names(Grado_alcohólico)
[1] "Grado_alcohólico_volumétrico_%Volumen"
[2] "Variedad"
View(Grado_alcohólico)
attach(Grado_alcohólico)
summary(Grado_alcohólico)
Grado_alcohólico_volumétrico_%Volumen Variedad
Min. :11.01 Length:31
1st Qu.:12.28 Class :character
Median :13.11 Mode :character
Mean :12.78
3rd Qu.:13.41
Max. :13.75
boxplot(`Grado_alcohólico_volumétrico_%Volumen`~Variedad)

aov(`Grado_alcohólico_volumétrico_%Volumen`~Variedad)
Call:
aov(formula = `Grado_alcohólico_volumétrico_%Volumen` ~ Variedad)
Terms:
Variedad Residuals
Sum of Squares 3.390108 18.581267
Deg. of Freedom 6 24
Residual standard error: 0.8798974
Estimated effects may be unbalanced
aov.Vino1 <- aov(`Grado_alcohólico_volumétrico_%Volumen`~Variedad,data = Grado_alcohólico)
aov(aov.Vino1)
Call:
aov(formula = aov.Vino1)
Terms:
Variedad Residuals
Sum of Squares 3.390108 18.581267
Deg. of Freedom 6 24
Residual standard error: 0.8798974
Estimated effects may be unbalanced
summary(aov.Vino1)
Df Sum Sq Mean Sq F value Pr(>F)
Variedad 6 3.39 0.5650 0.73 0.63
Residuals 24 18.58 0.7742
ggplot(Grado_alcohólico, aes(x = Variedad,
y = `Grado_alcohólico_volumétrico_%Volumen`)) +
geom_boxplot()

ggplot(Grado_alcohólico, aes(x = Variedad,
y = `Grado_alcohólico_volumétrico_%Volumen`)) +
geom_boxplot() + geom_jitter() + ggtitle(expression(F["5,65"]==14.56*",p<0.05")) + theme(legend.position = "none")

ggplot(Grado_alcohólico, aes(x = Variedad, y = `Grado_alcohólico_volumétrico_%Volumen`, color = Variedad)) +
geom_boxplot() +
theme_bw() + ggtitle(expression(F["5,65"]==14.56*",p<0.05"))

TukeyHSD(aov.Vino1)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = `Grado_alcohólico_volumétrico_%Volumen` ~ Variedad, data = Grado_alcohólico)
$Variedad
diff lwr upr
Cabernet sauvignon-Cabernet Franc -0.900000000 -3.2640004 1.4640004
Carmenere-Cabernet Franc 0.080000000 -3.0152031 3.1752031
Italia-Cabernet Franc -0.660000000 -2.2707948 0.9507948
Malbeck-Cabernet Franc 0.050000000 -2.0134687 2.1134687
Negra Criolla-Cabernet Franc -0.110000000 -1.6860003 1.4660003
Syrah-Cabernet Franc 0.083333333 -1.9801354 2.1468021
Carmenere-Cabernet sauvignon 0.980000000 -2.4805423 4.4405423
Italia-Cabernet sauvignon 0.240000000 -1.9937704 2.4737704
Malbeck-Cabernet sauvignon 0.950000000 -1.6293359 3.5293359
Negra Criolla-Cabernet sauvignon 0.790000000 -1.4188113 2.9988113
Syrah-Cabernet sauvignon 0.983333333 -1.5960026 3.5626693
Italia-Carmenere -0.740000000 -3.7369175 2.2569175
Malbeck-Carmenere -0.030000000 -3.2926305 3.2326305
Negra Criolla-Carmenere -0.190000000 -3.1683606 2.7883606
Syrah-Carmenere 0.003333333 -3.2592972 3.2659639
Malbeck-Italia 0.710000000 -1.2028867 2.6228867
Negra Criolla-Italia 0.550000000 -0.8229564 1.9229564
Syrah-Italia 0.743333333 -1.1695534 2.6562200
Negra Criolla-Malbeck -0.160000000 -2.0436806 1.7236806
Syrah-Malbeck 0.033333333 -2.2736948 2.3403615
Syrah-Negra Criolla 0.193333333 -1.6903473 2.0770140
p adj
Cabernet sauvignon-Cabernet Franc 0.8784952
Carmenere-Cabernet Franc 1.0000000
Italia-Cabernet Franc 0.8380364
Malbeck-Cabernet Franc 1.0000000
Negra Criolla-Cabernet Franc 0.9999869
Syrah-Cabernet Franc 0.9999995
Carmenere-Cabernet sauvignon 0.9674390
Italia-Cabernet sauvignon 0.9998346
Malbeck-Cabernet sauvignon 0.8938660
Negra Criolla-Cabernet sauvignon 0.9061231
Syrah-Cabernet sauvignon 0.8778191
Italia-Carmenere 0.9834754
Malbeck-Carmenere 1.0000000
Negra Criolla-Carmenere 0.9999923
Syrah-Carmenere 1.0000000
Malbeck-Italia 0.8904315
Negra Criolla-Italia 0.8514315
Syrah-Italia 0.8681169
Negra Criolla-Malbeck 0.9999582
Syrah-Malbeck 1.0000000
Syrah-Negra Criolla 0.9998732
plot(TukeyHSD(aov.Vino1))

