Tải dữ liệu

setwd("/Users/thuphan/Desktop/R-STUDIO")
library(seminr)
library(readxl)
dulieu <- read_excel("dulieuold.xlsx")
dulieu <-na.omit(dulieu)
head(dulieu)
## # A tibble: 6 × 37
##   OIBB1 OIBB2 OIBB3 OIBB4 OIBB5   SM1   SM2   SM3   SM4   SM5   HM1   HM2   HM3
##   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1     1     1     1     1     1     1     1     1     1     1     1     1     1
## 2     1     1     1     1     1     1     2     1     1     1     1     1     1
## 3     1     1     1     1     1     1     3     1     1     1     2     2     2
## 4     2     2     2     2     2     1     1     1     1     1     1     1     1
## 5     1     1     1     1     1     1     1     1     1     1     3     3     1
## 6     3     2     3     3     3     1     1     1     2     2     1     1     2
## # ℹ 24 more variables: HM4 <dbl>, HM5 <dbl>, IST1 <dbl>, IST2 <dbl>,
## #   IST4 <dbl>, IST5 <dbl>, IST6 <dbl>, IST7 <dbl>, IST8 <dbl>, IST9 <dbl>,
## #   IST10 <dbl>, IST11 <dbl>, IST12 <dbl>, SI1 <dbl>, SI2 <dbl>, SI3 <dbl>,
## #   SI4 <dbl>, SI5 <dbl>, SI6 <dbl>, SI9 <dbl>, SI12 <dbl>, SI13 <dbl>,
## #   SI14 <dbl>, SI15 <dbl>

1. Thiết lập thang đo

thangdo <- constructs(
  composite("X1", multi_items("OIBB", 1:5), weights = mode_A),
  composite("X2",   multi_items("SM", 1:5), weights = mode_A),
  composite("X3",   multi_items("HM", 1:5), weights = mode_A),
  composite("X4",  multi_items("IST", c(1:2,4:12)), weights = mode_A),
  composite("X5",   multi_items("SI", c( 1:6,9,12:15)), weights = mode_A),
  interaction_term(iv = "X2", moderator = "X5", weights = mode_A, method =  two_stage),
  interaction_term(iv = "X3", moderator = "X5", weights = mode_A, method =  two_stage) # nhớ xoá "," cuối này
)

2. Thiết lập mối quan hệ

moiquanhe <-relationships(
  paths(from = c("X2", "X3", "X4","X5","X2*X5","X3*X5"), to =c("X1")),
  paths(from = c("X2", "X3"), to =c("X4"))
)

3. Chạy mô hình

3.1 Chạy CFA

cfa <- estimate_cfa(
  data = dulieu,
  measurement_model = as.reflective(thangdo) #(thang đo phải là reflective khong composite)
)

