MODELADO DE BASE DATO

PAQUETES ESTADÍSTICOS

library(openxlsx) 
library(rmarkdown) 
library(tidyverse) 
library(haven) 
library(foreign) 
library(survey) 

GENERAMOS UNA RUTA PARA GUARDAR NUESTROS DATOS

Una ruta hacia una carpeta donde almacenaremos los excel que se elaborarán posteriormente, que contarán con dataset de información construida.

ruta <- "C:/Users/Trabajo/Desktop/RDATA" 

CARGAR BASES DE DATOS Y UNION DE BASES DE DATOS

#choose.files()
#sumaria2018 <- read_spss("C:\\Users\\Trabajo\\Desktop\\ENAHO 2021\\SUMARIA - 759-Modulo34\\Sumaria-2021.sav")
#sumaria2019 <- read_spss("C:\\Users\\Trabajo\\Desktop\\ENAHO 2021\\SUMARIA - 759-Modulo34\\Sumaria-2021.sav")
#sumaria2020 <- read_spss("C:\\Users\\Trabajo\\Desktop\\ENAHO 2021\\SUMARIA - 759-Modulo34\\Sumaria-2021.sav")
#sumaria2021 <- read_spss("C:\\Users\\Trabajo\\Desktop\\ENAHO 2021\\SUMARIA - 759-Modulo34\\Sumaria-2021.sav")
sumaria2022 <- read_spss("C:\\Users\\Trabajo\\Desktop\\ENAHO\\SUMARIA - 759-Modulo34\\Sumaria-2022.sav")

#empleo2018 <- read_spss("C:\\Users\\Trabajo\\Desktop\\ENAHO 2021\\EMPLEO - 759-Modulo05\\Enaho01A-2021-500.sav")
#empleo2019 <- read_spss("C:\\Users\\Trabajo\\Desktop\\ENAHO 2021\\EMPLEO - 759-Modulo05\\Enaho01A-2021-500.sav")
#empleo2020 <- read_spss("C:\\Users\\Trabajo\\Desktop\\ENAHO 2021\\EMPLEO - 759-Modulo05\\Enaho01A-2021-500.sav")
#empleo2021 <- read_spss("C:\\Users\\Trabajo\\Desktop\\ENAHO 2021\\EMPLEO - 759-Modulo05\\Enaho01A-2021-500.sav")
empleo2022 <- read_spss("C:\\Users\\Trabajo\\Desktop\\ENAHO\\EMPLEO - 759-Modulo05\\Enaho01a-2022-500.sav")

#educacion2018 <- read_spss("C:\\Users\\DINDES08\\Desktop\\ENAHO\\2022\\Educacion - 2022 - 784-Modulo03\\Enaho01A-2022-300.sav")
#educacion2019 <- read_spss("C:\\Users\\DINDES08\\Desktop\\ENAHO\\2022\\Educacion - 2022 - 784-Modulo03\\Enaho01A-2022-300.sav")
#educacion2020 <- read_spss("C:\\Users\\DINDES08\\Desktop\\ENAHO\\2022\\Educacion - 2022 - 784-Modulo03\\Enaho01A-2022-300.sav")
#educacion2021 <- read_spss("C:\\Users\\DINDES08\\Desktop\\ENAHO\\2022\\Educacion - 2022 - 784-Modulo03\\Enaho01A-2022-300.sav")
educacion2022 <- read_spss("C:\\Users\\Trabajo\\Desktop\\ENAHO\\EDUACIÓN - 759-Modulo03\\Enaho01A-2022-300.sav")

#alud2018 <- read_dta("C:\\Users\\Trabajo\\Desktop\\ENAHO 2021\\SALUD - 759-Modulo04\\enaho01a-2018-400.dta")
#salud2019 <- read_dta("C:\\Users\\Trabajo\\Desktop\\ENAHO 2021\\SALUD - 759-Modulo04\\enaho01a-2019-400.dta")
#salud2020 <- read_dta("C:\\Users\\Trabajo\\Desktop\\ENAHO 2021\\SALUD - 759-Modulo04\\enaho01a-2020-400.dta")
#salud2021 <- read_dta("C:\\Users\\Trabajo\\Desktop\\ENAHO 2021\\SALUD - 759-Modulo04\\enaho01a-2021-400.dta")
salud2022 <- read_spss("C:\\Users\\Trabajo\\Desktop\\ENAHO\\SALUD - 759-Modulo04\\Enaho01A-2022-400.sav")

