Setting up RMarkdown when opening it enables you to create dynamic, reproducible, and visually appealing reports, presentations, and documents, that can help you communicate your data analysis and research findings more effectively.
5+7
[1] 12
5+9
[1] 14
8-6
[1] 2
exp(8)
[1] 2980.958
1:50#in ascending order
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
[26] 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
50:1#in descending order
[1] 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26
[26] 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
5*5:50
[1] 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115
[20] 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210
[39] 215 220 225 230 235 240 245 250
2*1:50
[1] 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
[20] 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76
[39] 78 80 82 84 86 88 90 92 94 96 98 100
50:2*3i
[1] 0+150i 0+147i 0+144i 0+141i 0+138i 0+135i 0+132i 0+129i 0+126i 0+123i
[11] 0+120i 0+117i 0+114i 0+111i 0+108i 0+105i 0+102i 0+ 99i 0+ 96i 0+ 93i
[21] 0+ 90i 0+ 87i 0+ 84i 0+ 81i 0+ 78i 0+ 75i 0+ 72i 0+ 69i 0+ 66i 0+ 63i
[31] 0+ 60i 0+ 57i 0+ 54i 0+ 51i 0+ 48i 0+ 45i 0+ 42i 0+ 39i 0+ 36i 0+ 33i
[41] 0+ 30i 0+ 27i 0+ 24i 0+ 21i 0+ 18i 0+ 15i 0+ 12i 0+ 9i 0+ 6i
z<-2+3i
z
[1] 2+3i
N<-3i
N
[1] 0+3i
M<-2i+5i
M
[1] 0+7i
is.complex(z)
[1] TRUE
is.complex(N)
[1] TRUE
is.complex(M)
[1] TRUE
sqrt(9)
[1] 3
sqrt(81)
[1] 9
sqrt(144)
[1] 12
820^2
[1] 672400
25^2
[1] 625
x1=c(4,6,9,11)
x2=c(33,12,98,50)
var(x1)
[1] 9.666667
var(x2)
[1] 1341.583
cov(x1,x2)
[1] 62.83333
cor(x1,x2)
[1] 0.5517507
mean(x1+x2)
[1] 55.75
X<-cbind(x1,x2)
X
x1 x2
[1,] 4 33
[2,] 6 12
[3,] 9 98
[4,] 11 50
var(X)
x1 x2
x1 9.666667 62.83333
x2 62.833333 1341.58333
cor(X)
x1 x2
x1 1.0000000 0.5517507
x2 0.5517507 1.0000000
cov(X)
x1 x2
x1 9.666667 62.83333
x2 62.833333 1341.58333
x=c(88,52,69,23,14,25)
z=c(120,150,200,128,415,800)
y=c(20,30,40,50,60,70)
B<- data.frame(x,y,z)
head (B,5)
x y z
1 88 20 120
2 52 30 150
3 69 40 200
4 23 50 128
5 14 60 415
library(stargazer)
stargazer (var(B), type="text")
=============================
x y z
-----------------------------
x 863.767 -475 -4,194.633
y -475 350 4,123
z -4,194.633 4,123 71,536.170
-----------------------------
stargazer(cov(B), type = "text")
=============================
x y z
-----------------------------
x 863.767 -475 -4,194.633
y -475 350 4,123
z -4,194.633 4,123 71,536.170
-----------------------------
stargazer(cor(B), type = "text")
======================
x y z
----------------------
x 1 -0.864 -0.534
y -0.864 1 0.824
z -0.534 0.824 1
----------------------
Age<-c(19,25,27,30,22,23,24,26,25,30,25,26,36,21,25,29)
gender<-gl(2,8,labels=c("male","female"))
GA<-data.frame(Age,gender)
head(GA,5)
Age gender
1 19 male
2 25 male
3 27 male
4 30 male
5 22 male
t.test(Age~gender)
Welch Two Sample t-test
data: Age by gender
t = -1.3218, df = 12.888, p-value = 0.2092
alternative hypothesis: true difference in means between group male and group female is not equal to 0
95 percent confidence interval:
-6.919281 1.669281
sample estimates:
mean in group male mean in group female
24.500 27.125
score<-c(50,65,72,77,73,85,88,80,65,56,66,78,82,90)
t.test(score,mu=75)
One Sample t-test
data: score
t = -0.51906, df = 13, p-value = 0.6124
alternative hypothesis: true mean is not equal to 75
95 percent confidence interval:
66.51943 80.19486
sample estimates:
mean of x
73.35714
t.test(score,mu=60)
One Sample t-test
data: score
t = 4.2202, df = 13, p-value = 0.001001
alternative hypothesis: true mean is not equal to 60
95 percent confidence interval:
66.51943 80.19486
sample estimates:
mean of x
73.35714
t.test(score,mu=75,alternative="greater",conf.level=0.99)
