## Effect DFn DFd F p p<.05 ges
## 1 proficiency 2 32 0.100 0.905 0.004
## 2 task 1 32 1.158 0.290 0.010
## 3 proficiency:task 2 32 0.062 0.940 0.001
interaction.plot(x.factor = dat_MH$task, trace.factor = dat_MH$proficiency,
response = dat_MH$e_ari_count, fun = mean,
type = "b", legend = TRUE, trace.label = "TASK")bxp <- ggboxplot(
dat_MH, x = "task", y = "e_nashi_count", add = "jitter",
color = "proficiency", palette = "lancet"
)
bxp + ggtitle("e_nashi_count")dat_MH %>%
group_by(task, proficiency) %>%
identify_outliers(e_nashi_count)## # A tibble: 4 × 11
## task proficiency id trueid e_asunit e_nashi_as_count_wariai e_ari_count
## <ord> <ord> <fct> <fct> <dbl> <dbl> <dbl>
## 1 M middle 3 2 0.333 0.667 3
## 2 M middle 10 12 1 0.4 4
## 3 M middle 11 9 0.2 0.8 1
## 4 M middle 15 16 1.25 0.25 4
## # ℹ 4 more variables: e_nashi_count <dbl>, e_nashi_count_wariai <dbl>,
## # is.outlier <lgl>, is.extreme <lgl>
dat_MH %>%
group_by(task, proficiency) %>%
shapiro_test(e_nashi_count)## # A tibble: 6 × 5
## task proficiency variable statistic p
## <ord> <ord> <chr> <dbl> <dbl>
## 1 M lower e_nashi_count 0.868 0.0722
## 2 M middle e_nashi_count 0.886 0.106
## 3 M upper e_nashi_count 0.851 0.0378
## 4 H lower e_nashi_count 0.907 0.223
## 5 H middle e_nashi_count 0.927 0.351
## 6 H upper e_nashi_count 0.929 0.366
ggqqplot(dat_MH, "e_nashi_count", ggtheme = theme_bw()) +
facet_grid(task ~ proficiency)dat_MH %>%
group_by(task) %>%
levene_test(e_nashi_count ~ proficiency)## # A tibble: 2 × 5
## task df1 df2 statistic p
## <ord> <int> <int> <dbl> <dbl>
## 1 M 2 32 4.39 0.0207
## 2 H 2 32 0.832 0.445
res.aov <- anova_test(
data = dat_MH, dv = e_nashi_count, wid = trueid,
between = proficiency, within = task
)
get_anova_table(res.aov)## ANOVA Table (type III tests)
##
## Effect DFn DFd F p p<.05 ges
## 1 proficiency 2 32 3.838 0.032 * 0.150
## 2 task 1 32 3.062 0.090 0.024
## 3 proficiency:task 2 32 1.136 0.334 0.018
interaction.plot(x.factor = dat_MH$task, trace.factor = dat_MH$proficiency,
response = dat_MH$e_nashi_count, fun = mean,
type = "b", legend = TRUE, trace.label = "TASK")dat_MH %>%
pairwise_t_test(
e_nashi_count ~ task,
p.adjust.method = "bonferroni"
)## # A tibble: 1 × 9
## .y. group1 group2 n1 n2 p p.signif p.adj p.adj.signif
## * <chr> <chr> <chr> <int> <int> <dbl> <chr> <dbl> <chr>
## 1 e_nashi_count M H 35 35 0.253 ns 0.253 ns
dat_MH %>%
pairwise_t_test(
e_nashi_count ~ proficiency,
p.adjust.method = "bonferroni"
)## # A tibble: 3 × 9
## .y. group1 group2 n1 n2 p p.signif p.adj p.adj.signif
## * <chr> <chr> <chr> <int> <int> <dbl> <chr> <dbl> <chr>
## 1 e_nashi_count lower middle 22 24 0.494 ns 1 ns
## 2 e_nashi_count lower upper 22 24 0.00225 ** 0.00676 **
## 3 e_nashi_count middle upper 24 24 0.0132 * 0.0397 *
Upper > Lower
Upper > Middle
dat_LM <- dat %>% filter(task == "L"| task == "M")
