Carga de datos

library(wooldridge)
data("hprice1")
head(force(hprice1),n=5)
##   price assess bdrms lotsize sqrft colonial   lprice  lassess llotsize   lsqrft
## 1   300  349.1     4    6126  2438        1 5.703783 5.855359 8.720297 7.798934
## 2   370  351.5     3    9903  2076        1 5.913503 5.862210 9.200593 7.638198
## 3   191  217.7     3    5200  1374        0 5.252274 5.383118 8.556414 7.225482
## 4   195  231.8     3    4600  1448        1 5.273000 5.445875 8.433811 7.277938
## 5   373  319.1     4    6095  2514        1 5.921578 5.765504 8.715224 7.829630

Estimación del modelo

library(stargazer)
modelo_estimado<-lm(formula = price~lotsize+sqrft+bdrms,data = hprice1)
stargazer(modelo_estimado,type = "text",title = "Modelo Estimado")
## 
## Modelo Estimado
## ===============================================
##                         Dependent variable:    
##                     ---------------------------
##                                price           
## -----------------------------------------------
## lotsize                      0.002***          
##                               (0.001)          
##                                                
## sqrft                        0.123***          
##                               (0.013)          
##                                                
## bdrms                         13.853           
##                               (9.010)          
##                                                
## Constant                      -21.770          
##                              (29.475)          
##                                                
## -----------------------------------------------
## Observations                    88             
## R2                             0.672           
## Adjusted R2                    0.661           
## Residual Std. Error      59.833 (df = 84)      
## F Statistic           57.460*** (df = 3; 84)   
## ===============================================
## Note:               *p<0.1; **p<0.05; ***p<0.01

Prueba de Durbin Watson

library(lmtest)
dwtest(modelo_estimado,alternative = "two.sided",iterations = 1000)
## 
##  Durbin-Watson test
## 
## data:  modelo_estimado
## DW = 2.1098, p-value = 0.6218
## alternative hypothesis: true autocorrelation is not 0
library(car)
durbinWatsonTest(modelo_estimado,simulate = TRUE,reps = 1000)
##  lag Autocorrelation D-W Statistic p-value
##    1     -0.05900522      2.109796   0.666
##  Alternative hypothesis: rho != 0

En ambos casos, se puede rechazar la presencia de autocorrelación (No se rechaza la Ho), ya que el Pvalue > 0.05

Prueba del Multiplicador de Lagrange [Breusch-Godfrey]