One Sample t-test
data: score
t = -0.51906, df = 13, p-value = 0.6938
alternative hypothesis: true mean is greater than 75
99 percent confidence interval:
64.96873 Inf
sample estimates:
mean of x
73.35714
t.test(score,mu=75,alternative="l",conf.level=0.99)
One Sample t-test
data: score
t = -0.51906, df = 13, p-value = 0.3062
alternative hypothesis: true mean is less than 75
99 percent confidence interval:
-Inf 81.74555
sample estimates:
mean of x
73.35714
t.test(score,mu=75, conf.level=0.99)
One Sample t-test
data: score
t = -0.51906, df = 13, p-value = 0.6124
alternative hypothesis: true mean is not equal to 75
99 percent confidence interval:
63.82308 82.89120
sample estimates:
mean of x
73.35714
t.test(score,mu=75,alternative="two.sided",conf.level=0.99)
One Sample t-test
data: score
t = -0.51906, df = 13, p-value = 0.6124
alternative hypothesis: true mean is not equal to 75
99 percent confidence interval:
63.82308 82.89120
sample estimates:
mean of x
73.35714
shapiro.test(score)
Shapiro-Wilk normality test
data: score
W = 0.96172, p-value = 0.7513
wilcox.test(score, mu=75)
Wilcoxon signed rank test with continuity correction
data: score
V = 48, p-value = 0.8014
alternative hypothesis: true location is not equal to 75
wilcox.test(score, mu=75,alternative ="less", paired = FALSE, exact = TRUE, correct = TRUE)
Wilcoxon signed rank test with continuity correction
data: score
V = 48, p-value = 0.4007
alternative hypothesis: true location is less than 75
weight<-c(135,180,108,128,160,143,175,170,205,195,185,150,175,190,180,220)
gender<-gl(2,8,labels=c("male","female"))
paired_t_test<-data.frame(weight,gender)
head(paired_t_test,5)
weight gender
1 135 male
2 180 male
3 108 male
4 128 male
5 160 male
t.test(weight~gender)
Welch Two Sample t-test
data: weight by gender
t = -3.2304, df = 13.477, p-value = 0.006308
alternative hypothesis: true difference in means between group male and group female is not equal to 0
95 percent confidence interval:
-62.69717 -12.55283
sample estimates:
mean in group male mean in group female
149.875 187.500
t.test(weight~gender,var.equal=T)
Two Sample t-test
data: weight by gender
t = -3.2304, df = 14, p-value = 0.006044
alternative hypothesis: true difference in means between group male and group female is not equal to 0
95 percent confidence interval:
-62.60587 -12.64413
sample estimates:
mean in group male mean in group female
149.875 187.500
wilcox.test(weight~gender, paired=FALSE)
Wilcoxon rank sum test with continuity correction
data: weight by gender
W = 6, p-value = 0.007319
alternative hypothesis: true location shift is not equal to 0
before<-c(117,111,98,104,105,100,81,89,78)
after<-c(83,85,75,82,82,77,62,69,64)
data.frame(before,after)
before after
1 117 83
2 111 85
3 98 75
4 104 82
5 105 82
6 100 77
7 81 62
8 89 69
9 78 64
TTEST<-t.test(before,after,paired=T)
TTEST
Paired t-test
data: before and after
t = 12.52, df = 8, p-value = 1.551e-06
alternative hypothesis: true mean difference is not equal to 0
95 percent confidence interval:
18.49173 26.84160
sample estimates:
mean difference
22.66667
WLCX<-wilcox.test(before,after,paired=T)
WLCX
Wilcoxon signed rank test with continuity correction
data: before and after
V = 45, p-value = 0.008909
alternative hypothesis: true location shift is not equal to 0
data<-read.csv("C:\\Users\\user\\Downloads\\training model.csv")
head(data,5)
year CPI Exch.Rate Lend.Int.Rates
1 1987 7.872727 16.45499 14.0000
2 1988 8.848083 17.74710 15.0000
3 1989 10.035029 20.57247 17.2500
4 1990 11.602322 22.91477 18.7500
5 1991 13.805882 27.50870 18.9975
attach(data)
str(data)
'data.frame': 26 obs. of 4 variables:
$ year : int 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 ...