educacion2022 <- subset(educacion2022, select = c(CODPERSO,CONGLOME,VIVIENDA,HOGAR,P300A))
salud2022 <- subset(salud2022, select = c(CODPERSO,CONGLOME,VIVIENDA,HOGAR,P401H1,P401H2,P401H3,P401H4,P401H5,P401H6))
sumaria2022 <- subset(sumaria2022, select = c(CONGLOME,VIVIENDA,HOGAR,POBREZA))

enaho0 <- left_join(empleo2022, educacion2022, by=c("CODPERSO","CONGLOME", "VIVIENDA", "HOGAR"))
enaho1 <- left_join(enaho0, salud2022, by=c("CODPERSO","CONGLOME", "VIVIENDA", "HOGAR"))
enaho <- left_join(enaho1,sumaria2022, by =c("CONGLOME","VIVIENDA","HOGAR"))

ELABORACION DE VARIABLES PARA DESAGREGACIONES

VARIABLES TRANSVERSALES

Aquellas variables que nos sirven para realizar las desagregaciones posteriores.

DEPARTAMENTOS

Hay que convertir la variable ubigeo.x (el “.x” es producto de la unión de bases de datos) a numérico para no encontrar problemas al momento de recodificar

enaho$ubigeonum <- as.numeric(enaho$UBIGEO)
enaho <- enaho %>%
  mutate(regiones2 = 
           ifelse(ubigeonum >= 010101 & ubigeonum <= 010707, "Amazonas",
           ifelse(ubigeonum >= 020101 & ubigeonum <= 022008, "Ancash",
           ifelse(ubigeonum >= 030101 & ubigeonum <= 030714, "Apurimac",
           ifelse(ubigeonum >= 040101 & ubigeonum <= 040811, "Arequipa",
           ifelse(ubigeonum >= 050101 & ubigeonum <= 051108, "Ayacucho",
           ifelse(ubigeonum >= 060101 & ubigeonum <= 061311, "Cajamarca",
           ifelse(ubigeonum >= 070101 & ubigeonum <= 070107, "Callao",
           ifelse(ubigeonum >= 080101 & ubigeonum <= 081307, "Cusco",
           ifelse(ubigeonum >= 090101 & ubigeonum <= 090723, "Huancavelica",
           ifelse(ubigeonum >= 100101 & ubigeonum <= 101108, "Huanuco",
           ifelse(ubigeonum >= 110101 & ubigeonum <= 110508, "Ica",
           ifelse(ubigeonum >= 120101 & ubigeonum <= 120909, "Junin",
           ifelse(ubigeonum >= 130101 & ubigeonum <= 131203, "La Libertad",
           ifelse(ubigeonum >= 140101 & ubigeonum <= 140312, "Lambayeque",
           ifelse(ubigeonum >= 150101 & ubigeonum <= 150143, "Lima Metropolitana",
           ifelse(ubigeonum >= 150201 & ubigeonum <= 151033, "Lima Region",
           ifelse(ubigeonum >= 160101 & ubigeonum <= 160804, "Loreto",
           ifelse(ubigeonum >= 170101 & ubigeonum <= 170303, "Madre de Dios",
           ifelse(ubigeonum >= 180101 & ubigeonum <= 180303, "Moquegua",
           ifelse(ubigeonum >= 190101 & ubigeonum <= 190308, "Pasco",
           ifelse(ubigeonum >= 200101 & ubigeonum <= 200806, "Piura",
           ifelse(ubigeonum >= 210101 & ubigeonum <= 211307, "Puno",
           ifelse(ubigeonum >= 220101 & ubigeonum <= 221005, "San Martín",
           ifelse(ubigeonum >= 230101 & ubigeonum <= 230408, "Tacna",
           ifelse(ubigeonum >= 240101 & ubigeonum <= 240304, "Tumbes",
           ifelse(ubigeonum >= 250101 & ubigeonum <= 250401,"Ucayali",NA)))))))))))))))))))))))))))
table(enaho$regiones2, useNA = "alw")
## 
##           Amazonas             Ancash           Apurimac           Arequipa 
##               3126               3578               2313               3942 
##           Ayacucho          Cajamarca             Callao              Cusco 
##               2593               3527               2804               3069 
##       Huancavelica            Huanuco                Ica              Junin 
##               2584               3043               3812               3660 
##        La Libertad         Lambayeque Lima Metropolitana        Lima Region 
##               4065               3991               8548               3678 
##             Loreto      Madre de Dios           Moquegua              Pasco 
##               4108               1437               2291               2131 
##              Piura               Puno         San Martín              Tacna 
##               4447               2667               3569               3221 
##             Tumbes            Ucayali               <NA> 
##               2283               3174                  0