LS0tDQp0aXRsZTogIkxleWRpIExpc2JldGggQmVsaXphcmlvIFlhbnF1aSINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQpgYGB7cn0NCm5hbWVzKEdyYWRvX2FsY29ow7NsaWNvKQ0KYGBgDQoNCmBgYHtyfQ0KVmlldyhHcmFkb19hbGNvaMOzbGljbykNCmBgYA0KDQpgYGB7cn0NCmF0dGFjaChHcmFkb19hbGNvaMOzbGljbykNCmBgYA0KDQoNCmBgYHtyfQ0Kc3VtbWFyeShHcmFkb19hbGNvaMOzbGljbykNCmBgYA0KDQoNCmBgYHtyfQ0KYm94cGxvdChgR3JhZG9fYWxjb2jDs2xpY29fdm9sdW3DqXRyaWNvXyVWb2x1bWVuYH5WYXJpZWRhZCkNCmBgYA0KDQoNCmBgYHtyfQ0KYW92KGBHcmFkb19hbGNvaMOzbGljb192b2x1bcOpdHJpY29fJVZvbHVtZW5gflZhcmllZGFkKQ0KYGBgDQoNCg0KYGBge3J9DQphb3YuVmlubzEgPC0gYW92KGBHcmFkb19hbGNvaMOzbGljb192b2x1bcOpdHJpY29fJVZvbHVtZW5gflZhcmllZGFkLGRhdGEgPSBHcmFkb19hbGNvaMOzbGljbykNCmBgYA0KDQoNCmBgYHtyfQ0KYW92KGFvdi5WaW5vMSkNCmBgYA0KDQoNCmBgYHtyfQ0Kc3VtbWFyeShhb3YuVmlubzEpDQpgYGANCg0KDQpgYGB7cn0NCmdncGxvdChHcmFkb19hbGNvaMOzbGljbywgICAgICAgICAgICAgICAgIGFlcyh4ID0gVmFyaWVkYWQsDQp5ID0gYEdyYWRvX2FsY29ow7NsaWNvX3ZvbHVtw6l0cmljb18lVm9sdW1lbmApKSArDQpnZW9tX2JveHBsb3QoKQ0KYGBgDQoNCg0KYGBge3J9DQpnZ3Bsb3QoR3JhZG9fYWxjb2jDs2xpY28sICAgICAgICAgICAgICAgICBhZXMoeCA9IFZhcmllZGFkLA0KeSA9IGBHcmFkb19hbGNvaMOzbGljb192b2x1bcOpdHJpY29fJVZvbHVtZW5gKSkgKw0KZ2VvbV9ib3hwbG90KCkgKyBnZW9tX2ppdHRlcigpICsgZ2d0aXRsZShleHByZXNzaW9uKEZbIjUsNjUiXT09MTQuNTYqIixwPDAuMDUiKSkgKyB0aGVtZShsZWdlbmQucG9zaXRpb24gPSAibm9uZSIpDQpgYGANCg0KDQpgYGB7cn0NCmdncGxvdChHcmFkb19hbGNvaMOzbGljbywgYWVzKHggPSBWYXJpZWRhZCwgeSA9IGBHcmFkb19hbGNvaMOzbGljb192b2x1bcOpdHJpY29fJVZvbHVtZW5gLCBjb2xvciA9IFZhcmllZGFkKSkgKw0KICAgIGdlb21fYm94cGxvdCgpICsNCiAgICB0aGVtZV9idygpICsgZ2d0aXRsZShleHByZXNzaW9uKEZbIjUsNjUiXT09MTQuNTYqIixwPDAuMDUiKSkgDQpgYGANCg0KDQpgYGB7cn0NClR1a2V5SFNEKGFvdi5WaW5vMSkNCmBgYA0KDQoNCmBgYHtyfQ0KcGxvdChUdWtleUhTRChhb3YuVmlubzEpKQ0KYGBgDQoNCg==