$ CPI : num 7.87 8.85 10.04 11.6 13.81 ...
$ Exch.Rate : num 16.5 17.7 20.6 22.9 27.5 ...
$ Lend.Int.Rates: num 14 15 17.2 18.8 19 ...
plot.ts(data$CPI)
plot.ts(data$Exch.Rate)
plot.ts(data$Lend.Int.Rates)
plot.ts(data$CPI,type="l")
library(tseries)
library(tidyverse)
library(vars)
library(olsrr)
adf.test(data$CPI)
Augmented Dickey-Fuller Test
data: data$CPI
Dickey-Fuller = 1.5556, Lag order = 2, p-value = 0.99
alternative hypothesis: stationary
adf.test(data$Exch.Rate)
Augmented Dickey-Fuller Test
data: data$Exch.Rate
Dickey-Fuller = -1.743, Lag order = 2, p-value = 0.6703
alternative hypothesis: stationary
adf.test(data$Lend.Int.Rates)
Augmented Dickey-Fuller Test
data: data$Lend.Int.Rates
Dickey-Fuller = -2.0656, Lag order = 2, p-value = 0.5474
alternative hypothesis: stationary
adf.test(CPI)
Augmented Dickey-Fuller Test
data: CPI
Dickey-Fuller = 1.5556, Lag order = 2, p-value = 0.99
alternative hypothesis: stationary
adf.test(Exch.Rate)
Augmented Dickey-Fuller Test
data: Exch.Rate
Dickey-Fuller = -1.743, Lag order = 2, p-value = 0.6703
alternative hypothesis: stationary
adf.test(Lend.Int.Rates)
Augmented Dickey-Fuller Test
data: Lend.Int.Rates
Dickey-Fuller = -2.0656, Lag order = 2, p-value = 0.5474
alternative hypothesis: stationary
adf.test(diff(CPI))
Augmented Dickey-Fuller Test
data: diff(CPI)
Dickey-Fuller = -1.4862, Lag order = 2, p-value = 0.7681
alternative hypothesis: stationary
CPI1<-diff(CPI)
CPI1
[1] 0.9753552 1.1869462 1.5672929 2.2035602 3.7734740 8.0827912
[7] 7.3943910 0.5138071 2.9757047 4.1376231 2.2034025 2.4784791
[13] 4.5251056 2.8595567 1.0368861 5.2739474 6.9662002 6.5447763
[19] 4.3778887 3.2861734 12.1267763 9.7326307 4.1694197 14.9004387
[25] 11.3632053
ts.plot(diff(CPI1))
adf.test(diff(CPI1))
Augmented Dickey-Fuller Test
data: diff(CPI1)
Dickey-Fuller = -3.1705, Lag order = 2, p-value = 0.1265
alternative hypothesis: stationary
adf.test(Exch.Rate)
Augmented Dickey-Fuller Test
data: Exch.Rate
Dickey-Fuller = -1.743, Lag order = 2, p-value = 0.6703
alternative hypothesis: stationary
adf.test(diff(Exch.Rate))
Augmented Dickey-Fuller Test
data: diff(Exch.Rate)
Dickey-Fuller = -2.9525, Lag order = 2, p-value = 0.2095
alternative hypothesis: stationary
ts.plot(diff(Exch.Rate))
EXR<-diff(Exch.Rate)
adf.test(diff(EXR))
Augmented Dickey-Fuller Test
data: diff(EXR)
Dickey-Fuller = -3.5356, Lag order = 2, p-value = 0.05894
alternative hypothesis: stationary
plot(diff(EXR))
EXR1<-diff(EXR)
ts.plot(EXR1)
adf.test(diff(EXR1))
Augmented Dickey-Fuller Test
data: diff(EXR1)
Dickey-Fuller = -4.5082, Lag order = 2, p-value = 0.01
alternative hypothesis: stationary
ts.plot(diff(EXR1))
hist(CPI)
hist(log(CPI))
hist(diff(CPI))
hist(Exch.Rate)
hist(log(Exch.Rate))
hist(diff(Exch.Rate))
hist(Lend.Int.Rates)
hist(log(Lend.Int.Rates))
hist(diff(Lend.Int.Rates))
shapiro.test(CPI)
Shapiro-Wilk normality test
data: CPI
W = 0.93963, p-value = 0.1316
shapiro.test(Exch.Rate)
Shapiro-Wilk normality test
data: Exch.Rate
W = 0.86288, p-value = 0.002555
shapiro.test(Lend.Int.Rates)
Shapiro-Wilk normality test
data: Lend.Int.Rates
W = 0.86773, p-value = 0.003203
model<-lm(log(CPI)~log(Exch.Rate)+log(Lend.Int.Rates),data=data)
library(stargazer)