library(dplyr)
library(tidyr)
library(kableExtra)
residuos<-modelo_estimado$residuals
cbind(residuos,hprice1) %>%
  as.data.frame() %>%
  mutate(Lag1=dplyr::lag(residuos,1),
         Lag2=dplyr::lag(residuos,2))%>%
  replace_na(list(Lag1=0,Lag2=0))-> DATA_PRUEBA_BG
print(DATA_PRUEBA_BG)
##       residuos   price assess bdrms lotsize sqrft colonial   lprice  lassess
## 1   -45.639765 300.000  349.1     4    6126  2438        1 5.703783 5.855359
## 2    74.848732 370.000  351.5     3    9903  2076        1 5.913503 5.862210
## 3    -8.236558 191.000  217.7     3    5200  1374        0 5.252274 5.383118
## 4   -12.081520 195.000  231.8     3    4600  1448        1 5.273000 5.445875
## 5    18.093192 373.000  319.1     4    6095  2514        1 5.921578 5.765504
## 6    62.939597 466.275  414.5     5    8566  2754        1 6.144775 6.027073
## 7    40.320875 332.500  367.8     3    9000  2067        1 5.806640 5.907539
## 8    69.843246 315.000  300.2     3    6210  1731        1 5.752573 5.704449
## 9   -43.142550 206.000  236.1     3    6000  1767        0 5.327876 5.464255
## 10  -17.817835 240.000  256.3     3    2892  1890        0 5.480639 5.546349
## 11  -47.855859 285.000  314.0     4    6000  2336        1 5.652489 5.749393
## 12  -85.461169 300.000  416.5     5    7047  2634        1 5.703783 6.031887
## 13  -54.466158 405.000  434.0     3   12237  3375        1 6.003887 6.073044
## 14  -54.300415 212.000  279.3     3    6460  1899        0 5.356586 5.632287
## 15  -52.129801 265.000  287.5     3    6519  2312        1 5.579730 5.661223
## 16  -29.766931 227.400  232.9     4    3597  1760        1 5.426711 5.450609
## 17  -51.441108 240.000  303.8     4    5922  2000        0 5.480639 5.716370
## 18   32.675968 285.000  305.6     3    7123  1774        1 5.652489 5.722277
## 19   67.603959 268.000  266.7     3    5642  1376        1 5.590987 5.586124
## 20   33.275839 310.000  326.0     4    8602  1835        1 5.736572 5.786897
## 21  -16.596960 266.000  294.3     3    5494  2048        1 5.583496 5.684599
## 22  -26.696234 270.000  318.8     3    7800  2124        1 5.598422 5.764564
## 23  -24.271531 225.000  294.2     3    6003  1768        0 5.416101 5.684260
## 24 -107.080889 150.000  208.0     4    5218  1732        0 5.010635 5.337538
## 25   30.924022 247.000  239.7     3    9425  1440        1 5.509388 5.479388
## 26    5.363331 275.000  294.1     3    6114  1932        0 5.616771 5.683920
## 27  -40.869022 230.000  267.4     3    6710  1932        0 5.438079 5.588746
## 28   46.907165 343.000  359.9     3    8577  2106        1 5.837730 5.885826
## 29  -48.350295 477.500  478.1     7    8400  3529        1 6.168564 6.169820
## 30   44.334467 350.000  355.3     4    9773  2051        1 5.857933 5.872962
## 31   -6.707262 230.000  217.8     4    4806  1573        1 5.438079 5.383577
## 32  -77.172687 335.000  385.0     4   15086  2829        0 5.814130 5.953243
## 33   19.168108 251.000  224.3     3    5763  1630        1 5.525453 5.412984
## 34  -37.749811 235.000  251.9     4    6383  1840        1 5.459586 5.529032
## 35   55.091131 361.000  354.9     4    9000  2066        1 5.888878 5.871836
## 36  -59.845223 190.000  212.5     4    3500  1702        0 5.247024 5.358942
## 37  -33.801248 360.000  452.4     4   10892  2750        1 5.886104 6.114567
## 38   18.801816 575.000  518.1     5   15634  3880        1 6.354370 6.250168
## 39  -65.502849 209.001  289.4     4    6400  1854        1 5.342339 5.667810
## 40   26.236229 225.000  268.1     2    8880  1421        0 5.416101 5.591360
## 41    9.099900 246.000  278.5     3    6314  1662        1 5.505332 5.629418
## 42  198.660139 713.500  655.4     5   28231  3331        1 6.570182 6.485246
## 43   -3.537785 248.000  273.3     4    7050  1656        1 5.513429 5.610570
## 44   55.470305 230.000  212.1     3    5305  1171        0 5.438079 5.357058
## 45   32.253952 375.000  354.0     5    6637  2293        1 5.926926 5.869297
## 46   12.433611 265.000  252.1     3    7834  1764        1 5.579730 5.529826
## 47  -48.704980 313.000  324.0     3    1000  2768        0 5.746203 5.780744
