0. Dữ liệu chung

obs <-571
sig <-0.3
p <-0.5
a <-rep(c(1:5),c(0.05*obs,0.1*obs,0.15*obs,0.2*obs,0.5*obs))
tt <-rep(c(1:5),round(obs/2))
OIBB <- replace( a,rbinom(obs,1,p)==1,tt)  
IST <- replace( a,rbinom(obs,1,p)==1,tt) 
SI <- replace (a, rbinom(obs,1,p)==1,tt)
SM <-replace(a, rbinom(obs,1,p)==1,tt)
HM <-replace(a, rbinom(obs,1,p)==1,tt)
dulieu0 <- cbind(OIBB, IST, SI, SM, HM)
library("PerformanceAnalytics")
chart.Correlation(dulieu0, histogram=TRUE, pch=19)

1. Thang đo OIBB

for(i in 1:5){
  chuan1 <-replace(OIBB,rbinom(obs,1,sig)==1,tt)
  assign(paste("OIBB", i, sep = ""), chuan1)
}

dulieu1 <-cbind(OIBB1, OIBB2, OIBB3, OIBB4, OIBB5)
head(dulieu1)
##      OIBB1 OIBB2 OIBB3 OIBB4 OIBB5
## [1,]     1     1     1     1     1
## [2,]     1     1     1     1     1
## [3,]     1     1     1     1     1
## [4,]     2     2     2     2     2
## [5,]     1     1     1     1     1
## [6,]     3     2     3     3     3
library(psych)
alpha(dulieu1)
## 
## Reliability analysis   
## Call: alpha(x = dulieu1)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean  sd median_r
##       0.82      0.82    0.78      0.47 4.5 0.012  3.4 1.1     0.48
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.79  0.82  0.84
## Duhachek  0.79  0.82  0.84
## 
##  Reliability if an item is dropped:
##       raw_alpha std.alpha G6(smc) average_r S/N alpha se   var.r med.r
## OIBB1      0.78      0.78    0.72      0.46 3.4    0.015 0.00034  0.47
## OIBB2      0.79      0.79    0.74      0.48 3.8    0.014 0.00024  0.48
## OIBB3      0.78      0.78    0.73      0.47 3.5    0.015 0.00042  0.48
## OIBB4      0.78      0.78    0.73      0.47 3.6    0.015 0.00077  0.48
## OIBB5      0.79      0.79    0.73      0.48 3.7    0.015 0.00042  0.48
## 
##  Item statistics 
##         n raw.r std.r r.cor r.drop mean  sd
## OIBB1 571  0.78  0.78  0.70   0.63  3.3 1.4
## OIBB2 571  0.74  0.74  0.65   0.58  3.4 1.4
## OIBB3 571  0.77  0.77  0.69   0.62  3.4 1.4
## OIBB4 570  0.76  0.76  0.67   0.61  3.4 1.4
## OIBB5 570  0.75  0.75  0.66   0.60  3.3 1.4
## 
## Non missing response frequency for each item
##          1    2    3    4    5 miss
## OIBB1 0.16 0.16 0.19 0.19 0.31    0
## OIBB2 0.14 0.16 0.18 0.20 0.32    0
## OIBB3 0.15 0.16 0.18 0.20 0.31    0
## OIBB4 0.14 0.17 0.18 0.19 0.32    0
## OIBB5 0.16 0.16 0.18 0.20 0.30    0

2. Thang đo SM

for(i in 1:5){
  chuan2 <-replace(SM,rbinom(obs,1,sig)==1,tt)
  assign(paste("SM", i, sep = ""), chuan2)
}

dulieu2 <-cbind(SM1, SM2, SM3, SM4, SM5)

#dulieu2 <- 6-dulieu2
alpha(dulieu2)
## 
## Reliability analysis   
## Call: alpha(x = dulieu2)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean  sd median_r
##       0.83      0.83    0.79      0.49 4.8 0.012  3.4 1.1     0.49
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt      0.8  0.83  0.85
## Duhachek   0.8  0.83  0.85
## 
##  Reliability if an item is dropped:
##     raw_alpha std.alpha G6(smc) average_r S/N alpha se   var.r med.r
## SM1      0.80      0.80    0.75      0.50 4.1    0.014 0.00046  0.51
## SM2      0.80      0.80    0.75      0.49 3.9    0.014 0.00058  0.49
## SM3      0.78      0.78    0.73      0.47 3.6    0.015 0.00061  0.48
## SM4      0.79      0.79    0.74      0.49 3.8    0.014 0.00130  0.49
## SM5      0.79      0.79    0.74      0.48 3.7    0.014 0.00118  0.48
## 
##  Item statistics 
##       n raw.r std.r r.cor r.drop mean  sd
## SM1 571  0.74  0.74  0.64   0.58  3.3 1.4
## SM2 570  0.76  0.76  0.67   0.61  3.4 1.4
## SM3 570  0.79  0.79  0.72   0.65  3.4 1.4
## SM4 570  0.77  0.77  0.69   0.63  3.4 1.4
## SM5 570  0.78  0.78  0.70   0.63  3.4 1.4
## 
## Non missing response frequency for each item
##        1    2    3    4    5 miss
## SM1 0.15 0.18 0.18 0.19 0.29    0
## SM2 0.15 0.16 0.17 0.21 0.32    0
## SM3 0.15 0.17 0.18 0.20 0.31    0
## SM4 0.14 0.16 0.17 0.19 0.34    0
## SM5 0.15 0.17 0.17 0.21 0.30    0

