Code
library(ggplot2)
# install.packages("rnaturalearth")
library(rnaturalearth)
ggplot2, rnaturalearth 설치, 불러오기
library(ggplot2)
# install.packages("rnaturalearth")
library(rnaturalearth)
str(countries110@data)
'data.frame': 177 obs. of 94 variables:
$ featurecla: chr "Admin-0 country" "Admin-0 country" "Admin-0 country" "Admin-0 country" ...
$ scalerank : int 1 1 1 1 1 1 1 1 1 1 ...
$ LABELRANK : int 6 3 7 2 2 3 3 2 2 2 ...
$ SOVEREIGNT: chr "Fiji" "United Republic of Tanzania" "Western Sahara" "Canada" ...
$ SOV_A3 : chr "FJI" "TZA" "SAH" "CAN" ...
$ ADM0_DIF : int 0 0 0 0 1 0 0 0 0 0 ...
$ LEVEL : int 2 2 2 2 2 2 2 2 2 2 ...
$ TYPE : chr "Sovereign country" "Sovereign country" "Indeterminate" "Sovereign country" ...
$ ADMIN : chr "Fiji" "United Republic of Tanzania" "Western Sahara" "Canada" ...
$ ADM0_A3 : chr "FJI" "TZA" "SAH" "CAN" ...
$ GEOU_DIF : int 0 0 0 0 0 0 0 0 0 0 ...
$ GEOUNIT : chr "Fiji" "Tanzania" "Western Sahara" "Canada" ...
$ GU_A3 : chr "FJI" "TZA" "SAH" "CAN" ...
$ SU_DIF : int 0 0 0 0 0 0 0 1 0 0 ...
$ SUBUNIT : chr "Fiji" "Tanzania" "Western Sahara" "Canada" ...
$ SU_A3 : chr "FJI" "TZA" "SAH" "CAN" ...
$ BRK_DIFF : int 0 0 1 0 0 0 0 0 0 0 ...
$ NAME : chr "Fiji" "Tanzania" "W. Sahara" "Canada" ...
$ NAME_LONG : chr "Fiji" "Tanzania" "Western Sahara" "Canada" ...
$ BRK_A3 : chr "FJI" "TZA" "B28" "CAN" ...
$ BRK_NAME : chr "Fiji" "Tanzania" "W. Sahara" "Canada" ...
$ BRK_GROUP : chr NA NA NA NA ...
$ ABBREV : chr "Fiji" "Tanz." "W. Sah." "Can." ...
$ POSTAL : chr "FJ" "TZ" "WS" "CA" ...
$ FORMAL_EN : chr "Republic of Fiji" "United Republic of Tanzania" "Sahrawi Arab Democratic Republic" "Canada" ...
$ FORMAL_FR : chr NA NA NA NA ...
$ NAME_CIAWF: chr "Fiji" "Tanzania" "Western Sahara" "Canada" ...
$ NOTE_ADM0 : chr NA NA "Self admin." NA ...
$ NOTE_BRK : chr NA NA "Self admin.; Claimed by Morocco" NA ...
$ NAME_SORT : chr "Fiji" "Tanzania" "Western Sahara" "Canada" ...
$ NAME_ALT : chr NA NA NA NA ...
$ MAPCOLOR7 : int 5 3 4 6 4 6 2 4 6 3 ...
$ MAPCOLOR8 : int 1 6 7 6 5 1 3 2 6 1 ...
$ MAPCOLOR9 : int 2 2 4 2 1 6 5 3 6 3 ...
$ MAPCOLOR13: int 2 2 4 2 1 1 4 1 11 13 ...
$ POP_EST : chr "920938" "53950935" "603253" "35623680" ...
$ POP_RANK : int 11 16 11 15 17 14 15 13 17 15 ...
$ GDP_MD_EST: num 8374 150600 906 1674000 18560000 ...
$ POP_YEAR : int 2017 2017 2017 2017 2017 2017 2017 2017 2017 2017 ...
$ LASTCENSUS: int 2007 2002 NA 2011 2010 2009 1989 2000 2010 2010 ...
