Diagrama de ven, cae dentro los RDA
source("forward.r")
getwd()
## [1] "C:/Users/Claudia Gomez/OneDrive - Universidad Nacional de Costa Rica/ecocuantitativa/claudia_gomez"
library(ade4)
library(vegan)
## Loading required package: permute
## Loading required package: lattice
## This is vegan 2.6-4
library(readxl)
biologica <- read_xlsx("./bases_datos/EVALUACION_04.xlsx",
sheet = 1,
col_names = TRUE)
ambiental <- read_xlsx("./bases_datos/EVALUACION_04.xlsx",
sheet = 2,
col_names = TRUE)
str(biologica)
## tibble [14 × 44] (S3: tbl_df/tbl/data.frame)
## $ Sp01: num [1:14] 0 0 4 1 0 0 0 0 0 0 ...
## $ Sp02: num [1:14] 0 0 0 0 0 2 48 0 0 2 ...
## $ Sp03: num [1:14] 0 2 2 3 0 0 2 3 16 6 ...
## $ Sp04: num [1:14] 129 122 143 73 208 12 195 282 27 0 ...
## $ Sp05: num [1:14] 0 0 0 0 5 0 0 0 0 1 ...
## $ Sp06: num [1:14] 0 2 2 4 0 0 0 0 0 2 ...
## $ Sp07: num [1:14] 0 0 0 0 0 0 0 2 0 0 ...
## $ Sp08: num [1:14] 27 9 11 14 8 0 21 10 23 16 ...
## $ Sp09: num [1:14] 0 0 0 0 0 0 0 2 0 0 ...
## $ Sp10: num [1:14] 0 0 0 0 0 0 0 0 0 0 ...
## $ Sp11: num [1:14] 0 0 0 0 0 0 0 0 0 0 ...
## $ Sp12: num [1:14] 5 10 6 21 9 0 38 3 0 7 ...
## $ Sp13: num [1:14] 2 0 0 0 0 0 0 0 0 0 ...
## $ Sp14: num [1:14] 0 0 0 0 0 0 0 0 0 0 ...
## $ Sp15: num [1:14] 0 0 0 0 1 0 0 0 0 0 ...
## $ Sp16: num [1:14] 0 1 3 0 0 0 1 0 0 0 ...
## $ Sp17: num [1:14] 2 97 172 2 3 1 6 5 1 13 ...
## $ Sp18: num [1:14] 0 7 0 1 1 0 0 8 1 2 ...
## $ Sp19: num [1:14] 0 6 0 0 1 0 1 0 0 7 ...
## $ Sp20: num [1:14] 0 0 0 0 1 0 0 0 0 0 ...
## $ Sp21: num [1:14] 0 0 0 0 0 0 1 0 0 0 ...
## $ Sp22: num [1:14] 0 7 0 1 3 0 2 3 0 2 ...
## $ Sp23: num [1:14] 24 1 87 29 24 9 1 6 14 13 ...
## $ Sp24: num [1:14] 8 0 0 0 1 0 14 2 0 0 ...
## $ Sp25: num [1:14] 33 43 10 107 0 29 20 26 11 0 ...
## $ Sp26: num [1:14] 0 0 0 7 0 0 0 0 0 0 ...
## $ Sp27: num [1:14] 0 1 1 0 0 0 3 6 0 0 ...
## $ Sp28: num [1:14] 0 0 1 0 0 0 0 0 0 0 ...
## $ Sp29: num [1:14] 0 0 0 0 2 0 0 0 0 0 ...
## $ Sp30: num [1:14] 0 0 0 0 0 0 7 0 0 0 ...
## $ Sp31: num [1:14] 0 2 0 0 4 0 0 0 0 0 ...
## $ Sp32: num [1:14] 0 0 0 0 0 0 0 0 0 0 ...
## $ Sp33: num [1:14] 0 12 12 1 12 1 3 0 0 2 ...
## $ Sp34: num [1:14] 0 0 0 0 0 0 2 0 0 0 ...
## $ Sp35: num [1:14] 7 0 35 0 17 0 0 2 3 1 ...
## $ Sp36: num [1:14] 0 0 0 0 0 0 11 0 0 2 ...
## $ Sp37: num [1:14] 6 12 28 0 86 0 1 0 0 6 ...
## $ Sp38: num [1:14] 0 0 0 0 0 0 0 0 0 2 ...
## $ Sp39: num [1:14] 0 1 0 0 0 0 2 0 0 0 ...
## $ Sp40: num [1:14] 73 279 292 67 467 1 26 437 22 405 ...
## $ Sp41: num [1:14] 1 0 0 0 0 0 0 0 0 0 ...
## $ Sp42: num [1:14] 0 0 0 0 0 0 0 0 0 0 ...
## $ Sp43: num [1:14] 0 0 0 0 0 0 0 2 0 0 ...
## $ Sp44: num [1:14] 0 0 0 0 0 0 1 0 0 0 ...
colSums(ambiental)
## parametro01 parametro02 parametro03 parametro04 parametro05 parametro06
## 2.621000e+02 4.979000e+01 1.127600e+02 1.384160e+03 1.628330e+03 8.596700e+02
## parametro07 parametro08 parametro09 parametro10 parametro11 parametro12
## 1.103100e+02 3.611940e+03 8.530000e+01 1.664000e+03 6.215000e+02 3.788900e+02
## parametro13 parametro14 parametro15 parametro16 parametro17 parametro18
## 9.208784e-01 1.600800e+00 3.572440e+01 3.779270e+01 1.017870e+02 6.298300e+01
## parametro19 parametro20 parametro21 parametro22 parametro23
## 5.157100e+01 5.178100e+01 1.610600e+02 1.552440e+07 9.141400e+06
rowSums(biologica)