stargazer(model,type="text")
===============================================
Dependent variable:
---------------------------
log(CPI)
-----------------------------------------------
log(Exch.Rate) 1.515***
(0.085)
log(Lend.Int.Rates) -0.552***
(0.138)
Constant -0.704
(0.528)
-----------------------------------------------
Observations 26
R2 0.935
Adjusted R2 0.929
Residual Std. Error 0.223 (df = 23)
F Statistic 164.844*** (df = 2; 23)
===============================================
Note: *p<0.1; **p<0.05; ***p<0.01
library(car)
library(tseries)
outlierTest(model)
No Studentized residuals with Bonferroni p < 0.05
Largest |rstudent|:
rstudent unadjusted p-value Bonferroni p
26 2.702426 0.013008 0.3382
qqPlot(model, main= "QQ Plot Showing the Possible Presence of outliers")
[1] 18 26
leveragePlots(model)
vif(model)
log(Exch.Rate) log(Lend.Int.Rates)
1.000162 1.000162
VIF of 1.000162 is an indication that predictors are no correlated
durbinWatsonTest(model)
lag Autocorrelation D-W Statistic p-value
1 0.6176191 0.5324069 0
Alternative hypothesis: rho != 0
The results shows that there is a correlation of the regression residuals
ncvTest(model)
Non-constant Variance Score Test
Variance formula: ~ fitted.values
Chisquare = 5.509929, Df = 1, p = 0.018909
spreadLevelPlot(model)
Suggested power transformation: -2.486722
coeftest(model, hccm(model, type = "hc0"))
t test of coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.704260 0.315018 -2.2356 0.03537 *
log(Exch.Rate) 1.514945 0.057345 26.4181 < 2.2e-16 ***
log(Lend.Int.Rates) -0.552044 0.109898 -5.0232 4.403e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
library(stargazer)
stargazer(coeftest(model, hccm(model, type = "hc0")),type="text")
===============================================
Dependent variable:
---------------------------
-----------------------------------------------
log(Exch.Rate) 1.515***
(0.057)
log(Lend.Int.Rates) -0.552***
(0.110)
Constant -0.704**
(0.315)
===============================================
===============================================
Note: *p<0.1; **p<0.05; ***p<0.01
CPI<-ts(data$CPI,start=1987,frequency = 1)
plot.ts(CPI,type="l",main="Time Series plot CPI",xlab="Year",ylab="Consumer Price Index")
plot.ts(diff(CPI),type="l",main="Time Series plot CPI",xlab="Year",ylab="Consumer Price Index")
Exch.Rate<-ts(data$Exch.Rate,start=1987,frequency = 1)
plot.ts(Exch.Rate,type="l",main="Time Series plot Exch.Rate",xlab="Year",ylab="Exchange Rate")
plot.ts(diff(Exch.Rate),type="l",main="Time Series plot Exch.Rate",xlab="Year",ylab="Exchange Rate")
Lend.Int.Rates<-ts(data$Lend.Int.Rates,start=1987,frequency = 1)
plot.ts(Lend.Int.Rates,type="l",main="Time Series plot Lend.Int.Rates",xlab="Year",ylab="Lend.Int.Rates")
plot.ts(diff(Lend.Int.Rates),type="l",main="Time Series plot Lend.Int.Rates",xlab="Year",ylab="Lend.Int.Rates")
if(!require(ggplot2)){install.packages("ggplot2")} ##intalls ggplot2 if not installed
library(ggplot2)
if(!require(ggthemes)){install.packages("ggthemes")}
library(ggthemes)
ggplot(data=data,aes(x=year,y=CPI))+geom_line()
ggplot(data=data,aes(x=year,y=CPI))+geom_line()
ggplot(data=data,aes(x=year,y=CPI))+geom_line()+