dat_LM$task <- ordered(dat_LM$task, levels=c("L","M"))bxp <- ggboxplot(
dat_LM, x = "task", y = "e_asunit", add = "jitter",
color = "proficiency", palette = "lancet"
)
bxp + ggtitle("e_asunit")dat_LM %>%
group_by(task, proficiency) %>%
identify_outliers(e_asunit)## # A tibble: 2 × 11
## task proficiency id trueid e_asunit e_nashi_as_count_wariai e_ari_count
## <ord> <ord> <fct> <fct> <dbl> <dbl> <dbl>
## 1 L middle 24 24 3.25 0 8
## 2 M upper 9 11 2.25 0.25 4
## # ℹ 4 more variables: e_nashi_count <dbl>, e_nashi_count_wariai <dbl>,
## # is.outlier <lgl>, is.extreme <lgl>
dat_LM %>%
group_by(task, proficiency) %>%
shapiro_test(e_asunit)## # A tibble: 6 × 5
## task proficiency variable statistic p
## <ord> <ord> <chr> <dbl> <dbl>
## 1 L lower e_asunit 0.972 0.906
## 2 L middle e_asunit 0.816 0.0143
## 3 L upper e_asunit 0.897 0.144
## 4 M lower e_asunit 0.899 0.181
## 5 M middle e_asunit 0.871 0.0678
## 6 M upper e_asunit 0.922 0.302
ggqqplot(dat_LM, "e_asunit", ggtheme = theme_bw()) +
facet_grid(task ~ proficiency)dat_LM %>%
group_by(task) %>%
levene_test(e_asunit ~ proficiency)## # A tibble: 2 × 5
## task df1 df2 statistic p
## <ord> <int> <int> <dbl> <dbl>
## 1 L 2 32 0.942 0.400
## 2 M 2 32 0.831 0.445
# REMOVE outlier
dat_LM_easunit <- dat_LM %>% filter(!(trueid %in% c("11","24")))res.aov <- anova_test(
data = dat_LM_easunit, dv = e_asunit, wid = trueid,
between = proficiency, within = task
)
get_anova_table(res.aov)## ANOVA Table (type II tests)
##
## Effect DFn DFd F p p<.05 ges
## 1 proficiency 2 30 0.336 0.717 0.017000
## 2 task 1 30 0.045 0.833 0.000328
## 3 proficiency:task 2 30 1.324 0.281 0.019000
interaction.plot(x.factor = dat_LM_easunit$task, trace.factor = dat_LM_easunit$proficiency,
response = dat_LM_easunit$e_asunit, fun = mean,
type = "b", legend = TRUE, trace.label = "TASK")bxp <- ggboxplot(
dat_LM, x = "task", y = "e_nashi_as_count_wariai", add = "jitter",
color = "proficiency", palette = "lancet"
)
bxp + ggtitle("e_nashi_as_count_wariai")dat_LM %>%
group_by(task, proficiency) %>%
identify_outliers(e_nashi_as_count_wariai)## # A tibble: 2 × 11
## task proficiency id trueid e_asunit e_nashi_as_count_wariai e_ari_count
## <ord> <ord> <fct> <fct> <dbl> <dbl> <dbl>
## 1 M middle 16 15 0 1 0
## 2 M upper 4 6 0 1 0
## # ℹ 4 more variables: e_nashi_count <dbl>, e_nashi_count_wariai <dbl>,
## # is.outlier <lgl>, is.extreme <lgl>
dat_LM %>%
group_by(task, proficiency) %>%
shapiro_test(e_nashi_as_count_wariai)## # A tibble: 6 × 5
## task proficiency variable statistic p
## <ord> <ord> <chr> <dbl> <dbl>
## 1 L lower e_nashi_as_count_wariai 0.922 0.335
## 2 L middle e_nashi_as_count_wariai 0.986 0.998
## 3 L upper e_nashi_as_count_wariai 0.928 0.362
## 4 M lower e_nashi_as_count_wariai 0.885 0.119
## 5 M middle e_nashi_as_count_wariai 0.934 0.423
## 6 M upper e_nashi_as_count_wariai 0.946 0.584
ggqqplot(dat_LM, "e_nashi_as_count_wariai", ggtheme = theme_bw()) +