## [1] 317 614 809 331 853 55 406 799 118 489 229 97 207 34
#transformación
biologica.log<- decostand(biologica[ ,-11,14,32,43], method = "log")
biologica.log
biol.bray<-vegdist(biologica.log, distance = "bray")
env.std <- decostand(ambiental[ ,-11,14,32,43], "standardize")#Seleccionamos la normalización, esto no es una regla.
spe.euc<-vegdist(env.std,method="euclidean")
dca<-decorana(biologica[ ,-11,14,32,43])
## Warning in decorana(biologica[, -11, 14, 32, 43]): some species were removed
## because they were missing in the data
summary(dca)
##
## Call:
## decorana(veg = biologica[, -11, 14, 32, 43])
##
## Detrended correspondence analysis with 26 segments.
## Rescaling of axes with 4 iterations.
## Total inertia (scaled Chi-square): NaN
##
## DCA1 DCA2 DCA3 DCA4
## Eigenvalues 0.2899 0.13570 0.11654 0.05839
## Additive Eigenvalues 0.0000 0.00000 0.00000 0.00000
## Decorana values 0.3037 0.09571 0.03354 0.01136
## Axis lengths 1.8033 1.14754 1.42240 0.82382
## Species scores:
##
## DCA1 DCA2 DCA3 DCA4 Totals
## Sp01 -0.1896 2.9071 -1.0479 -0.7076 5
## Sp02 2.9163 -0.4018 1.0856 -0.4445 52
## Sp03 0.8959 2.0826 3.0698 0.8618 34
## Sp04 0.8509 -0.3998 -0.2258 -0.1534 1290
## Sp05 -1.5074 -5.0183 0.7318 1.0373 7
## Sp06 0.8313 1.1596 -0.6139 -2.4319 11
## Sp07 -0.2027 -1.0557 -0.3359 -0.2763 2
## Sp08 0.9349 0.7839 1.2857 1.9044 168
## Sp09 -0.2027 -1.0557 -0.3359 -0.2763 2
## Sp10 1.0875 -0.3722 0.3968 1.3415 1
## Sp12 1.6374 -0.2562 0.7144 -0.7544 106
## Sp13 0.6655 -1.3669 -3.8768 4.8448 3
## Sp14 0.1651 0.3883 0.2243 0.0979 0
## Sp15 -1.2995 -7.5303 0.3195 -2.8839 1
## Sp16 0.4031 2.3559 -0.0312 -0.8669 5
## Sp17 -0.7682 2.3398 -0.7056 -1.3542 307
## Sp18 -0.3871 0.3658 1.0569 0.6267 22
## Sp19 -0.9314 0.5367 0.0361 -6.0089 15
## Sp20 -1.2995 -7.5303 0.3195 -2.8839 1
## Sp21 3.0601 -0.9139 1.2742 -0.0614 1
## Sp22 0.0203 -0.6039 0.8169 0.2927 20
## Sp23 0.2936 1.5268 -0.7061 0.3817 230
## Sp24 2.1784 -1.8824 -1.5080 -1.2306 25
## Sp25 1.5523 0.8934 -1.5638 0.1036 307
## Sp26 1.9976 0.4619 0.5280 0.0927 7
## Sp27 1.0186 -0.3019 0.7275 0.7200 16
## Sp28 -1.1687 3.4953 -1.2663 -0.9025 1
## Sp29 -1.2995 -7.5303 0.3195 -2.8839 2
## Sp30 3.0601 -0.9139 1.2742 -0.0614 7
## Sp31 -1.1690 -3.2026 0.8897 1.7286 7
## Sp32 0.1651 0.3883 0.2243 0.0979 0
## Sp33 -0.2952 0.7217 -0.4216 -1.1027 47
## Sp34 3.0601 -0.9139 1.2742 -0.0614 2
## Sp35 -0.8141 1.4340 0.3938 1.9388 76
## Sp36 2.4313 -0.6778 1.1377 -1.4700 14
## Sp37 -1.0495 -2.3625 -0.7747 -2.7238 139
## Sp38 -2.2326 0.3629 -1.1549 -11.1165 2
## Sp39 2.1364 0.2717 1.1492 -0.5639 3
## Sp40 -0.7548 -0.2809 0.3175 0.2678 2411
## Sp41 1.8745 -1.5107 -3.7049 -1.0195 3
## Sp42 0.1651 0.3883 0.2243 0.0979 0
## Sp43 -0.5127 0.2670 1.0969 7.0931 5
## Sp44 3.0601 -0.9139 1.2742 -0.0614 1
##
## Site scores:
##
## DCA1 DCA2 DCA3 DCA4 Totals
## [1,] 0.4841 -0.0153 -0.1989 0.1682 317
## [2,] -0.1776 0.2093 -0.0800 -0.2229 614
## [3,] -0.2810 0.5354 -0.1637 -0.1933 809
## [4,] 0.7590 0.3615 -0.4247 0.0895 331
## [5,] -0.3197 -0.4779 0.0522 -0.1324 853
## [6,] 1.1252 0.6696 -0.9646 0.0276 55
## [7,] 1.2130 -0.2536 0.1229 -0.2026 406
## [8,] -0.0384 -0.2295 0.0810 0.1453 799
## [9,] 0.5067 0.6151 0.4578 0.6010 118
## [10,] -0.5903 -0.1072 0.3165 0.0807 489
## [11,] -0.2355 -0.1682 0.1332 0.1427 229
## [12,] 0.3202 0.0597 -0.0810 0.2491 97
## [13,] -0.4578 -0.0745 0.3401 0.5772 207
## [14,] 0.7987 0.2565 -0.6703 0.0356 34
rda<-rda(biologica.log ~ .,env.std)