labs(title="Time Series plot of CPI",
caption="source:World Bank",
y="Consumer Price Index", x="Year",
color=3) + # title and caption
theme(axis.text.x = element_text(angle = 0, vjust=0.5, size = 12), # rotate x axis text
axis.title=element_text(size=12,face="bold"),
panel.grid = element_blank())+
#theme(panel.grid.minor = element_blank())+#turn off minor grid(to run remove #be4 theme)
theme(legend.text = element_text(size=12,face="bold"))+
theme_set(theme_economist())
ggplot(data=data,aes(x=year,y=CPI))+geom_line()+
labs(title="Time Series plot of CPI",
caption="source:World Bank 2018", y="Consumer Price Index", x="Year")
ggplot(data=data,aes(x=year,y=Exch.Rate))+geom_line()+
labs(title="Time Series plot of Exhange Rate",
caption="source:World Bank 2018", y="Exhange Rate", x="Year")
ggplot(data=data,aes(x=year,y=Lend.Int.Rates))+geom_line()+
labs(title="Time Series plot of Lend.Int.Rates",
caption="source:World Bank 2018", y="Lend.Int.Rates", x="Year")
date<-seq(as.Date("1987-01-01"),by="1 year",length.out=length(data$year))
date
[1] "1987-01-01" "1988-01-01" "1989-01-01" "1990-01-01" "1991-01-01"
[6] "1992-01-01" "1993-01-01" "1994-01-01" "1995-01-01" "1996-01-01"
[11] "1997-01-01" "1998-01-01" "1999-01-01" "2000-01-01" "2001-01-01"
[16] "2002-01-01" "2003-01-01" "2004-01-01" "2005-01-01" "2006-01-01"
[21] "2007-01-01" "2008-01-01" "2009-01-01" "2010-01-01" "2011-01-01"
[26] "2012-01-01"
ggplot(data=data,aes(x=date))+
geom_line(aes(y=Exch.Rate,colour="Exhange Rate"))+
geom_line(aes(y=Lend.Int.Rates,colour="Lending Interest Rates"))+
geom_line(aes(y=CPI,colour="Consumer Price Index"))+
labs(title="Trends of CPI,Interest Rates and Exchange Rates",
caption="", y="Rate", x="Time in Years", color="Key")+
scale_x_date( date_labels = "%Y", breaks = "1 year")+
theme(axis.text.x = element_text(angle = 90, vjust=0.5, size = 8))
theme_set(theme_economist())
theme_set(theme_base())
p1<-ggplot(data=data,aes(x=date,y=CPI))+geom_line()+
labs(title="Consumer Price Index",
caption="", y="Consumer Price Index", x="Time in Years", color=3)+
scale_x_date( date_labels = "%Y-%b", breaks = "1 years")+
theme(axis.text.x = element_text(angle = 90, vjust=0.5, size = 8))
p2<-ggplot(data=data,aes(x=date,y=Exch.Rate))+geom_line()+
labs(title="Exchange Rate",
caption="", y="Exchange Rate", x="Time in Years", color="Key")+
scale_x_date( date_labels = "%Y-%b", breaks = "1 years")+
theme(axis.text.x = element_text(angle = 90, vjust=0.5, size = 8))
p3<-ggplot(data=data,aes(x=date,y=Lend.Int.Rates))+geom_line()+
labs(title="Lending Interest Rates",
caption="", y="Lending Interest Rates", x="Time in Years", color="Key")+
scale_x_date( date_labels = "%Y-%b", breaks = "1 years")+
theme(axis.text.x = element_text(angle = 90, vjust=0.5, size = 8))
library(grid)
grid.newpage()
grid.draw(rbind(ggplotGrob(p1),ggplotGrob(p2),ggplotGrob(p3),size="last"))
grid.newpage()
grid.draw(rbind(ggplotGrob(p1),ggplotGrob(p3),size="last"))
grid.newpage()
grid.draw(rbind(ggplotGrob(p2),ggplotGrob(p3),size="last"))
grid.newpage()
grid.draw(rbind(ggplotGrob(p1),size="last"))
grid.newpage()
grid.draw(rbind(ggplotGrob(p2),size="last"))
grid.newpage()
grid.draw(rbind(ggplotGrob(p3),size="last"))