REGIONES NATURALES

enaho <- enaho %>%
  mutate(regnat = ifelse(DOMINIO>=1 & DOMINIO<=3 | DOMINIO==8,"Costa",
                         ifelse(DOMINIO>=4 & DOMINIO<=6,"Sierra",
                                ifelse(DOMINIO==7,"Selva",NA))))
table(enaho$regnat, useNA = "alw")
## 
##  Costa  Selva Sierra   <NA> 
##  38829  18847  29985      0

ÁREA URBANA/RURAL

enaho <- enaho %>%
  mutate(area = ifelse((DOMINIO==8 |
                          (DOMINIO>=1 & DOMINIO<=7) &
                          (ESTRATO>=1 & ESTRATO<=5)), "Urbano",
                       ifelse(((DOMINIO>=1 & DOMINIO<=7) &
                                 (ESTRATO>=6 & ESTRATO<=8)), "Rural", NA)))
table(enaho$area, useNA = "alw")
## 
##  Rural Urbano   <NA> 
##  28845  58816      0

CONDICIÓN DE POBREZA

enaho <- enaho %>%
  mutate(pobreza3 = ifelse(POBREZA==1, "Pobre extremo",
                           ifelse(POBREZA==2, "Pobre no extremo",
                                  ifelse(POBREZA==3, "No pobre", NA
                                  ))))
table(enaho$pobreza3, useNA = "alw")
## 
##         No pobre    Pobre extremo Pobre no extremo             <NA> 
##            67956             4159            15546                0

LENGUA MATERNA

enaho <- enaho %>%
  mutate(lengua = ifelse(P300A==4, "Castellano",
                         ifelse(P300A==1 | P300A==2 | P300A==3, "Originaria", NA)))

enaho$lengua <- as.factor(enaho$lengua)
table(enaho$lengua, useNA = "alw")
## 
## Castellano Originaria       <NA> 
##      68370      17789       1502

DISCAPACIDAD

enaho <- enaho %>%
  mutate(discapacidad =ifelse(P401H1==1|P401H2==1|P401H3==1|
                                P401H4==1|P401H5==1|P401H6==1,1,0))
table(enaho$discapacidad, useNA = "alw")
## 
##     0     1  <NA> 
## 82328  5266    67

ETNICIDAD

table(enaho$P558C, useNA = "alw")
## 
##     1     2     3     4     5     6     7     8     9  <NA> 
## 21160  2883  1883  6047  3701 44600  3626  3517   117   127
enaho <- enaho %>%
  mutate(defiet2 = case_when(
    P558C == 1 ~ "Quechua",
    P558C == 2 ~ "Aimara",
    P558C == 3 ~ "Nativo o indigena de la Amazonia",
    P558C == 4 ~ "Negro/Moreno/Zambo/Mulato/Pueblo Afro peruano o Afrodescendiente",
    P558C == 5 ~ "Blanco",
    P558C == 6 ~ "Mestizo",
    P558C == 7 ~ "otro",
    P558C == 8 ~ "No sabe/No responde",
    P558C == 9 ~ "Nativo o indigena de la Amazonia",
    TRUE ~ NA_character_
  ))
enaho$defiet2 <- as.factor(enaho$defiet2)
table(enaho$defiet2, useNA = "alw")
## 
##                                                           Aimara 
##                                                             2883 
##                                                           Blanco 
##                                                             3701 
##                                                          Mestizo 
##                                                            44600 
##                                 Nativo o indigena de la Amazonia 
##                                                             2000 
## Negro/Moreno/Zambo/Mulato/Pueblo Afro peruano o Afrodescendiente 
##                                                             6047 
##                                              No sabe/No responde 
##                                                             3517 
##                                                             otro 
##                                                             3626 
##                                                          Quechua 
##                                                            21160 
##                                                             <NA> 
##                                                              127

VARIABLES INDICADOR

VARIABLE RESIDENTE

table(enaho$P204)
## 
##     1     2 
## 87156   505
enaho <- enaho %>%
  mutate(res = ifelse((P204==1 & P205==2)|(P204==2 & P206==1),"Residente","No residente"))
enaho$res <- as.factor(enaho$res)
table(enaho$res, useNA = "alw")
## 
## No residente    Residente         <NA> 
##         1390        86271            0

VARIABLE PEA

enaho <- enaho %>%
  mutate(pea = ifelse(P208A>=14 & res=="Residente" & (OCU500==1 | OCU500==2),"PEA","NO PEA"))
enaho$pea <- as.factor(enaho$pea)
table(enaho$pea, useNA = "alw")
## 
## NO PEA    PEA   <NA> 
##  25294  62367      0