$ GDP_YEAR : int 2016 2016 2007 2016 2016 2016 2016 2016 2016 2016 ...
$ ECONOMY : chr "6. Developing region" "7. Least developed region" "7. Least developed region" "1. Developed region: G7" ...
$ INCOME_GRP: chr "4. Lower middle income" "5. Low income" "5. Low income" "1. High income: OECD" ...
$ WIKIPEDIA : int NA NA NA NA 0 NA NA NA NA NA ...
$ FIPS_10_ : chr "FJ" "TZ" "WI" "CA" ...
$ ISO_A2 : chr "FJ" "TZ" "EH" "CA" ...
$ ISO_A3 : chr "FJI" "TZA" "ESH" "CAN" ...
$ ISO_A3_EH : chr "FJI" "TZA" "ESH" "CAN" ...
$ ISO_N3 : chr "242" "834" "732" "124" ...
$ UN_A3 : chr "242" "834" "732" "124" ...
$ WB_A2 : chr "FJ" "TZ" NA "CA" ...
$ WB_A3 : chr "FJI" "TZA" NA "CAN" ...
$ WOE_ID : int 23424813 23424973 23424990 23424775 23424977 -90 23424980 23424926 23424846 23424747 ...
$ WOE_ID_EH : int 23424813 23424973 23424990 23424775 23424977 23424871 23424980 23424926 23424846 23424747 ...
$ WOE_NOTE : chr "Exact WOE match as country" "Exact WOE match as country" "Exact WOE match as country" "Exact WOE match as country" ...
$ ADM0_A3_IS: chr "FJI" "TZA" "MAR" "CAN" ...
$ ADM0_A3_US: chr "FJI" "TZA" "SAH" "CAN" ...
$ ADM0_A3_UN: int NA NA NA NA NA NA NA NA NA NA ...
$ ADM0_A3_WB: int NA NA NA NA NA NA NA NA NA NA ...
$ CONTINENT : chr "Oceania" "Africa" "Africa" "North America" ...
$ REGION_UN : chr "Oceania" "Africa" "Africa" "Americas" ...
$ SUBREGION : chr "Melanesia" "Eastern Africa" "Northern Africa" "Northern America" ...
$ REGION_WB : chr "East Asia & Pacific" "Sub-Saharan Africa" "Middle East & North Africa" "North America" ...
$ NAME_LEN : int 4 8 9 6 24 10 10 16 9 9 ...
$ LONG_LEN : int 4 8 14 6 13 10 10 16 9 9 ...
$ ABBREV_LEN: int 4 5 7 4 6 4 4 6 5 4 ...
$ TINY : int NA NA NA NA NA NA 5 NA NA NA ...
$ HOMEPART : int 1 1 1 1 1 1 1 1 1 1 ...
$ MIN_ZOOM : num 0 0 4.7 0 0 0 0 0 0 0 ...
$ MIN_LABEL : num 3 3 6 1.7 1.7 3 3 2.5 1.7 2 ...
$ MAX_LABEL : num 8 8 11 5.7 5.7 7 8 7.5 6.7 7 ...
$ NE_ID : chr "1159320625" "1159321337" "1159321223" "1159320467" ...
$ WIKIDATAID: chr "Q712" "Q924" "Q6250" "Q16" ...
$ NAME_AR : chr NA NA NA NA ...
$ NAME_BN : chr NA NA NA NA ...
$ NAME_DE : chr "Fidschi" "Tansania" "Westsahara" "Kanada" ...
$ NAME_EN : chr "Fiji" "Tanzania" "Western Sahara" "Canada" ...
$ NAME_ES : chr "Fiyi" "Tanzania" "Sahara Occidental" "Canadá" ...
$ NAME_FR : chr "Fidji" "Tanzanie" "Sahara occidental" "Canada" ...
$ NAME_EL : chr NA NA NA NA ...
$ NAME_HI : chr NA NA NA NA ...
$ NAME_HU : chr "Fidzsi-szigetek" "Tanzánia" "Nyugat-Szahara" "Kanada" ...