#cfa #hide lại kết quả nhiều quá
names(cfa)
## [1] "data"              "measurement_model" "factor_loadings"  
## [4] "constructs"        "construct_scores"  "item_weights"     
## [7] "lavaan_model"      "lavaan_output"
summary(cfa)
## 
## Results from  package seminr (2.3.2)
## Estimation used  package seminr (2.3.2)
## 
##  Fit metrics:
##      npar      fmin      logl       aic       bic    ntotal      bic2       rmr 
##  8.40e+01  5.88e-01 -3.34e+04  6.70e+04  6.74e+04  5.69e+02  6.71e+04  6.36e-02 
##      srmr      crmr       gfi      agfi      pgfi       mfi      ecvi 
##  3.09e-02  3.17e-02  9.41e-01  9.33e-01  8.28e-01  9.57e-01  1.47e+00 
##                          metric   scaled    robust
## cfi                    9.94e-01 9.96e-01  9.97e-01
## tli                    9.93e-01 9.96e-01  9.96e-01
## nnfi                   9.93e-01 9.96e-01  9.96e-01
## rni                    9.94e-01 9.96e-01  9.97e-01
## rmsea                  1.19e-02 8.51e-03  8.67e-03
## rmsea.ci.lower         0.00e+00 0.00e+00  0.00e+00
## rmsea.ci.upper         1.82e-02 1.59e-02  1.63e-02
## rmsea.pvalue           1.00e+00 1.00e+00  1.00e+00
## rmsea.notclose.pvalue 2.04e-202 0.00e+00 2.37e-199
## chisq                  6.69e+02 6.44e+02        NA
## df                     6.19e+02 6.19e+02        NA
## pvalue                 8.10e-02 2.32e-01        NA
## baseline.chisq         8.76e+03 7.87e+03        NA
## baseline.df            6.66e+02 6.66e+02        NA
## baseline.pvalue        0.00e+00 0.00e+00        NA
## rfi                    9.18e-01 9.12e-01        NA
## nfi                    9.24e-01 9.18e-01        NA
## pnfi                   8.58e-01 8.53e-01        NA
## ifi                    9.94e-01 9.96e-01        NA
## 
##  Loadings:
## $coefficients
##         X1   X2   X3   X4   X5
## OIBB1 0.72    .    .    .    .
## OIBB2 0.65    .    .    .    .
## OIBB3 0.71    .    .    .    .
## OIBB4 0.69    .    .    .    .
## OIBB5 0.67    .    .    .    .
## SM1      . 0.65    .    .    .
## SM2      . 0.69    .    .    .
## SM3      . 0.74    .    .    .
## SM4      . 0.70    .    .    .
## SM5      . 0.71    .    .    .
## HM1      .    . 0.72    .    .
## HM2      .    . 0.68    .    .
## HM3      .    . 0.65    .    .
## HM4      .    . 0.72    .    .
## HM5      .    . 0.70    .    .
## IST1     .    .    . 0.64    .
## IST2     .    .    . 0.66    .
## IST4     .    .    . 0.67    .
## IST5     .    .    . 0.67    .
## IST6     .    .    . 0.72    .
## IST7     .    .    . 0.67    .
## IST8     .    .    . 0.66    .
## IST9     .    .    . 0.71    .
## IST10    .    .    . 0.76    .
## IST11    .    .    . 0.69    .
## IST12    .    .    . 0.38    .
## SI1      .    .    .    . 0.71
## SI2      .    .    .    . 0.70
## SI3      .    .    .    . 0.70
## SI4      .    .    .    . 0.72
## SI5      .    .    .    . 0.72
## SI6      .    .    .    . 0.66
## SI9      .    .    .    . 0.73
## SI12     .    .    .    . 0.73
## SI13     .    .    .    . 0.69
## SI14     .    .    .    . 0.67
## SI15     .    .    .    . 0.69
## 
## $significance
##             Std Estimate    SE t-Value 2.5% CI 97.5% CI
## X1 -> OIBB1         0.72 0.034       0    0.65     0.79
## X1 -> OIBB2         0.65 0.037       0    0.58     0.73
## X1 -> OIBB3         0.71 0.036       0    0.64     0.78
## X1 -> OIBB4         0.69 0.036       0    0.62     0.76
## X1 -> OIBB5         0.67 0.036       0    0.60     0.74
## X2 -> SM1           0.65 0.039       0    0.57     0.72
## X2 -> SM2           0.69 0.036       0    0.62     0.76
## X2 -> SM3           0.74 0.037       0    0.67     0.81
## X2 -> SM4           0.70 0.036       0    0.63     0.77
## X2 -> SM5           0.71 0.036       0    0.64     0.78
## X3 -> HM1           0.72 0.034       0    0.65     0.78
## X3 -> HM2           0.68 0.039       0    0.60     0.75
## X3 -> HM3           0.65 0.038       0    0.57     0.73
## X3 -> HM4           0.72 0.035       0    0.65     0.79
## X3 -> HM5           0.70 0.035       0    0.63     0.77
## X4 -> IST1          0.64 0.037       0    0.57     0.71
## X4 -> IST2          0.66 0.037       0    0.59     0.73
## X4 -> IST4          0.67 0.036       0    0.60     0.74
## X4 -> IST5          0.67 0.036       0    0.60     0.74
## X4 -> IST6          0.72 0.033       0    0.65     0.78
## X4 -> IST7          0.67 0.036       0    0.60     0.74
## X4 -> IST8          0.66 0.036       0    0.59     0.73
## X4 -> IST9          0.71 0.034       0    0.65     0.78
## X4 -> IST10         0.76 0.031       0    0.69     0.82
## X4 -> IST11         0.69 0.035       0    0.62     0.76
## X4 -> IST12         0.38 0.043       0    0.30     0.46
## X5 -> SI1           0.71 0.031       0    0.65     0.77
## X5 -> SI2           0.70 0.033       0    0.63     0.76
## X5 -> SI3           0.70 0.032       0    0.64     0.77
## X5 -> SI4           0.72 0.033       0    0.65     0.78
## X5 -> SI5           0.72 0.032       0    0.66     0.78
## X5 -> SI6           0.66 0.036       0    0.59     0.73
## X5 -> SI9           0.73 0.033       0    0.66     0.79
## X5 -> SI12          0.73 0.032       0    0.66     0.79
## X5 -> SI13          0.69 0.035       0    0.62     0.76
## X5 -> SI14          0.67 0.035       0    0.61     0.74
## X5 -> SI15          0.69 0.034       0    0.63     0.76
plot(cfa)
## NULL