VARIABLE OCUPADOS

enaho <- enaho %>%
  mutate(ocupado = ifelse(P208A>=14 & P208A<=98 & res=="Residente" & OCU500==1,"Ocupado","No Ocupado"))
enaho$ocupado <- as.factor(enaho$ocupado)
table(enaho$ocupado, useNA = "alw")
## 
## No Ocupado    Ocupado       <NA> 
##      27221      60440          0
enaho$resid14 <- 
  ifelse(((enaho$P204==1 & enaho$P205==2)|(enaho$P204==2 & enaho$P206==1)) & enaho$P208A>=14 & enaho$CODINFOR != "00", 1, 0)
table(enaho$resid14, useNA = "alw")
## 
##     0     1  <NA> 
##  1513 86148     0

VARIABLE: OCUPADO FORMAL

#OCUPADO FORMAL
enaho <- enaho %>% 
  mutate (ocuformal = ifelse(OCUPINF==2 & resid14==1,1,0))
table(enaho$ocuformal, useNA = "alw")
## 
##     0     1  <NA> 
## 49265 12688 25708
enaho_filtrado <- enaho %>% 
  filter(P208A >= 15 & P208A <= 29)

table(enaho_filtrado$ocuformal, enaho_filtrado$pea)
##    
##     NO PEA   PEA
##   0    742 11897
##   1      0  2161

PONDERACIÓN DE DATOS, DATASETS Y TRASLADO A EXCEL

DISEÑO MUESTRAL

encuesta = svydesign(data=enaho_filtrado, id=~CONGLOME, strata=~ESTRATO,
                     weights=~FAC500A)

DESAGREGACIÓN NACIONAL

tabla0 <- svyby(~ocuformal, ~pea, encuesta, svymean, deff=F,na.rm=T) #PROMEDIO
tabla0
ic0 <-as.table(confint(tabla0)) #INTERVALOS DE CONFIANZA
ic0
##            2.5 %    97.5 %
## NO PEA 0.0000000 0.0000000
## PEA    0.1811692 0.2039100
cv0 <-cv(tabla0) #COEFICIENTE DE VARIACIÓN
cv0
##     NO PEA        PEA 
##        NaN 0.03013061
workbook0 <- createWorkbook()
addWorksheet(workbook0, sheetName = "Tabla 0")
addWorksheet(workbook0, sheetName = "IC 0")
addWorksheet(workbook0, sheetName = "CV 0")

writeData(workbook0, sheet = "Tabla 0", x = tabla0, colNames = TRUE)
writeData(workbook0, sheet = "IC 0", x = ic0, colNames = TRUE)
writeData(workbook0, sheet = "CV 0", x = cv0, colNames = TRUE)

saveWorkbook(workbook0, "datos0.xlsx")

DESAGREGACIÓN SEGÚN SEXO

tabla1 <- svyby(~ocuformal, ~pea+P207, encuesta, svymean, deff=F,na.rm=T) #PROMEDIO
tabla1
ic1 <-as.table(confint(tabla1)) #INTERVALOS DE CONFIANZA
ic1
##              2.5 %    97.5 %
## NO PEA.1 0.0000000 0.0000000
## PEA.1    0.1889842 0.2191531
## NO PEA.2 0.0000000 0.0000000
## PEA.2    0.1613823 0.1926838
cv1 <-cv(tabla1) #COEFICIENTE DE VARIACIÓN
cv1
##   NO PEA.1      PEA.1   NO PEA.2      PEA.2 
##        NaN 0.03771411        NaN 0.04510588
workbook1 <- createWorkbook()
addWorksheet(workbook1, sheetName = "Tabla 1")
addWorksheet(workbook1, sheetName = "IC 1")
addWorksheet(workbook1, sheetName = "CV 1")

writeData(workbook1, sheet = "Tabla 1", x = tabla1, colNames = TRUE)
writeData(workbook1, sheet = "IC 1", x = ic1, colNames = TRUE)
writeData(workbook1, sheet = "CV 1", x = cv1, colNames = TRUE)

saveWorkbook(workbook1, "datos1.xlsx")