$ NAME_ID : chr "Fiji" "Tanzania" "Sahara Barat" "Kanada" ...
$ NAME_IT : chr "Figi" "Tanzania" "Sahara Occidentale" "Canada" ...
$ NAME_JA : chr NA NA NA NA ...
$ NAME_KO : chr NA NA NA NA ...
$ NAME_NL : chr "Fiji" "Tanzania" "Westelijke Sahara" "Canada" ...
$ NAME_PL : chr "Fidzi" "Tanzania" "Sahara Zachodnia" "Kanada" ...
$ NAME_PT : chr "Fiji" "Tanzânia" "Saara Ocidental" "Canadá" ...
$ NAME_RU : chr NA NA NA NA ...
$ NAME_SV : chr "Fiji" "Tanzania" "Västsahara" "Kanada" ...
$ NAME_TR : chr "Fiji" "Tanzanya" "Bati Sahra" "Kanada" ...
$ NAME_VI : chr "Fiji" "Tanzania" "Tây Sahara" "Canada" ...
$ NAME_ZH : chr NA NA NA NA ...
head(countries110@data, 2)
@data$CONTINENT #국가별 대륙명 보기 countries110
[1] "Oceania" "Africa"
[3] "Africa" "North America"
[5] "North America" "Asia"
[7] "Asia" "Oceania"
[9] "Asia" "South America"
[11] "South America" "Africa"
[13] "Africa" "Africa"
[15] "Africa" "Africa"
[17] "North America" "North America"
[19] "Europe" "North America"
[21] "South America" "Europe"
[23] "North America" "Seven seas (open ocean)"
[25] "Asia" "Africa"
[27] "Africa" "North America"
[29] "South America" "South America"
[31] "South America" "South America"
[33] "South America" "North America"
[35] "North America" "North America"
[37] "North America" "North America"
[39] "North America" "North America"
[41] "South America" "South America"
[43] "South America" "Europe"
[45] "South America" "North America"
[47] "North America" "North America"
[49] "Africa" "Africa"
[51] "Africa" "Africa"
[53] "Africa" "Africa"
[55] "Africa" "Africa"
[57] "Africa" "Africa"
[59] "Africa" "Africa"
[61] "Africa" "Africa"
[63] "Africa" "Africa"
[65] "Africa" "Africa"
[67] "Africa" "Africa"
[69] "Africa" "Africa"
[71] "Africa" "Africa"
[73] "Africa" "Africa"
[75] "Africa" "Africa"
[77] "Asia" "Asia"
[79] "Africa" "Asia"
[81] "Africa" "Africa"
[83] "Africa" "Asia"
[85] "Asia" "Asia"
[87] "Asia" "Asia"
[89] "Asia" "Oceania"
[91] "Asia" "Asia"
[93] "Asia" "Asia"
[95] "Asia" "Asia"
[97] "Asia" "Asia"
[99] "Asia" "Asia"
[101] "Asia" "Asia"
[103] "Asia" "Asia"
[105] "Asia" "Asia"
[107] "Asia" "Asia"
[109] "Asia" "Asia"
[111] "Europe" "Europe"
[113] "Europe" "Europe"
[115] "Europe" "Europe"
[117] "Europe" "Europe"
[119] "Europe" "Europe"
[121] "Europe" "Europe"
[123] "Europe" "Europe"
[125] "Asia" "Europe"
[127] "Europe" "Europe"
[129] "Europe" "Europe"
[131] "Europe" "Europe"
[133] "Europe" "Europe"
[135] "Oceania" "Oceania"
[137] "Oceania" "Oceania"
[139] "Asia" "Asia"
[141] "Asia" "Europe"
[143] "Europe" "Europe"
[145] "Europe" "Asia"
[147] "Asia" "Asia"
[149] "Asia" "Asia"
[151] "Europe" "Europe"
[153] "Europe" "Europe"
[155] "Africa" "Asia"
[157] "South America" "Asia"
[159] "Asia" "Antarctica"
[161] "Asia" "Asia"
[163] "Africa" "Africa"
[165] "Africa" "Africa"
[167] "Africa" "Africa"
[169] "Africa" "Africa"
[171] "Europe" "Europe"
[173] "Europe" "Europe"
[175] "Europe" "North America"
[177] "Africa"
@data$NAME #국가명 countries110
[1] "Fiji" "Tanzania"
[3] "W. Sahara" "Canada"
[5] "United States of America" "Kazakhstan"
[7] "Uzbekistan" "Papua New Guinea"
[9] "Indonesia" "Argentina"
[11] "Chile" "Dem. Rep. Congo"
[13] "Somalia" "Kenya"
[15] "Sudan" "Chad"
[17] "Haiti" "Dominican Rep."