3.2 Chạy CB-SEM

cbsem <- estimate_cbsem(
  data = dulieu,
  measurement_model = as.reflective(thangdo),
  structural_model = moiquanhe
)

#cbsem
names(cbsem)
##  [1] "data"              "rawdata"           "measurement_model"
##  [4] "factor_loadings"   "associations"      "mmMatrix"         
##  [7] "smMatrix"          "constructs"        "construct_scores" 
## [10] "item_weights"      "path_coef"         "lavaan_model"     
## [13] "lavaan_output"
summary(cbsem)
## 
## Results from  package seminr (2.3.2)
## Estimation used  package seminr (2.3.2)
## 
## Fit metrics:
##       npar       fmin       logl        aic        bic     ntotal       bic2 
##     94.000      0.648 -35061.839  70311.679  70720.003    569.000  70421.596 
##        rmr       srmr       crmr        gfi       agfi       pgfi        mfi 
##      0.089      0.044      0.045      0.938      0.930      0.825      0.955 
##       ecvi 
##      1.627 
## 
##                         metric   scaled robust
## cfi                      0.994    0.995  0.995
## tli                      0.993    0.994  0.995
## nnfi                     0.993    0.994  0.995
## rni                      0.994    0.995  0.995
## rmsea                    0.012    0.010  0.010
## rmsea.ci.lower           0.000    0.000  0.000
## rmsea.ci.upper           0.018    0.016  0.017
## rmsea.pvalue             1.000    1.000  1.000
## rmsea.notclose.pvalue    0.000    0.000  0.000
## chisq                  737.804  723.660      .
## df                     686.000  686.000      .
## pvalue                   0.083    0.155      .
## baseline.chisq        8885.984 8091.958      .
## baseline.df            741.000  741.000      .
## baseline.pvalue          0.000    0.000      .
## rfi                      0.910    0.903      .
## nfi                      0.917    0.911      .
## pnfi                     0.849    0.843      .
## ifi                      0.994    0.995      .
## 
## Reliability:
##    rhoC  AVE
## X1 0.82 0.47
## X2 0.83 0.49
## X3 0.82 0.48
## X4 0.89 0.44
## X5 0.91 0.49
## 
## Path Coefficients:
##            X1   X4
## R^2      0.17 0.07
## X2       0.17 0.16
## X3       0.15 0.19
## X4       0.17    .
## X5       0.12    .
## X2_x_X5 -0.10    .
## X3_x_X5 -0.07    .
plot(cbsem)
## NULL