DESAGREGACIÓN SEGÚN ÁREA DE DOMICILIO (RURAL / URBANA)

tabla2 <- svyby(~ocuformal, ~pea+area, encuesta, svymean, deff=F,na.rm=T) #PROMEDIO
tabla2
ic2 <-as.table(confint(tabla2)) #INTERVALOS DE CONFIANZA
ic2
##                    2.5 %     97.5 %
## NO PEA.Rural  0.00000000 0.00000000
## PEA.Rural     0.03210907 0.04732532
## NO PEA.Urbano 0.00000000 0.00000000
## PEA.Urbano    0.22271352 0.25102552
cv2 <-cv(tabla2) #COEFICIENTE DE VARIACIÓN
cv2
##  NO PEA.Rural     PEA.Rural NO PEA.Urbano    PEA.Urbano 
##           NaN    0.09773521           NaN    0.03049182
workbook2 <- createWorkbook()
addWorksheet(workbook2, sheetName = "Tabla 2")
addWorksheet(workbook2, sheetName = "IC 2")
addWorksheet(workbook2, sheetName = "CV 2")

writeData(workbook2, sheet = "Tabla 2", x = tabla2, colNames = TRUE)
writeData(workbook2, sheet = "IC 2", x = ic2, colNames = TRUE)
writeData(workbook2, sheet = "CV 2", x = cv2, colNames = TRUE)

saveWorkbook(workbook2, "datos2.xlsx")

DESAGREGACIÓN SEGUN REGIÓN NATURAL (COSTA, SIERRA, SELVA)

tabla3 <- svyby(~ocuformal, ~pea+regnat, encuesta, svymean, deff=F,na.rm=T) #PROMEDIO
tabla3
ic3 <-as.table(confint(tabla3)) #INTERVALOS DE CONFIANZA
ic3
##                    2.5 %     97.5 %
## NO PEA.Costa  0.00000000 0.00000000
## PEA.Costa     0.25695698 0.29315250
## NO PEA.Selva  0.00000000 0.00000000
## PEA.Selva     0.06257920 0.08898577
## NO PEA.Sierra 0.00000000 0.00000000
## PEA.Sierra    0.08652413 0.11372469
cv3 <-cv(tabla3) #COEFICIENTE DE VARIACIÓN
cv3
##  NO PEA.Costa     PEA.Costa  NO PEA.Selva     PEA.Selva NO PEA.Sierra 
##           NaN    0.03357048           NaN    0.08889250           NaN 
##    PEA.Sierra 
##    0.06930424
workbook3 <- createWorkbook()
addWorksheet(workbook3, sheetName = "Tabla 3")
addWorksheet(workbook3, sheetName = "IC 3")
addWorksheet(workbook3, sheetName = "CV 3")

writeData(workbook3, sheet = "Tabla 3", x = tabla3, colNames = TRUE)
writeData(workbook3, sheet = "IC 3", x = ic3, colNames = TRUE)
writeData(workbook3, sheet = "CV 3", x = cv3, colNames = TRUE)

saveWorkbook(workbook3, "datos3.xlsx")