[19] "Russia" "Bahamas"
[21] "Falkland Is." "Norway"
[23] "Greenland" "Fr. S. Antarctic Lands"
[25] "Timor-Leste" "South Africa"
[27] "Lesotho" "Mexico"
[29] "Uruguay" "Brazil"
[31] "Bolivia" "Peru"
[33] "Colombia" "Panama"
[35] "Costa Rica" "Nicaragua"
[37] "Honduras" "El Salvador"
[39] "Guatemala" "Belize"
[41] "Venezuela" "Guyana"
[43] "Suriname" "France"
[45] "Ecuador" "Puerto Rico"
[47] "Jamaica" "Cuba"
[49] "Zimbabwe" "Botswana"
[51] "Namibia" "Senegal"
[53] "Mali" "Mauritania"
[55] "Benin" "Niger"
[57] "Nigeria" "Cameroon"
[59] "Togo" "Ghana"
[61] "Côte d'Ivoire" "Guinea"
[63] "Guinea-Bissau" "Liberia"
[65] "Sierra Leone" "Burkina Faso"
[67] "Central African Rep." "Congo"
[69] "Gabon" "Eq. Guinea"
[71] "Zambia" "Malawi"
[73] "Mozambique" "eSwatini"
[75] "Angola" "Burundi"
[77] "Israel" "Lebanon"
[79] "Madagascar" "Palestine"
[81] "Gambia" "Tunisia"
[83] "Algeria" "Jordan"
[85] "United Arab Emirates" "Qatar"
[87] "Kuwait" "Iraq"
[89] "Oman" "Vanuatu"
[91] "Cambodia" "Thailand"
[93] "Laos" "Myanmar"
[95] "Vietnam" "North Korea"
[97] "South Korea" "Mongolia"
[99] "India" "Bangladesh"
[101] "Bhutan" "Nepal"
[103] "Pakistan" "Afghanistan"
[105] "Tajikistan" "Kyrgyzstan"
[107] "Turkmenistan" "Iran"
[109] "Syria" "Armenia"
[111] "Sweden" "Belarus"
[113] "Ukraine" "Poland"
[115] "Austria" "Hungary"
[117] "Moldova" "Romania"
[119] "Lithuania" "Latvia"
[121] "Estonia" "Germany"
[123] "Bulgaria" "Greece"
[125] "Turkey" "Albania"
[127] "Croatia" "Switzerland"
[129] "Luxembourg" "Belgium"
[131] "Netherlands" "Portugal"
[133] "Spain" "Ireland"
[135] "New Caledonia" "Solomon Is."