3.3 Chạy PLS-SEM

plssem <-estimate_pls(
  data=dulieu,
  measurement_model = thangdo,
  structural_model = moiquanhe
)

names(plssem)
##  [1] "meanData"          "sdData"            "smMatrix"         
##  [4] "mmMatrix"          "constructs"        "mmVariables"      
##  [7] "outer_loadings"    "outer_weights"     "path_coef"        
## [10] "iterations"        "weightDiff"        "construct_scores" 
## [13] "rSquared"          "inner_weights"     "data"             
## [16] "rawdata"           "measurement_model" "structural_model" 
## [19] "settings"          "interaction"
summary(plssem)
## 
## Results from  package seminr (2.3.2)
## 
## Path Coefficients:
##            X1    X4
## R^2     0.141 0.055
## AdjR^2  0.132 0.052
## X2      0.144 0.145
## X3      0.134 0.162
## X4      0.147     .
## X5      0.118     .
## X2*X5  -0.085     .
## X3*X5  -0.078     .
## 
## Reliability:
##       alpha  rhoC   AVE  rhoA
## X2    0.826 0.878 0.589 0.834
## X3    0.821 0.874 0.582 0.829
## X4    0.893 0.912 0.489 0.902
## X5    0.915 0.928 0.538 0.921
## X2*X5 1.000 1.000 1.000 1.000
## X3*X5 1.000 1.000 1.000 1.000
## X1    0.819 0.873 0.580 0.823
## 
## Alpha, rhoC, and rhoA should exceed 0.7 while AVE should exceed 0.5
plot(plssem)

Chạy bootstrap

bootpls <- bootstrap_model(seminr_model = plssem,
                                 nboot = 1000,
                                 cores = 2)