DESAGREGACIÓN SEGÚN DEPARTAMENTOS

tabla4 <- svyby(~ocuformal, ~pea+regiones2, encuesta, svymean, deff=F,na.rm=T) #PROMEDIO
tabla4
ic4 <-as.table(confint(tabla4)) #INTERVALOS DE CONFIANZA
ic4
##                                2.5 %     97.5 %
## NO PEA.Amazonas           0.00000000 0.00000000
## PEA.Amazonas              0.02503783 0.06877547
## NO PEA.Ancash             0.00000000 0.00000000
## PEA.Ancash                0.08354910 0.14925548
## NO PEA.Apurimac           0.00000000 0.00000000
## PEA.Apurimac              0.02464545 0.10826618
## NO PEA.Arequipa           0.00000000 0.00000000
## PEA.Arequipa              0.21834322 0.30573371
## NO PEA.Ayacucho           0.00000000 0.00000000
## PEA.Ayacucho              0.01791013 0.06787981
## NO PEA.Cajamarca          0.00000000 0.00000000
## PEA.Cajamarca             0.04452036 0.11499756
## NO PEA.Callao             0.00000000 0.00000000
## PEA.Callao                0.29388138 0.41420317
## NO PEA.Cusco              0.00000000 0.00000000
## PEA.Cusco                 0.04538679 0.11794425
## NO PEA.Huancavelica       0.00000000 0.00000000
## PEA.Huancavelica          0.02238264 0.07093504
## NO PEA.Huanuco            0.00000000 0.00000000
## PEA.Huanuco               0.03789212 0.10090086
## NO PEA.Ica                0.00000000 0.00000000
## PEA.Ica                   0.25061326 0.32815212
## NO PEA.Junin              0.00000000 0.00000000
## PEA.Junin                 0.07400599 0.13861233
## NO PEA.La Libertad        0.00000000 0.00000000
## PEA.La Libertad           0.20324622 0.28601140
## NO PEA.Lambayeque         0.00000000 0.00000000
## PEA.Lambayeque            0.14330469 0.20761910
## NO PEA.Lima Metropolitana 0.00000000 0.00000000
## PEA.Lima Metropolitana    0.28417673 0.34739766
## NO PEA.Lima Region        0.00000000 0.00000000
## PEA.Lima Region           0.11849091 0.19531406
## NO PEA.Loreto             0.00000000 0.00000000
## PEA.Loreto                0.06073816 0.12628864
## NO PEA.Madre de Dios      0.00000000 0.00000000
## PEA.Madre de Dios         0.05215094 0.17090157
## NO PEA.Moquegua           0.00000000 0.00000000
## PEA.Moquegua              0.13436795 0.24341178
## NO PEA.Pasco              0.00000000 0.00000000
## PEA.Pasco                 0.11484848 0.22286317
## NO PEA.Piura              0.00000000 0.00000000
## PEA.Piura                 0.13946031 0.20751589
## NO PEA.Puno               0.00000000 0.00000000
## PEA.Puno                  0.03520992 0.12473184
## NO PEA.San Martín         0.00000000 0.00000000
## PEA.San Martín            0.04952275 0.10449950
## NO PEA.Tacna              0.00000000 0.00000000
## PEA.Tacna                 0.12782452 0.24864441
## NO PEA.Tumbes             0.00000000 0.00000000
## PEA.Tumbes                0.16248891 0.27521538
## NO PEA.Ucayali            0.00000000 0.00000000
## PEA.Ucayali               0.05271800 0.11316667
cv4 <-cv(tabla4) #COEFICIENTE DE VARIACIÓN
cv4
##           NO PEA.Amazonas              PEA.Amazonas             NO PEA.Ancash 
##                       NaN                0.23787176                       NaN 
##                PEA.Ancash           NO PEA.Apurimac              PEA.Apurimac 
##                0.14400181                       NaN                0.32099840 
##           NO PEA.Arequipa              PEA.Arequipa           NO PEA.Ayacucho 
##                       NaN                0.08507874                       NaN 
##              PEA.Ayacucho          NO PEA.Cajamarca             PEA.Cajamarca 
##                0.29718169                       NaN                0.22541929 
##             NO PEA.Callao                PEA.Callao              NO PEA.Cusco 
##                       NaN                0.08669840                       NaN 
##                 PEA.Cusco       NO PEA.Huancavelica          PEA.Huancavelica 
##                0.22665498                       NaN                0.26545979 
##            NO PEA.Huanuco               PEA.Huanuco                NO PEA.Ica 
##                       NaN                0.23162486                       NaN 
##                   PEA.Ica              NO PEA.Junin                 PEA.Junin 
##                0.06835476                       NaN                0.15503380 
##        NO PEA.La Libertad           PEA.La Libertad         NO PEA.Lambayeque 
##                       NaN                0.08631017                       NaN 
##            PEA.Lambayeque NO PEA.Lima Metropolitana    PEA.Lima Metropolitana 
##                0.09350770                       NaN                0.05107263 
##        NO PEA.Lima Region           PEA.Lima Region             NO PEA.Loreto 
##                       NaN                0.12490626                       NaN 
##                PEA.Loreto      NO PEA.Madre de Dios         PEA.Madre de Dios 
##                0.17882322                       NaN                0.27163185 
##           NO PEA.Moquegua              PEA.Moquegua              NO PEA.Pasco 
##                       NaN                0.14727002                       NaN 
##                 PEA.Pasco              NO PEA.Piura                 PEA.Piura 
##                0.16318818                       NaN                0.10007278 
##               NO PEA.Puno                  PEA.Puno         NO PEA.San Martín 
##                       NaN                0.28557451                       NaN 
##            PEA.San Martín              NO PEA.Tacna                 PEA.Tacna 
##                0.18211576                       NaN                0.16374242 
##             NO PEA.Tumbes                PEA.Tumbes            NO PEA.Ucayali 
##                       NaN                0.13140050                       NaN 
##               PEA.Ucayali 
##                0.18592271
workbook4 <- createWorkbook()
addWorksheet(workbook4, sheetName = "Tabla 4")
addWorksheet(workbook4, sheetName = "IC 4")
addWorksheet(workbook4, sheetName = "CV 4")

writeData(workbook4, sheet = "Tabla 4", x = tabla4, colNames = TRUE)
writeData(workbook4, sheet = "IC 4", x = ic4, colNames = TRUE)
writeData(workbook4, sheet = "CV 4", x = cv4, colNames = TRUE)

saveWorkbook(workbook4, "datos4.xlsx")