rda
## Call: rda(formula = biologica.log ~ parametro01 + parametro02 +
## parametro03 + parametro04 + parametro05 + parametro06 + parametro07 +
## parametro08 + parametro09 + parametro10 + parametro12 + parametro13 +
## parametro14 + parametro15 + parametro16 + parametro17 + parametro18 +
## parametro19 + parametro20 + parametro21 + parametro22 + parametro23,
## data = env.std)
##
## Inertia Proportion Rank
## Total 76.37 1.00
## Constrained 76.37 1.00 13
## Unconstrained 0.00 0.00 0
## Inertia is variance
## Some constraints or conditions were aliased because they were redundant
##
## Eigenvalues for constrained axes:
## RDA1 RDA2 RDA3 RDA4 RDA5 RDA6 RDA7 RDA8 RDA9 RDA10 RDA11
## 23.432 13.745 9.655 7.492 6.476 5.286 3.284 2.225 1.854 1.185 0.723
## RDA12 RDA13
## 0.573 0.439
(R2<-RsquareAdj(rda)$r.squared)
## [1] 1
(R2adj<-RsquareAdj(rda)$adj.r.squared)
## [1] NA
anova.cca(rda, step=1000)
anova.cca(rda, by="axis", step=1000)
#reconstruccion
reconstruccion<-rda(biologica.log ~ parametro01 + parametro02 + parametro03 + parametro04 + parametro05 + parametro06 + parametro07,env.std)
reconstruccion
## Call: rda(formula = biologica.log ~ parametro01 + parametro02 +
## parametro03 + parametro04 + parametro05 + parametro06 + parametro07,
## data = env.std)
##
## Inertia Proportion Rank
## Total 76.3703 1.0000
## Constrained 48.4076 0.6339 7
## Unconstrained 27.9627 0.3661 6
## Inertia is variance
##
## Eigenvalues for constrained axes:
## RDA1 RDA2 RDA3 RDA4 RDA5 RDA6 RDA7
## 17.769 9.103 7.942 5.861 3.897 2.171 1.665
##
## Eigenvalues for unconstrained axes:
## PC1 PC2 PC3 PC4 PC5 PC6
## 13.092 4.946 3.999 2.739 2.230 0.957
(R2<-RsquareAdj(reconstruccion)$r.squared)
## [1] 0.6338537
(R2adj<-RsquareAdj(reconstruccion)$adj.r.squared)
## [1] 0.2066831
anova.cca(reconstruccion, step=1000)
anova.cca(reconstruccion, by="axis", step=1000)
vif.cca(reconstruccion)
## parametro01 parametro02 parametro03 parametro04 parametro05 parametro06
## 14.146846 13.078638 152.269808 169.127564 3.476355 1.791923
## parametro07
## 4.096341
#Los mejores parametros son el 05, 06 y el 07
reconstruccion2<-rda(biologica.log ~ parametro05 + parametro06 + parametro07,env.std)
reconstruccion2
## Call: rda(formula = biologica.log ~ parametro05 + parametro06 +
## parametro07, data = env.std)
##
## Inertia Proportion Rank
## Total 76.3703 1.0000
## Constrained 16.7935 0.2199 3
## Unconstrained 59.5769 0.7801 10
## Inertia is variance
##
## Eigenvalues for constrained axes:
## RDA1 RDA2 RDA3
## 8.633 5.522 2.639
##
## Eigenvalues for unconstrained axes:
## PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10
## 20.592 13.428 8.233 5.397 3.968 2.528 2.356 1.835 0.713 0.527
#Este modelo explica un 16.79% de la composicion biologica