names(bootpls)
##  [1] "meanData"                 "sdData"                  
##  [3] "smMatrix"                 "mmMatrix"                
##  [5] "constructs"               "mmVariables"             
##  [7] "outer_loadings"           "outer_weights"           
##  [9] "path_coef"                "iterations"              
## [11] "weightDiff"               "construct_scores"        
## [13] "rSquared"                 "inner_weights"           
## [15] "data"                     "rawdata"                 
## [17] "measurement_model"        "structural_model"        
## [19] "settings"                 "interaction"             
## [21] "boot_paths"               "boot_loadings"           
## [23] "boot_weights"             "boot_HTMT"               
## [25] "boot_total_paths"         "paths_descriptives"      
## [27] "loadings_descriptives"    "weights_descriptives"    
## [29] "HTMT_descriptives"        "total_paths_descriptives"
## [31] "boots"                    "seed"
summary(bootpls)
## 
## Results from Bootstrap resamples:  1000
## 
## Bootstrapped Structural Paths:
##               Original Est. Bootstrap Mean Bootstrap SD T Stat. 2.5% CI
## X2  ->  X4            0.145          0.150        0.042   3.438   0.068
## X2  ->  X1            0.144          0.148        0.042   3.463   0.067
## X3  ->  X4            0.162          0.167        0.042   3.857   0.084
## X3  ->  X1            0.134          0.135        0.046   2.927   0.048
## X4  ->  X1            0.147          0.148        0.043   3.402   0.070
## X5  ->  X1            0.118          0.128        0.037   3.189   0.060
## X2*X5  ->  X1        -0.085         -0.086        0.041  -2.055  -0.166
## X3*X5  ->  X1        -0.078         -0.078        0.041  -1.891  -0.157
##               97.5% CI
## X2  ->  X4       0.232
## X2  ->  X1       0.231
## X3  ->  X4       0.247
## X3  ->  X1       0.223
## X4  ->  X1       0.238
## X5  ->  X1       0.199
## X2*X5  ->  X1   -0.005
## X3*X5  ->  X1    0.001
## 
## Bootstrapped Weights:
##                        Original Est. Bootstrap Mean Bootstrap SD T Stat.
## OIBB1  ->  X1                  0.239          0.241        0.025   9.529
## OIBB2  ->  X1                  0.234          0.234        0.028   8.442
## OIBB3  ->  X1                  0.295          0.295        0.025  11.651
## OIBB4  ->  X1                  0.283          0.280        0.025  11.408
## OIBB5  ->  X1                  0.260          0.260        0.024  10.916
## SM1  ->  X2                    0.222          0.220        0.043   5.101
## SM2  ->  X2                    0.290          0.290        0.041   7.100
## SM3  ->  X2                    0.259          0.261        0.034   7.527
## SM4  ->  X2                    0.228          0.226        0.043   5.316
## SM5  ->  X2                    0.300          0.299        0.040   7.572
## HM1  ->  X3                    0.246          0.245        0.038   6.520
## HM2  ->  X3                    0.247          0.250        0.038   6.556
## HM3  ->  X3                    0.278          0.276        0.038   7.401
## HM4  ->  X3                    0.316          0.316        0.038   8.280
## HM5  ->  X3                    0.221          0.218        0.041   5.449
## IST1  ->  X4                   0.150          0.149        0.021   7.087
## IST2  ->  X4                   0.151          0.151        0.020   7.449
## IST4  ->  X4                   0.107          0.107        0.018   5.891
## IST5  ->  X4                   0.118          0.118        0.019   6.132
## IST6  ->  X4                   0.143          0.143        0.017   8.499
## IST7  ->  X4                   0.128          0.127        0.019   6.703
## IST8  ->  X4                   0.142          0.140        0.019   7.469
## IST9  ->  X4                   0.141          0.141        0.017   8.242
## IST10  ->  X4                  0.149          0.149        0.016   9.155
## IST11  ->  X4                  0.112          0.112        0.019   5.944
## IST12  ->  X4                  0.075          0.076        0.025   2.973
## SI1  ->  X5                    0.126          0.125        0.030   4.217
## SI2  ->  X5                    0.168          0.168        0.031   5.479
## SI3  ->  X5                    0.148          0.148        0.027   5.466
## SI4  ->  X5                    0.099          0.099        0.030   3.347
## SI5  ->  X5                    0.082          0.079        0.032   2.592
## SI6  ->  X5                    0.135          0.135        0.030   4.532
## SI9  ->  X5                    0.112          0.111        0.029   3.905
## SI12  ->  X5                   0.147          0.148        0.031   4.708
## SI13  ->  X5                   0.104          0.101        0.028   3.674
## SI14  ->  X5                   0.111          0.112        0.030   3.701
## SI15  ->  X5                   0.128          0.129        0.029   4.434
## X2*X5_intxn  ->  X2*X5         1.000          1.000        0.000       .