DESAGREGACIÓN SEGUN CONDICIÓN DE POBREZA

tabla5 <- svyby(~ocuformal, ~pea+pobreza3, encuesta, svymean, deff=F,na.rm=T) #PROMEDIO
tabla5
ic5 <-as.table(confint(tabla5)) #INTERVALOS DE CONFIANZA
ic5
##                               2.5 %      97.5 %
## NO PEA.No pobre         0.000000000 0.000000000
## PEA.No pobre            0.210382755 0.237740686
## NO PEA.Pobre extremo    0.000000000 0.000000000
## PEA.Pobre extremo       0.009078157 0.073882126
## NO PEA.Pobre no extremo 0.000000000 0.000000000
## PEA.Pobre no extremo    0.083162447 0.124045009
cv5 <-cv(tabla5) #COEFICIENTE DE VARIACIÓN
cv5
##         NO PEA.No pobre            PEA.No pobre    NO PEA.Pobre extremo 
##                     NaN              0.03114853                     NaN 
##       PEA.Pobre extremo NO PEA.Pobre no extremo    PEA.Pobre no extremo 
##              0.39855044                     NaN              0.10066642
workbook5 <- createWorkbook()
addWorksheet(workbook5, sheetName = "Tabla 5")
addWorksheet(workbook5, sheetName = "IC 5")
addWorksheet(workbook5, sheetName = "CV 5")

writeData(workbook5, sheet = "Tabla 5", x = tabla5, colNames = TRUE)
writeData(workbook5, sheet = "IC 5", x = ic5, colNames = TRUE)
writeData(workbook5, sheet = "CV 5", x = cv5, colNames = TRUE)

saveWorkbook(workbook5, "datos5.xlsx")

DESAGREGACIÓN SEGUN DISCAPACIDAD

tabla6 <- svyby(~ocuformal, ~pea+discapacidad, encuesta, svymean, deff=F,na.rm=T) #PROMEDIO 
tabla6
ic6 <-as.table(confint(tabla6)) #INTERVALOS DE CONFIANZA 
ic6
##               2.5 %     97.5 %
## NO PEA.0 0.00000000 0.00000000
## PEA.0    0.18237292 0.20519494
## NO PEA.1 0.00000000 0.00000000
## PEA.1    0.02129504 0.17925656
cv6<-cv(tabla6) #COEFICIENTE DE VARIACIÓN 
cv6
##   NO PEA.0      PEA.0   NO PEA.1      PEA.1 
##        NaN 0.03004405        NaN 0.40186212
workbook6 <- createWorkbook() 
addWorksheet(workbook6, sheetName = "Tabla 6") 
addWorksheet(workbook6, sheetName = "IC 6") 
addWorksheet(workbook6, sheetName = "CV 6") 

writeData(workbook6, sheet = "Tabla 6", x = tabla6, colNames = TRUE) 
writeData(workbook6, sheet = "IC 6", x = ic6, colNames = TRUE) 
writeData(workbook6, sheet = "CV 6", x = cv6, colNames = TRUE) 

saveWorkbook(workbook6, "datos6.xlsx") 