3. Thang đo HM

for(i in 1:5){
  chuan3 <-replace(HM,rbinom(obs,1,sig)==1,tt)
  assign(paste("HM", i, sep = ""), chuan3)
}

dulieu3 <-cbind(HM1, HM2, HM3, HM4, HM5)
head(dulieu3)
##      HM1 HM2 HM3 HM4 HM5
## [1,]   1   1   1   1   1
## [2,]   1   1   1   1   1
## [3,]   2   2   2   2   2
## [4,]   1   1   1   1   2
## [5,]   3   3   1   2   3
## [6,]   1   1   2   1   1
alpha(dulieu3)
## 
## Reliability analysis   
## Call: alpha(x = dulieu3)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean  sd median_r
##       0.82      0.82    0.79      0.48 4.6 0.012  3.4 1.1     0.48
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt      0.8  0.82  0.84
## Duhachek   0.8  0.82  0.84
## 
##  Reliability if an item is dropped:
##     raw_alpha std.alpha G6(smc) average_r S/N alpha se   var.r med.r
## HM1      0.78      0.78    0.73      0.47 3.5    0.015 0.00087  0.45
## HM2      0.79      0.79    0.74      0.48 3.7    0.014 0.00102  0.48
## HM3      0.80      0.80    0.75      0.49 3.9    0.014 0.00056  0.50
## HM4      0.78      0.78    0.73      0.47 3.6    0.015 0.00071  0.46
## HM5      0.78      0.78    0.73      0.47 3.6    0.015 0.00053  0.48
## 
##  Item statistics 
##       n raw.r std.r r.cor r.drop mean  sd
## HM1 570  0.78  0.78  0.70   0.63  3.4 1.4
## HM2 570  0.76  0.76  0.67   0.60  3.4 1.4
## HM3 571  0.74  0.74  0.63   0.58  3.4 1.4
## HM4 570  0.78  0.78  0.70   0.63  3.4 1.4
## HM5 570  0.77  0.77  0.69   0.62  3.4 1.4
## 
## Non missing response frequency for each item
##        1    2    3    4    5 miss
## HM1 0.15 0.16 0.17 0.21 0.31    0
## HM2 0.14 0.17 0.17 0.20 0.32    0
## HM3 0.14 0.16 0.17 0.22 0.31    0
## HM4 0.15 0.16 0.18 0.19 0.32    0
## HM5 0.13 0.16 0.17 0.21 0.33    0