facet_grid(task ~ proficiency)dat_LM %>%
group_by(task) %>%
levene_test(e_nashi_as_count_wariai ~ proficiency)## # A tibble: 2 × 5
## task df1 df2 statistic p
## <ord> <int> <int> <dbl> <dbl>
## 1 L 2 32 1.22 0.308
## 2 M 2 32 0.153 0.859
res.aov <- anova_test(
data = dat_LM, dv = e_nashi_as_count_wariai, wid = trueid,
between = proficiency, within = task
)
get_anova_table(res.aov)## ANOVA Table (type III tests)
##
## Effect DFn DFd F p p<.05 ges
## 1 proficiency 2 32 0.206 0.815 0.009
## 2 task 1 32 3.372 0.076 0.028
## 3 proficiency:task 2 32 0.111 0.895 0.002
interaction.plot(x.factor = dat_LM$task, trace.factor = dat_LM$proficiency,
response = dat_LM$e_nashi_as_count_wariai, fun = mean,
type = "b", legend = TRUE, trace.label = "TASK")TASKは有意傾向
bxp <- ggboxplot(
dat_LM, x = "task", y = "e_ari_count", add = "jitter",
color = "proficiency", palette = "lancet"
)
bxp + ggtitle("e_ari_count")dat_LM %>%
group_by(task, proficiency) %>%
identify_outliers(e_ari_count)## # A tibble: 4 × 11
## task proficiency id trueid e_asunit e_nashi_as_count_wariai e_ari_count
## <ord> <ord> <fct> <fct> <dbl> <dbl> <dbl>
## 1 L lower 14 13 0.286 0.714 2
## 2 L lower 30 31 1 0.2 8
## 3 L lower 32 33 0.333 0.667 1
## 4 M upper 4 6 0 1 0
## # ℹ 4 more variables: e_nashi_count <dbl>, e_nashi_count_wariai <dbl>,
## # is.outlier <lgl>, is.extreme <lgl>
dat_LM %>%
group_by(task, proficiency) %>%
shapiro_test(e_ari_count)## # A tibble: 6 × 5
## task proficiency variable statistic p
## <ord> <ord> <chr> <dbl> <dbl>
## 1 L lower e_ari_count 0.923 0.340
## 2 L middle e_ari_count 0.923 0.308
## 3 L upper e_ari_count 0.955 0.708
## 4 M lower e_ari_count 0.865 0.0674
## 5 M middle e_ari_count 0.956 0.728
## 6 M upper e_ari_count 0.861 0.0505
ggqqplot(dat_LM, "e_ari_count", ggtheme = theme_bw()) +
facet_grid(task ~ proficiency)dat_LM %>%
group_by(task) %>%
levene_test(e_ari_count ~ proficiency)## # A tibble: 2 × 5
## task df1 df2 statistic p
## <ord> <int> <int> <dbl> <dbl>
## 1 L 2 32 2.90 0.0695
## 2 M 2 32 1.98 0.154
res.aov <- anova_test(
data = dat_LM, dv = e_ari_count, wid = trueid,
between = proficiency, within = task
)
get_anova_table(res.aov)## ANOVA Table (type III tests)
##
## Effect DFn DFd F p p<.05 ges
## 1 proficiency 2 32 0.098 0.907 0.004
## 2 task 1 32 1.130 0.296 0.011
## 3 proficiency:task 2 32 0.302 0.742 0.006
interaction.plot(x.factor = dat_LM$task, trace.factor = dat_LM$proficiency,
response = dat_LM$e_ari_count, fun = mean,
type = "b", legend = TRUE, trace.label = "TASK")bxp <- ggboxplot(
dat_LM, x = "task", y = "e_nashi_count", add = "jitter",
color = "proficiency", palette = "lancet"
)
bxp + ggtitle("e_nashi_count")dat_LM %>%
group_by(task, proficiency) %>%
identify_outliers(e_nashi_count)## # A tibble: 5 × 11