DESAGREGACIÓN SEGÚN ETNICIDAD

tabla7 <- svyby(~ocuformal, ~pea+defiet2, encuesta, svymean, deff=F,na.rm=T) #PROMEDIO
tabla7 
ic7 <-as.table(confint(tabla7)) #INTERVALOS DE CONFIANZA 
ic7 
##                                                                              2.5 %
## NO PEA.Aimara                                                           0.00000000
## PEA.Aimara                                                              0.02645257
## NO PEA.Blanco                                                           0.00000000
## PEA.Blanco                                                              0.12829054
## NO PEA.Mestizo                                                          0.00000000
## PEA.Mestizo                                                             0.22606636
## NO PEA.Nativo o indigena de la Amazonia                                 0.00000000
## PEA.Nativo o indigena de la Amazonia                                    0.02114774
## NO PEA.Negro/Moreno/Zambo/Mulato/Pueblo Afro peruano o Afrodescendiente 0.00000000
## PEA.Negro/Moreno/Zambo/Mulato/Pueblo Afro peruano o Afrodescendiente    0.14283458
## NO PEA.No sabe/No responde                                              0.00000000
## PEA.No sabe/No responde                                                 0.14268243
## NO PEA.otro                                                             0.00000000
## PEA.otro                                                                0.14217887
## NO PEA.Quechua                                                          0.00000000
## PEA.Quechua                                                             0.08536508
##                                                                             97.5 %
## NO PEA.Aimara                                                           0.00000000
## PEA.Aimara                                                              0.07778123
## NO PEA.Blanco                                                           0.00000000
## PEA.Blanco                                                              0.22382648
## NO PEA.Mestizo                                                          0.00000000
## PEA.Mestizo                                                             0.25846592
## NO PEA.Nativo o indigena de la Amazonia                                 0.00000000
## PEA.Nativo o indigena de la Amazonia                                    0.08636131
## NO PEA.Negro/Moreno/Zambo/Mulato/Pueblo Afro peruano o Afrodescendiente 0.00000000
## PEA.Negro/Moreno/Zambo/Mulato/Pueblo Afro peruano o Afrodescendiente    0.21425817
## NO PEA.No sabe/No responde                                              0.00000000
## PEA.No sabe/No responde                                                 0.27399386
## NO PEA.otro                                                             0.00000000
## PEA.otro                                                                0.24977301
## NO PEA.Quechua                                                          0.00000000
## PEA.Quechua                                                             0.12160816
cv7 <-cv(tabla7) #COEFICIENTE DE VARIACIÓN 
cv7 
##                                                           NO PEA.Aimara 
##                                                                     NaN 
##                                                              PEA.Aimara 
##                                                              0.25124838 
##                                                           NO PEA.Blanco 
##                                                                     NaN 
##                                                              PEA.Blanco 
##                                                              0.13843047 
##                                                          NO PEA.Mestizo 
##                                                                     NaN 
##                                                             PEA.Mestizo 
##                                                              0.03411680 
##                                 NO PEA.Nativo o indigena de la Amazonia 
##                                                                     NaN 
##                                    PEA.Nativo o indigena de la Amazonia 
##                                                              0.30948877 
## NO PEA.Negro/Moreno/Zambo/Mulato/Pueblo Afro peruano o Afrodescendiente 
##                                                                     NaN 
##    PEA.Negro/Moreno/Zambo/Mulato/Pueblo Afro peruano o Afrodescendiente 
##                                                              0.10204990 
##                                              NO PEA.No sabe/No responde 
##                                                                     NaN 
##                                                 PEA.No sabe/No responde 
##                                                              0.16078874 
##                                                             NO PEA.otro 
##                                                                     NaN 
##                                                                PEA.otro 
##                                                              0.14005796 
##                                                          NO PEA.Quechua 
##                                                                     NaN 
##                                                             PEA.Quechua 
##                                                              0.08934347
workbook7 <- createWorkbook() 
addWorksheet(workbook7, sheetName = "Tabla 7")
addWorksheet(workbook7, sheetName = "IC 7")
addWorksheet(workbook7, sheetName = "CV 7")

writeData(workbook7, sheet = "Tabla 7", x = tabla7, colNames = TRUE)
writeData(workbook7, sheet = "IC 7", x = ic7, colNames = TRUE)
writeData(workbook7, sheet = "CV 7", x = cv7, colNames = TRUE)

saveWorkbook(workbook7, "datos7.xlsx")

DESAGREGACION SEGÚN LENGUA MATERNA

tabla8 <- svyby(~ocuformal, ~pea+lengua, encuesta, svymean, deff=F,na.rm=T) #PROMEDIO
tabla8 
ic8 <-as.table(confint(tabla8)) #INTERVALOS DE CONFIANZA 
ic8 
##                        2.5 %     97.5 %
## NO PEA.Castellano 0.00000000 0.00000000
## PEA.Castellano    0.19860492 0.22369394
## NO PEA.Originaria 0.00000000 0.00000000
## PEA.Originaria    0.04364522 0.07544459
cv8 <-cv(tabla8) #COEFICIENTE DE VARIACIÓN 
cv8 
## NO PEA.Castellano    PEA.Castellano NO PEA.Originaria    PEA.Originaria 
##               NaN        0.03031207               NaN        0.13623721
workbook8 <- createWorkbook() 
addWorksheet(workbook8, sheetName = "Tabla 8")
addWorksheet(workbook8, sheetName = "IC 8")
addWorksheet(workbook8, sheetName = "CV 8")

writeData(workbook8, sheet = "Tabla 8", x = tabla8, colNames = TRUE)
writeData(workbook8, sheet = "IC 8", x = ic8, colNames = TRUE)
writeData(workbook8, sheet = "CV 8", x = cv8, colNames = TRUE)

saveWorkbook(workbook8, "datos8.xlsx")

GUARDAR BD - opcional

#save(enaho,file=paste(ruta,"BASEDEDATOSIndicador1ENDES.RData",sep = "/")) 
#BORRAMOS TODO MENOS "RUTA" 
#rm(list=setdiff(ls(), c("ruta"))) 
#VOLVEMOS A CARGAR NUESTRA BD LIMPIA 
#load(paste(ruta,"BASEDEDATOSIndicador1ENDES.RData",sep="/"))