## 48  -91.243980 417.500  475.5     4    8112  3733        0 6.034285 6.164367
## 49   32.529367 253.000  256.8     3    5850  1536        1 5.533390 5.548297
## 50   66.478628 315.000  279.2     4    6660  1638        1 5.752573 5.631928
## 51  -11.629207 264.000  313.9     3    6637  1972        1 5.575949 5.749074
## 52   36.031430 255.000  279.8     2   15267  1478        0 5.541264 5.634075
## 53    6.700640 210.000  198.7     3    5146  1408        1 5.347107 5.291796
## 54  -74.702719 180.000  221.5     3    6017  1812        1 5.192957 5.400423
## 55    1.399296 250.000  268.4     3    8410  1722        1 5.521461 5.592478
## 56  -13.815798 250.000  282.3     4    5625  1780        1 5.521461 5.642970
## 57  -41.749618 209.000  230.7     4    5600  1674        1 5.342334 5.441118
## 58  -16.271207 258.000  287.0     4    6525  1850        1 5.552959 5.659482
## 59   20.334434 289.000  298.7     3    6060  1925        1 5.666427 5.699440
## 60  -16.762094 316.000  314.6     4    5539  2343        0 5.755742 5.751302
## 61   -2.824941 225.000  291.0     3    7566  1567        0 5.416101 5.673323
## 62   16.718018 266.000  286.4     4    5484  1664        1 5.583496 5.657390
## 63   67.426518 310.000  253.6     6    5348  1386        1 5.736572 5.535758
## 64   69.707122 471.250  482.0     5   15834  2617        1 6.155389 6.177944
## 65   -0.195089 335.000  384.3     4    8022  2321        1 5.814130 5.951424
## 66  112.729191 495.000  543.6     4   11966  2638        1 6.204558 6.298213
## 67   -6.752801 279.500  336.5     4    8460  1915        1 5.633002 5.818598
## 68   -2.745208 380.000  515.1     4   15105  2589        1 5.940171 6.244361
## 69  -63.699108 325.000  437.0     4   10859  2709        0 5.783825 6.079933
## 70   -7.662789 220.000  263.4     3    6300  1587        1 5.393628 5.573674
## 71  -36.663785 215.000  300.4     3   11554  1694        0 5.370638 5.705115
## 72   19.219211 240.000  250.7     3    6000  1536        1 5.480639 5.524257
## 73  163.795081 725.000  708.6     5   31000  3662        0 6.586172 6.563291
## 74  -11.312669 230.000  276.3     3    4054  1736        1 5.438079 5.621487
## 75  -13.462160 306.000  388.6     2   20700  2205        0 5.723585 5.962551
## 76  209.375830 425.000  252.5     3    5525  1502        0 6.052089 5.531411
## 77 -115.508697 318.000  295.2     4   92681  1696        1 5.762052 5.687653
## 78   24.909926 330.000  359.5     3    8178  2186        1 5.799093 5.884714
## 79  -36.646568 246.000  276.2     4    5944  1928        1 5.505332 5.621125
## 80    7.386314 225.000  249.8     3   18838  1294        0 5.416101 5.520660
## 81 -120.026447 111.000  202.4     4    4315  1535        1 4.709530 5.310246
## 82   -5.446904 268.125  254.0     3    5167  1980        1 5.591453 5.537334
## 83  -62.566594 244.000  306.8     4    7893  2090        1 5.497168 5.726196
## 84   37.147186 295.000  318.3     3    6056  1837        1 5.686975 5.762994
## 85   -6.402439 236.000  259.4     3    5828  1715        0 5.463832 5.558371
## 86  -23.651448 202.500  258.1     3    6341  1574        0 5.310740 5.553347
## 87   54.418366 219.000  232.0     2    6362  1185        0 5.389072 5.446737
## 88  -19.683427 242.000  252.0     4    4950  1774        1 5.488938 5.529429
##     llotsize   lsqrft        Lag1        Lag2
## 1   8.720297 7.798934    0.000000    0.000000
## 2   9.200593 7.638198  -45.639765    0.000000
## 3   8.556414 7.225482   74.848732  -45.639765
## 4   8.433811 7.277938   -8.236558   74.848732
## 5   8.715224 7.829630  -12.081520   -8.236558
## 6   9.055556 7.920810   18.093192  -12.081520
## 7   9.104980 7.633853   62.939597   18.093192
## 8   8.733916 7.456455   40.320875   62.939597
## 9   8.699514 7.477038   69.843246   40.320875
## 10  7.969704 7.544332  -43.142550   69.843246
## 11  8.699514 7.756196  -17.817835  -43.142550
## 12  8.860357 7.876259  -47.855859  -17.817835
## 13  9.412219 8.124150  -85.461169  -47.855859
## 14  8.773385 7.549083  -54.466158  -85.461169
## 15  8.782476 7.745868  -54.300415  -54.466158
## 16  8.187856 7.473069  -52.129801  -54.300415
## 17  