pertama kita buat terlebih dahulu gausian linear nya :
library(matlib)
## Warning: package 'matlib' was built under R version 4.2.3
A <- matrix(c(0, -1, 1, 0, 1, 1, 0, 1, 3, -4, 2, 0, -1, 0, 4, -4), 4, 4)
b <- c(1, 1, 5, -2)
showEqn(A, b)
## 0*x1 + 1*x2 + 3*x3 - 1*x4 = 1
## -1*x1 + 1*x2 - 4*x3 + 0*x4 = 1
## 1*x1 + 0*x2 + 2*x3 + 4*x4 = 5
## 0*x1 + 1*x2 + 0*x3 - 4*x4 = -2
echelon(A, b, verbose=TRUE, fractions=TRUE)
##
## Initial matrix:
## [,1] [,2] [,3] [,4] [,5]
## [1,] 0 1 3 -1 1
## [2,] -1 1 -4 0 1
## [3,] 1 0 2 4 5
## [4,] 0 1 0 -4 -2
##
## row: 1
##
## exchange rows 1 and 2
## [,1] [,2] [,3] [,4] [,5]
## [1,] -1 1 -4 0 1
## [2,] 0 1 3 -1 1
## [3,] 1 0 2 4 5
## [4,] 0 1 0 -4 -2
##
## multiply row 1 by -1
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 -1 4 0 -1
## [2,] 0 1 3 -1 1
## [3,] 1 0 2 4 5
## [4,] 0 1 0 -4 -2
##
## subtract row 1 from row 3
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 -1 4 0 -1
## [2,] 0 1 3 -1 1
## [3,] 0 1 -2 4 6
## [4,] 0 1 0 -4 -2
##
## row: 2
##
## multiply row 2 by 1 and add to row 1
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 0 7 -1 0
## [2,] 0 1 3 -1 1
## [3,] 0 1 -2 4 6
## [4,] 0 1 0 -4 -2
##
## subtract row 2 from row 3
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 0 7 -1 0
## [2,] 0 1 3 -1 1
## [3,] 0 0 -5 5 5
## [4,] 0 1 0 -4 -2
##
## subtract row 2 from row 4
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 0 7 -1 0
## [2,] 0 1 3 -1 1
## [3,] 0 0 -5 5 5
## [4,] 0 0 -3 -3 -3
##
## row: 3
##
## multiply row 3 by -1/5
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 0 7 -1 0
## [2,] 0 1 3 -1 1
## [3,] 0 0 1 -1 -1
## [4,] 0 0 -3 -3 -3
##
## multiply row 3 by 7 and subtract from row 1
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 0 0 6 7
## [2,] 0 1 3 -1 1
## [3,] 0 0 1 -1 -1
## [4,] 0 0 -3 -3 -3
##
## multiply row 3 by 3 and subtract from row 2
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 0 0 6 7
## [2,] 0 1 0 2 4
## [3,] 0 0 1 -1 -1
## [4,] 0 0 -3 -3 -3
##
## multiply row 3 by 3 and add to row 4
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 0 0 6 7
## [2,] 0 1 0 2 4
## [3,] 0 0 1 -1 -1
## [4,] 0 0 0 -6 -6
##
## row: 4
##
## multiply row 4 by -1/6
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 0 0 6 7
## [2,] 0 1 0 2 4
## [3,] 0 0 1 -1 -1
## [4,] 0 0 0 1 1
##
## multiply row 4 by 6 and subtract from row 1
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 0 0 0 1
## [2,] 0 1 0 2 4
## [3,] 0 0 1 -1 -1
## [4,] 0 0 0 1 1
##
## multiply row 4 by 2 and subtract from row 2
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 0 0 0 1
## [2,] 0 1 0 0 2
## [3,] 0 0 1 -1 -1
## [4,] 0 0 0 1 1
##
## multiply row 4 by 1 and add to row 3
## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 0 0 0 1
## [2,] 0 1 0 0 2
## [3,] 0 0 1 0 0
## [4,] 0 0 0 1 1
Solve(A, b)
## x1 = 1
## x2 = 2
## x3 = 0
## x4 = 1
A <-matrix(c(1,0,1,0,1,0,0,1,0,1,1,0,0,1,0,1),nrow=4,ncol=4)
A
## [,1] [,2] [,3] [,4]
## [1,] 1 1 0 0
## [2,] 0 0 1 1
## [3,] 1 0 1 0
## [4,] 0 1 0 1
b <-c(475,489,542,422)
Solve(A, b)
## x1 - 1*x4 = 53
## x2 + x4 = 422
## x3 + x4 = 489
## 0 = 0
Lalu kita dapat membuat dataset dari “mtcars” dengan menjalankan perintah berikut :
data(mtcars)
Selanjutnya, kita dapat menentukan variabel dependen (y) dan variabel independen (x) yang akan digunakan dalam model. Untuk contoh ini, kita akan menggunakan variabel "mpg" sebagai y dan variabel "wt" sebagai x. Kita juga dapat melakukan plot scatterplot untuk memeriksa apakah terdapat korelasi antara variabel dependen dan independen. Berikut adalah kode untuk membuat scatterplot:
plot(mtcars$wt, mtcars$mpg, xlab = "height", ylab = "Miles per hours")
Selanjutnya, kita dapat membangun model linear sederhana dengan menggunakan fungsi "lm". Kita dapat menentukan variabel dependen dan independen dalam fungsi lm, seperti berikut:
model <- lm(mpg ~ wt, data = mtcars)
Setelah model dibangun, kita dapat mengevaluasi kualitas model dengan memeriksa koefisien determinasi (R-squared) dan plot residual. Berikut adalah kode untuk menampilkan R-squared dan membuat plot residual:
# menampilkan R-squared
summary(model)$r.squared
## [1] 0.7528328
# membuat plot residual
plot(model, which = 1)