## X3*X5_intxn  ->  X3*X5         1.000          1.000        0.000       .
##                        2.5% CI 97.5% CI
## OIBB1  ->  X1            0.192    0.291
## OIBB2  ->  X1            0.181    0.291
## OIBB3  ->  X1            0.249    0.349
## OIBB4  ->  X1            0.230    0.329
## OIBB5  ->  X1            0.216    0.305
## SM1  ->  X2              0.128    0.305
## SM2  ->  X2              0.211    0.377
## SM3  ->  X2              0.191    0.329
## SM4  ->  X2              0.135    0.307
## SM5  ->  X2              0.225    0.376
## HM1  ->  X3              0.168    0.318
## HM2  ->  X3              0.176    0.319
## HM3  ->  X3              0.204    0.353
## HM4  ->  X3              0.245    0.396
## HM5  ->  X3              0.128    0.291
## IST1  ->  X4             0.108    0.192
## IST2  ->  X4             0.113    0.193
## IST4  ->  X4             0.070    0.140
## IST5  ->  X4             0.081    0.157
## IST6  ->  X4             0.110    0.176
## IST7  ->  X4             0.086    0.164
## IST8  ->  X4             0.101    0.176
## IST9  ->  X4             0.107    0.175
## IST10  ->  X4            0.117    0.181
## IST11  ->  X4            0.072    0.146
## IST12  ->  X4            0.026    0.129
## SI1  ->  X5              0.068    0.184
## SI2  ->  X5              0.117    0.234
## SI3  ->  X5              0.099    0.206
## SI4  ->  X5              0.037    0.153
## SI5  ->  X5              0.008    0.132
## SI6  ->  X5              0.079    0.195
## SI9  ->  X5              0.050    0.166
## SI12  ->  X5             0.088    0.217
## SI13  ->  X5             0.043    0.150
## SI14  ->  X5             0.048    0.172
## SI15  ->  X5             0.075    0.188
## X2*X5_intxn  ->  X2*X5   1.000    1.000
## X3*X5_intxn  ->  X3*X5   1.000    1.000
## 
## Bootstrapped Loadings:
##                        Original Est. Bootstrap Mean Bootstrap SD T Stat.
## OIBB1  ->  X1                  0.768          0.768        0.028  27.351
## OIBB2  ->  X1                  0.728          0.726        0.033  22.151
## OIBB3  ->  X1                  0.786          0.785        0.025  31.204
## OIBB4  ->  X1                  0.771          0.770        0.027  28.200
## OIBB5  ->  X1                  0.752          0.752        0.027  27.527
## SM1  ->  X2                    0.718          0.715        0.040  17.824
## SM2  ->  X2                    0.776          0.774        0.030  25.631
## SM3  ->  X2                    0.789          0.788        0.030  26.467
## SM4  ->  X2                    0.756          0.753        0.036  21.240
## SM5  ->  X2                    0.796          0.793        0.029  27.217
## HM1  ->  X3                    0.768          0.766        0.030  25.733
## HM2  ->  X3                    0.749          0.750        0.035  21.395
## HM3  ->  X3                    0.748          0.746        0.031  24.071
## HM4  ->  X3                    0.800          0.800        0.026  30.282
## HM5  ->  X3                    0.748          0.745        0.036  20.942
## IST1  ->  X4                   0.696          0.694        0.033  21.044
## IST2  ->  X4                   0.710          0.709        0.032  22.277
## IST4  ->  X4                   0.696          0.694        0.035  20.048
## IST5  ->  X4                   0.703          0.701        0.035  20.135
## IST6  ->  X4                   0.749          0.750        0.028  26.603
## IST7  ->  X4                   0.706          0.703        0.033  21.378
## IST8  ->  X4                   0.703          0.700        0.033  21.144
## IST9  ->  X4                   0.744          0.742        0.030  25.118
## IST10  ->  X4                  0.782          0.782        0.025  31.697
## IST11  ->  X4                  0.716          0.714        0.033  21.949
## IST12  ->  X4                  0.422          0.424        0.048   8.788
## SI1  ->  X5                    0.744          0.741        0.032  23.308
## SI2  ->  X5                    0.752          0.752        0.028  26.873
## SI3  ->  X5                    0.742          0.741        0.028  26.336
## SI4  ->  X5                    0.733          0.730        0.036  20.611
## SI5  ->  X5                    0.729          0.725        0.035  20.919
## SI6  ->  X5                    0.709          0.707        0.033  21.612
## SI9  ->  X5                    0.750          0.747        