[137] "New Zealand" "Australia"
[139] "Sri Lanka" "China"
[141] "Taiwan" "Italy"
[143] "Denmark" "United Kingdom"
[145] "Iceland" "Azerbaijan"
[147] "Georgia" "Philippines"
[149] "Malaysia" "Brunei"
[151] "Slovenia" "Finland"
[153] "Slovakia" "Czechia"
[155] "Eritrea" "Japan"
[157] "Paraguay" "Yemen"
[159] "Saudi Arabia" "Antarctica"
[161] "N. Cyprus" "Cyprus"
[163] "Morocco" "Egypt"
[165] "Libya" "Ethiopia"
[167] "Djibouti" "Somaliland"
[169] "Uganda" "Rwanda"
[171] "Bosnia and Herz." "Macedonia"
[173] "Serbia" "Montenegro"
[175] "Kosovo" "Trinidad and Tobago"
[177] "S. Sudan"
= ne_countries(scale = "small")
ne_map = fortify(ne_map) ##shape file---> data frame으로 변경 df_for
Regions defined for each Polygons
head(df_for, 2)
ggplot(data = df_for) +
geom_polygon(aes(x = long, y = lat,group = group), fill = "#FFFFFF", color = "blue")
= ne_countries(scale = "small", continent = "Asia")
ne_map_asia = fortify(ne_map_asia) df_for_a
Regions defined for each Polygons
ggplot(data = df_for_a) +
geom_polygon(aes(x = long, y = lat,group = group), fill = "#FFFFFF", color = "blue")
= ne_countries(scale = "small", country = "South Korea") #scale: small. medium, large
ne_map_k = fortify(ne_map_k) df_for_k
Regions defined for each Polygons
ggplot(data = df_for_k) +
geom_polygon(aes(x = long, y = lat,group = group), fill = "#FFFFFF", color = "blue")+coord_fixed(ratio = 1)
# install.packages("ggmap")
library(ggmap)
ℹ Google's Terms of Service: ]8;;https://mapsplatform.google.com<https://mapsplatform.google.com>]8;;
ℹ Please cite ggmap if you use it! Use `citation("ggmap")` for details.
#register_google(key='')
ggmap(get_map(location='south korea', zoom=7)) # zoom은 3부터 21까지 지정. 숫자가 작을수록 넓은 지역
ℹ <]8;;https://maps.googleapis.com/maps/api/staticmap?center=south%20korea&zoom=7&size=640x640&scale=2&maptype=terrain&language=en-EN&key=xxxhttps://maps.googleapis.com/maps/api/staticmap?center=south%20korea&zoom=7&size=640x640&scale=2&maptype=terrain&language=en-EN&key=xxx]8;;>
ℹ <]8;;https://maps.googleapis.com/maps/api/geocode/json?address=south+korea&key=xxxhttps://maps.googleapis.com/maps/api/geocode/json?address=south+korea&key=xxx]8;;>
maptype=‘terrain’,‘satellite’,‘roadmap’, ‘hybrid’
<- get_map(location='south korea', zoom=7, maptype='satellite', color='bw') map
ℹ <]8;;https://maps.googleapis.com/maps/api/staticmap?center=south%20korea&zoom=7&size=640x640&scale=2&maptype=satellite&language=en-EN&key=xxxhttps://maps.googleapis.com/maps/api/staticmap?center=south%20korea&zoom=7&size=640x640&scale=2&maptype=satellite&language=en-EN&key=xxx]8;;>
ℹ <]8;;https://maps.googleapis.com/maps/api/geocode/json?address=south+korea&key=xxxhttps://maps.googleapis.com/maps/api/geocode/json?address=south+korea&key=xxx]8;;>
ggmap(map)
<- get_map(location='usa', zoom=4, maptype='roadmap', color='bw') map_a
ℹ <]8;;https://maps.googleapis.com/maps/api/staticmap?center=usa&zoom=4&size=640x640&scale=2&maptype=roadmap&language=en-EN&key=xxxhttps://maps.googleapis.com/maps/api/staticmap?center=usa&zoom=4&size=640x640&scale=2&maptype=roadmap&language=en-EN&key=xxx]8;;>
ℹ <]8;;https://maps.googleapis.com/maps/api/geocode/json?address=usa&key=xxxhttps://maps.googleapis.com/maps/api/geocode/json?address=usa&key=xxx]8;;>
ggmap(map_a)
library(readr)
<- read_csv("/Users/hyunjhinlee/Desktop/R/23_spring/wifi.csv") wifi
Rows: 12290 Columns: 3
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (1): company
dbl (2): lat, lon
ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
head(wifi)
<- get_map(location='south korea', zoom=7, maptype='roadmap', color='bw') map
ℹ <]8;;https://maps.googleapis.com/maps/api/staticmap?center=south%20korea&zoom=7&size=640x640&scale=2&maptype=roadmap&language=en-EN&key=xxxhttps://maps.googleapis.com/maps/api/staticmap?center=south%20korea&zoom=7&size=640x640&scale=2&maptype=roadmap&language=en-EN&key=xxx]8;;>
ℹ <]8;;https://maps.googleapis.com/maps/api/geocode/json?address=south+korea&key=xxxhttps://maps.googleapis.com/maps/api/geocode/json?address=south+korea&key=xxx]8;;>
ggmap(map) + geom_point(data=wifi, aes(x=lon, y=lat, color=company), alpha=0.1)
<-ggmap(map) + geom_point(data=wifi, aes(x=lon, y=lat), alpha=0.01)
wifi_map wifi_map
# install.packages("raster")
library(raster) #Loading required package: sp
Loading required package: sp
<- getData('GADM', country='kor', level=2) korea
Warning in getData("GADM", country = "kor", level = 2): getData will be removed in a future version of raster
. Please use the geodata package instead
ggplot() + geom_polygon(data=korea, aes(x=long, y=lat, group=group), fill='white', color='black')+coord_fixed(ratio = 1)
Regions defined for each Polygons
<- getData('GADM', country='kor', level=2) korea_gadm
Warning in getData("GADM", country = "kor", level = 2): getData will be removed in a future version of raster
. Please use the geodata package instead
<- korea_gadm[korea_gadm$NAME_1 %in% 'Seoul', ]
seoul_gadm ggplot()+geom_polygon(data=seoul_gadm, aes(x=long, y=lat, group=group), fill='white', color='black')
Regions defined for each Polygons
<-korea_gadm[korea_gadm$NAME_1 %in% c('Seoul', 'Incheon', 'Gyeonggi-do'), ]
sudogwon_gadm ggplot() + geom_polygon(data=sudogwon_gadm, aes(x=long, y=lat, group=group), fill='white', color='black') + xlim(c(125.5, 128)) + ylim(c(36.75, 38.25))
Regions defined for each Polygons
http://www.gisdeveloper.co.kr/?p=2332
library(raster)
library(sp)
library(rgdal)
Please note that rgdal will be retired during 2023,
plan transition to sf/stars/terra functions using GDAL and PROJ
at your earliest convenience.
See https://r-spatial.org/r/2022/04/12/evolution.html and https://github.com/r-spatial/evolution
rgdal: version: 1.6-6, (SVN revision 1201)
Geospatial Data Abstraction Library extensions to R successfully loaded
Loaded GDAL runtime: GDAL 3.4.2, released 2022/03/08
Path to GDAL shared files: /Library/Frameworks/R.framework/Versions/4.2/Resources/library/rgdal/gdal
GDAL binary built with GEOS: FALSE
Loaded PROJ runtime: Rel. 8.2.1, January 1st, 2022, [PJ_VERSION: 821]
Path to PROJ shared files: /Library/Frameworks/R.framework/Versions/4.2/Resources/library/rgdal/proj
PROJ CDN enabled: FALSE
Linking to sp version:1.6-0
To mute warnings of possible GDAL/OSR exportToProj4() degradation,
use options("rgdal_show_exportToProj4_warnings"="none") before loading sp or rgdal.
<- shapefile("/Users/hyunjhinlee/Desktop/R/sig.shp", encoding = 'euc-kr' ) #encoding
korea_s <- ggplot() + geom_polygon(data=korea_s, aes(x=long, y=lat, group=group), fill='white', color='black') korea_sm
Regions defined for each Polygons
##오래걸림 korea_sm
#install.packages("rgeos")
#install.packages("maptools")
#install.packages("rgdal") #3개를 순서대로 설치해야함.
library(rgeos)
rgeos version: 0.6-2, (SVN revision 693)
GEOS runtime version: 3.10.2-CAPI-1.16.0
Please note that rgeos will be retired during 2023,
plan transition to sf functions using GEOS at your earliest convenience.