8.686430 7.600903  -29.766931  -52.129801
## 18  8.871084 7.480992  -51.441108  -29.766931
## 19  8.637994 7.226936   32.675968  -51.441108
## 20  9.059750 7.514800   67.603959   32.675968
## 21  8.611412 7.624619   33.275839   67.603959
## 22  8.961879 7.661057  -16.596960   33.275839
## 23  8.700015 7.477604  -26.696234  -16.596960
## 24  8.559870 7.457032  -24.271531  -26.696234
## 25  9.151121 7.272398 -107.080889  -24.271531
## 26  8.718336 7.566311   30.924022 -107.080889
## 27  8.811355 7.566311    5.363331   30.924022
## 28  9.056840 7.652546  -40.869022    5.363331
## 29  9.035987 8.168770   46.907165  -40.869022
## 30  9.187379 7.626083  -48.350295   46.907165
## 31  8.477620 7.360740   44.334467  -48.350295
## 32  9.621523 7.947679   -6.707262   44.334467
## 33  8.659213 7.396335  -77.172687   -6.707262
## 34  8.761394 7.517521   19.168108  -77.172687
## 35  9.104980 7.633369  -37.749811   19.168108
## 36  8.160519 7.439559   55.091131  -37.749811
## 37  9.295784 7.919356  -59.845223   55.091131
## 38  9.657204 8.263591  -33.801248  -59.845223
## 39  8.764053 7.525101   18.801816  -33.801248
## 40  9.091557 7.259116  -65.502849   18.801816
## 41  8.750525 7.415777   26.236229  -65.502849
## 42 10.248176 8.111028    9.099900   26.236229
## 43  8.860783 7.412160  198.660139    9.099900
## 44  8.576406 7.065613   -3.537785  198.660139
## 45  8.800415 7.737616   55.470305   -3.537785
## 46  8.966228 7.475339   32.253952   55.470305
## 47  6.907755 7.925880   12.433611   32.253952
## 48  9.001100 8.224967  -48.704980   12.433611
## 49  8.674197 7.336937  -91.243980  -48.704980
## 50  8.803875 7.401231   32.529367  -91.243980
## 51  8.800415 7.586803   66.478628   32.529367
## 52  9.633449 7.298445  -11.629207   66.478628
## 53  8.545975 7.249926   36.031430  -11.629207
## 54  8.702344 7.502186    6.700640   36.031430
## 55  9.037177 7.451241  -74.702719    6.700640
## 56  8.634976 7.484369    1.399296  -74.702719
## 57  8.630522 7.422971  -13.815798    1.399296
## 58  8.783396 7.522941  -41.749618  -13.815798
## 59  8.709465 7.562681  -16.271207  -41.749618
## 60  8.619569 7.759187   20.334434  -16.271207
## 61  8.931419 7.356918  -16.762094   20.334434
## 62  8.609590 7.416980   -2.824941  -16.762094
## 63  8.584478 7.234177   16.718018   -2.824941
## 64  9.669915 7.869784   67.426518   16.718018
## 65  8.989944 7.749753   69.707122   67.426518
## 66  9.389825 7.877776   -0.195089   69.707122
## 67  9.043104 7.557473  112.729191   -0.195089
## 68  9.622781 7.859027   -6.752801  112.729191
## 69  9.292749 7.904335   -2.745208   -6.752801
## 70  8.748305 7.369601  -63.699108   -2.745208
## 71  9.354787 7.434848   -7.662789  -63.699108
## 72  8.699514 7.336937  -36.663785   -7.662789
## 73 10.341743 8.205765   19.219211  -36.663785
## 74  8.307459 7.459339  163.795081   19.219211
## 75  9.937889 7.698483  -11.312669  163.795081
## 76  8.617039 7.314553  -13.462160  -11.312669
## 77 11.436919 7.436028  209.375830  -13.462160
## 78  9.009203 7.689829 -115.508697  209.375830
## 79  8.690138 7.564239   24.909926 -115.508697
## 80  9.843632 7.165493  -36.646568   24.909926
## 81  8.369853 7.336286    7.386314  -36.646568
## 82  8.550048 7.590852 -120.026447    7.386314
## 83  8.973732 7.644919   -5.446904 -120.026447
## 84  8.708805 7.515889  -62.566594   -5.446904
## 85  8.670429 7.447168   37.147186  -62.566594
## 86  8.754792 7.361375   -6.402439   37.147186
## 87  8.758098 7.077498  -23.651448   -6.402439
## 88  8.507143 7.480992   54.418366  -23.651448

Prueba del Multiplicador de Lagrange [Breusch-Godfrey]

library(lmtest)
bgtest(modelo_estimado,order = 1)
## 
##  Breusch-Godfrey test for serial correlation of order up to 1
## 
## data:  modelo_estimado
## LM test = 0.39362, df = 1, p-value = 0.5304
bgtest(modelo_estimado,order = 2)
## 
##  Breusch-Godfrey test for serial correlation of order up to 2
## 
## data:  modelo_estimado
## LM test = 3.0334, df = 2, p-value = 0.2194

En ambos casos (primer y segundo orden) no se rechaza la Ho debido a que Pvalue > 0.05, por o tanto puede concluirse que los residuos del modelo no siguen autocorrelación.