0.033  22.692
## SI12  ->  X5                   0.761          0.762        0.030  25.352
## SI13  ->  X5                   0.716          0.711        0.034  20.938
## SI14  ->  X5                   0.700          0.699        0.035  19.748
## SI15  ->  X5                   0.729          0.728        0.032  22.833
## X2*X5_intxn  ->  X2*X5         1.052          1.051        0.028  37.700
## X3*X5_intxn  ->  X3*X5         1.055          1.053        0.027  38.541
##                        2.5% CI 97.5% CI
## OIBB1  ->  X1            0.710    0.819
## OIBB2  ->  X1            0.662    0.786
## OIBB3  ->  X1            0.732    0.830
## OIBB4  ->  X1            0.710    0.817
## OIBB5  ->  X1            0.695    0.803
## SM1  ->  X2              0.625    0.785
## SM2  ->  X2              0.707    0.825
## SM3  ->  X2              0.726    0.842
## SM4  ->  X2              0.676    0.815
## SM5  ->  X2              0.729    0.843
## HM1  ->  X3              0.702    0.821
## HM2  ->  X3              0.679    0.812
## HM3  ->  X3              0.680    0.804
## HM4  ->  X3              0.746    0.848
## HM5  ->  X3              0.658    0.805
## IST1  ->  X4             0.632    0.755
## IST2  ->  X4             0.644    0.767
## IST4  ->  X4             0.621    0.757
## IST5  ->  X4             0.627    0.765
## IST6  ->  X4             0.691    0.800
## IST7  ->  X4             0.637    0.762
## IST8  ->  X4             0.632    0.759
## IST9  ->  X4             0.680    0.798
## IST10  ->  X4            0.730    0.829
## IST11  ->  X4            0.647    0.772
## IST12  ->  X4            0.323    0.519
## SI1  ->  X5              0.676    0.799
## SI2  ->  X5              0.691    0.804
## SI3  ->  X5              0.684    0.795
## SI4  ->  X5              0.658    0.794
## SI5  ->  X5              0.649    0.785
## SI6  ->  X5              0.637    0.767
## SI9  ->  X5              0.680    0.806
## SI12  ->  X5             0.701    0.814
## SI13  ->  X5             0.642    0.771
## SI14  ->  X5             0.624    0.760
## SI15  ->  X5             0.665    0.785
## X2*X5_intxn  ->  X2*X5   0.996    1.106
## X3*X5_intxn  ->  X3*X5   1.001    1.104
## 
## Bootstrapped HTMT:
##                  Original Est. Bootstrap Mean Bootstrap SD 2.5% CI 97.5% CI
## X2  ->  X3               0.207          0.209        0.052   0.116    0.311
## X2  ->  X4               0.197          0.203        0.044   0.126    0.289
## X2  ->  X5               0.150          0.159        0.041   0.091    0.251
## X2  ->  X2*X5            0.030          0.055        0.026   0.022    0.120
## X2  ->  X3*X5            0.133          0.132        0.049   0.044    0.226
## X2  ->  X1               0.261          0.263        0.050   0.163    0.362
## X3  ->  X4               0.212          0.216        0.046   0.133    0.307
## X3  ->  X5               0.211          0.211        0.047   0.122    0.306
## X3  ->  X2*X5            0.129          0.129        0.047   0.049    0.224
## X3  ->  X3*X5            0.034          0.061        0.031   0.019    0.141
## X3  ->  X1               0.262          0.263        0.052   0.162    0.374
## X4  ->  X5               0.227          0.231        0.046   0.145    0.324
## X4  ->  X2*X5            0.116          0.118        0.041   0.047    0.196
## X4  ->  X3*X5            0.129          0.132        0.046   0.051    0.224
## X4  ->  X1               0.275          0.279        0.047   0.188    0.375
## X5  ->  X2*X5            0.033          0.059        0.026   0.029    0.131
## X5  ->  X3*X5            0.027          0.058        0.025   0.027    0.123
## X5  ->  X1               0.207          0.212        0.045   0.127    0.301
## X2*X5  ->  X3*X5         0.201          0.197        0.072   0.048    0.336
## X2*X5  ->  X1            0.145          0.149        0.045   0.067    0.242
## X3*X5  ->  X1            0.152          0.154        0.048   0.064    0.247
## 
## Bootstrapped Total Paths:
##               Original Est. Bootstrap Mean Bootstrap SD 2.5% CI 97.5% CI
## X2  ->  X4            0.145          0.150        0.042   0.068    0.232
## X2  ->  X1            0.165          0.171        0.041   0.090    0.254
## X3  ->  X4            0.162          0.167        0.042   0.084    0.247
## X3  ->  X1            0.157          0.160        0.045   0.075    0.248
## X4  ->  X1            0.147          0.148        0.043   0.070    0.238
## X5  ->  X1            0.118          0.128        0.037   0.060    0.199
## X2*X5  ->  X1        -0.085         -0.086        0.041  -0.166   -0.005
## X3*X5  ->  X1        -0.078         -0.078        0.041  -0.157    0.001
plot(bootpls)