GEOS using OverlayNG
Linking to sp version: 1.6-0
Polygon checking: TRUE
library(maptools)
Checking rgeos availability: TRUE
Please note that 'maptools' will be retired during 2023,
plan transition at your earliest convenience;
some functionality will be moved to 'sp'.
library(rgdal)
head(korea_s)
head(korea_s@data) ## 같음
<- korea_s[korea_s$SIG_CD <=11740, ] #코드11740 이하 서울
seoul_s <- fortify(seoul_s, region = 'SIG_KOR_NM')
seoul_df <- ggplot()+geom_polygon(data=seoul_df, aes(x=long, y=lat, group=group, color=id), fill='white')
seoul_map seoul_map
https://lovetoken.github.io/r/data_visualization/2018/04/15/sp_proj4string_spTransform.html(참조)
library(sp)
library(rgdal)
slotNames(seoul_s)
[1] "data" "polygons" "plotOrder" "bbox" "proj4string"
@polygons[[1]]@Polygons[[1]]@coords[1:4, ] seoul_s
x y
1 956615.5 1953567
2 956621.6 1953565
3 956626.2 1953564
4 956638.8 1953562
@proj4string seoul_s
Coordinate Reference System:
Deprecated Proj.4 representation:
+proj=tmerc +lat_0=38 +lon_0=127.5 +k=0.9996 +x_0=1000000 +y_0=2000000
+ellps=GRS80 +units=m +no_defs
WKT2 2019 representation:
PROJCRS["unknown",
BASEGEOGCRS["unknown",
DATUM["Unknown based on GRS80 ellipsoid",
ELLIPSOID["GRS 1980",6378137,298.257222101,
LENGTHUNIT["metre",1],
ID["EPSG",7019]]],
PRIMEM["Greenwich",0,
ANGLEUNIT["degree",0.0174532925199433],
ID["EPSG",8901]]],
CONVERSION["unknown",
METHOD["Transverse Mercator",
ID["EPSG",9807]],
PARAMETER["Latitude of natural origin",38,
ANGLEUNIT["degree",0.0174532925199433],
ID["EPSG",8801]],
PARAMETER["Longitude of natural origin",127.5,
ANGLEUNIT["degree",0.0174532925199433],
ID["EPSG",8802]],
PARAMETER["Scale factor at natural origin",0.9996,
SCALEUNIT["unity",1],
ID["EPSG",8805]],
PARAMETER["False easting",1000000,
LENGTHUNIT["metre",1],
ID["EPSG",8806]],
PARAMETER["False northing",2000000,
LENGTHUNIT["metre",1],
ID["EPSG",8807]]],
CS[Cartesian,2],
AXIS["(E)",east,
ORDER[1],
LENGTHUNIT["metre",1,
ID["EPSG",9001]]],
AXIS["(N)",north,
ORDER[2],
LENGTHUNIT["metre",1,
ID["EPSG",9001]]]]
= CRS("+proj=tmerc +lat_0=38 +lon_0=127.5 +k=0.9996 +x_0=1000000 +y_0=2000000 +ellps=GRS80 +units=m +no_defs")
from_crs = CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs")
to_crs proj4string(seoul_s) <- from_crs
<- spTransform(seoul_s, to_crs) ##좌표계 전환 seoul_s2
Warning: PROJ support is provided by the sf and terra packages among others
@polygons[[1]]@Polygons[[1]]@coords[1:4, ] seoul_s2
[,1] [,2]
[1,] 127.0086 37.58047
[2,] 127.0087 37.58045
[3,] 127.0088 37.58044
[4,] 127.0089 37.58042
<- fortify(seoul_s2) seoul_s_df
Regions defined for each Polygons
head(seoul_s_df)
<- ggplot()+geom_polygon(data=seoul_s_df, aes(x=long, y=lat, group=group), fill='white', color='grey')
seoul_map2 seoul_map2
<-seoul_map2 + geom_point(data=wifi, aes(x=lon, y=lat, color=company), alpha=0.5)+ xlim(c(126.7, 127.3)) + ylim(c(37.3, 38.0)) + coord_fixed(ratio=1)
seoul_wifi seoul_wifi
Warning: Removed 10118 rows containing missing values (`geom_point()`).