## task proficiency id trueid e_asunit e_nashi_as_count_wariai e_ari_count
## <ord> <ord> <fct> <fct> <dbl> <dbl> <dbl>
## 1 L upper 1 1 0.333 0.667 3
## 2 M middle 3 2 0.333 0.667 3
## 3 M middle 10 12 1 0.4 4
## 4 M middle 11 9 0.2 0.8 1
## 5 M middle 15 16 1.25 0.25 4
## # ℹ 4 more variables: e_nashi_count <dbl>, e_nashi_count_wariai <dbl>,
## # is.outlier <lgl>, is.extreme <lgl>
dat_LM %>%
group_by(task, proficiency) %>%
shapiro_test(e_nashi_count)## # A tibble: 6 × 5
## task proficiency variable statistic p
## <ord> <ord> <chr> <dbl> <dbl>
## 1 L lower e_nashi_count 0.916 0.289
## 2 L middle e_nashi_count 0.942 0.529
## 3 L upper e_nashi_count 0.864 0.0553
## 4 M lower e_nashi_count 0.868 0.0722
## 5 M middle e_nashi_count 0.886 0.106
## 6 M upper e_nashi_count 0.851 0.0378
ggqqplot(dat_LM, "e_nashi_count", ggtheme = theme_bw()) +
facet_grid(task ~ proficiency)dat_LM %>%
group_by(task) %>%
levene_test(e_nashi_count ~ proficiency)## # A tibble: 2 × 5
## task df1 df2 statistic p
## <ord> <int> <int> <dbl> <dbl>
## 1 L 2 32 1.20 0.313
## 2 M 2 32 4.39 0.0207
res.aov <- anova_test(
data = dat_LM, dv = e_nashi_count, wid = trueid,
between = proficiency, within = task
)
get_anova_table(res.aov)## ANOVA Table (type III tests)
##
## Effect DFn DFd F p p<.05 ges
## 1 proficiency 2 32 3.089 0.059 1.21e-01
## 2 task 1 32 0.003 0.953 3.13e-05
## 3 proficiency:task 2 32 1.729 0.194 3.00e-02
interaction.plot(x.factor = dat_LM$task, trace.factor = dat_LM$proficiency,
response = dat_LM$e_nashi_count, fun = mean,
type = "b", legend = TRUE, trace.label = "TASK")dat_LM %>%
pairwise_t_test(
e_nashi_count ~ task,
p.adjust.method = "bonferroni"
)## # A tibble: 1 × 9
## .y. group1 group2 n1 n2 p p.signif p.adj p.adj.signif
## * <chr> <chr> <chr> <int> <int> <dbl> <chr> <dbl> <chr>
## 1 e_nashi_count L M 35 35 1 ns 1 ns
dat_LM %>%
pairwise_t_test(
e_nashi_count ~ proficiency,
p.adjust.method = "bonferroni"
)## # A tibble: 3 × 9
## .y. group1 group2 n1 n2 p p.signif p.adj p.adj.signif
## * <chr> <chr> <chr> <int> <int> <dbl> <chr> <dbl> <chr>
## 1 e_nashi_count lower middle 22 24 0.309 ns 0.926 ns
## 2 e_nashi_count lower upper 22 24 0.00464 ** 0.0139 *
## 3 e_nashi_count middle upper 24 24 0.0558 ns 0.167 ns
習熟度は有意傾向 p = .059, Upper > Lower
MH, M > H,
MH タスクは有意傾向(p = .102), M < H
LM タスクは有意傾向(p = .076), L < M
MHでは、習熟度が有意、Lower < Upper; Middle < Upper,
LMでは、習熟度が有意傾向(p = .059), Lower < Upper。
内在性負荷が上がると、習熟度に関わらず、1AS-unitあたりの誤用数が少なくなる。
外在性負荷ではそういう変化がない。
内在性負荷が高いタスクがより複雑であるため、参加者がそのタスクに集中し、その結果として誤用数が減少した可能性がある。 外在性負荷と誤用数との間に直接的な関連性はないかも?
外在性・内在性負荷を問わず、習熟度に関わらず、誤用を含まないAS-unitの割合は負荷の高い方が高かくなる。 高負荷タスクでは参加者がより注意深くなり、その結果誤用を含まないAS-unitが増えた。
??シンプルな文を言ってしまう??他の指標との照合が必要。
MHでは、Middle < Upperですが、LMではなかった。
中位群 (middle) は、外在性負荷が上がっても誤用を含まない節数は減らないが、内在性負荷が上がったら、上位群 (upper) に比べて誤用を含まない節数が少なくなる。
習熟度が高い参加者が内在性負荷の高いタスクに対してより適応しているかも。