4. Thang đo IST

for(i in 1:13){
  chuan4 <-replace(IST,rbinom(obs,1,sig)==1,tt)
  assign(paste("IST", i, sep = ""), chuan4)
}
IST3 <-replace(IST3, rbinom(obs,1,0.6)==1,tt)
IST12 <-replace(IST12, rbinom(obs,1,0.5)==1,tt)
tam4 <-cbind(IST1, IST2, IST3, IST4, IST5, IST6, IST7, IST8, IST9, IST10, IST11, IST12, IST13)
dulieu4 <-cbind(IST1, IST2, IST4, IST5, IST6, IST7, IST8, IST9, IST10, IST11, IST12)
#dulieu4 <-6-dulieu4
alpha(tam4)
## 
## Reliability analysis   
## Call: alpha(x = tam4)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean   sd median_r
##       0.89      0.89    0.89       0.4 8.5 0.0064  3.4 0.95     0.45
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.88  0.89  0.91
## Duhachek  0.88  0.89  0.91
## 
##  Reliability if an item is dropped:
##       raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## IST1       0.89      0.89    0.88      0.39 7.8   0.0069 0.0142  0.45
## IST2       0.89      0.89    0.88      0.39 7.8   0.0069 0.0141  0.45
## IST3       0.90      0.90    0.90      0.43 9.1   0.0061 0.0074  0.46
## IST4       0.89      0.89    0.88      0.39 7.7   0.0070 0.0143  0.45
## IST5       0.89      0.89    0.88      0.39 7.7   0.0070 0.0141  0.45
## IST6       0.88      0.88    0.88      0.39 7.6   0.0071 0.0138  0.44
## IST7       0.88      0.88    0.88      0.39 7.7   0.0070 0.0143  0.45
## IST8       0.89      0.89    0.88      0.39 7.8   0.0069 0.0139  0.45
## IST9       0.88      0.88    0.88      0.39 7.6   0.0071 0.0137  0.44
## IST10      0.88      0.88    0.88      0.38 7.4   0.0072 0.0131  0.44
## IST11      0.88      0.88    0.88      0.39 7.6   0.0071 0.0141  0.44
## IST12      0.90      0.90    0.89      0.42 8.8   0.0062 0.0105  0.46
## IST13      0.89      0.89    0.88      0.39 7.8   0.0070 0.0143  0.45
## 
##  Item statistics 
##         n raw.r std.r r.cor r.drop mean  sd
## IST1  570  0.68  0.68  0.64   0.61  3.4 1.4
## IST2  570  0.68  0.68  0.65   0.61  3.4 1.4
## IST3  571  0.40  0.40  0.31   0.29  3.1 1.4
## IST4  570  0.70  0.70  0.67   0.63  3.3 1.4
## IST5  571  0.70  0.70  0.67   0.63  3.4 1.4
## IST6  570  0.74  0.74  0.71   0.68  3.4 1.5
## IST7  570  0.71  0.71  0.68   0.64  3.4 1.4
## IST8  569  0.68  0.68  0.65   0.61  3.4 1.4
## IST9  569  0.73  0.73  0.71   0.67  3.4 1.4
## IST10 570  0.77  0.77  0.75   0.71  3.4 1.4
## IST11 569  0.72  0.72  0.69   0.66  3.4 1.4
## IST12 569  0.46  0.46  0.38   0.36  3.2 1.4
## IST13 570  0.69  0.69  0.65   0.62  3.4 1.4
## 
## Non missing response frequency for each item
##          1    2    3    4    5 miss
## IST1  0.14 0.16 0.19 0.20 0.31    0
## IST2  0.14 0.17 0.17 0.21 0.31    0
## IST3  0.19 0.18 0.19 0.20 0.25    0
## IST4  0.15 0.17 0.18 0.19 0.31    0
## IST5  0.14 0.16 0.19 0.20 0.31    0
## IST6  0.15 0.17 0.18 0.18 0.33    0
## IST7  0.14 0.17 0.18 0.19 0.32    0
## IST8  0.14 0.17 0.17 0.20 0.33    0
## IST9  0.14 0.17 0.17 0.20 0.32    0
## IST10 0.13 0.16 0.17 0.18 0.35    0
## IST11 0.14 0.16 0.17 0.21 0.32    0
## IST12 0.17 0.18 0.17 0.22 0.25    0
## IST13 0.14 0.15 0.18 0.20 0.32    0
alpha(dulieu4)
## 
## Reliability analysis   
## Call: alpha(x = dulieu4)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.89      0.89    0.89      0.43 8.3 0.0066  3.4  1     0.46
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.88  0.89  0.91
## Duhachek  0.88  0.89  0.91
## 
##  Reliability if an item is dropped:
##       raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## IST1       0.88      0.88    0.88      0.43 7.6   0.0072 0.0089  0.46
## IST2       0.88      0.88    0.88      0.43 7.6   0.0072 0.0084  0.46
## IST4       0.88      0.88    0.88      0.43 7.5   0.0073 0.0088  0.46
## IST5       0.88      0.88    0.88      0.43 7.5   0.0073 0.0084  0.46
## IST6       0.88      0.88    0.87      0.42 7.3   0.0074 0.0083  0.45
## IST7       0.88      0.88    0.88      0.43 7.5   0.0073 0.0083  0.46
## IST8       0.88      0.88    0.88      0.43 7.6   0.0072 0.0088  0.46
## IST9       0.88      0.88    0.87      0.42 7.4   0.0074 0.0080  0.46
## IST10      0.88      0.88    0.87      0.42 7.2   0.0076 0.0079  0.45
## IST11      0.88      0.88    0.87      0.43 7.4   0.0074 0.0087  0.46
## IST12      0.90      0.90    0.89      0.47 8.8   0.0063 0.0012  0.47
## 
##  Item statistics 
##         n raw.r std.r r.cor r.drop mean  sd
## IST1  570  0.68  0.68  0.64   0.60  3.4 1.4
## IST2  570  0.69  0.70  0.65   0.62  3.4 1.4
## IST4  570  0.71  0.71  0.67   0.63  3.3 1.4
## IST5  571  0.71  0.71  0.67   0.63  3.4 1.4
## IST6  570  0.74  0.74  0.71   0.67  3.4 1.5
## IST7  570  0.70  0.70  0.67   0.63  3.4 1.4
## IST8  569  0.69  0.70  0.65   0.62  3.4 1.4
## IST9  569  0.74  0.74  0.71   0.67  3.4 1.4
## IST10 570  0.77  0.77  0.75   0.71  3.4 1.4
## IST11 569  0.73  0.73  0.69   0.66  3.4 1.4
## IST12 569  0.47  0.47  0.38   0.36  3.2 1.4
## 
## Non missing response frequency for each item
##          1    2    3    4    5 miss
## IST1  0.14 0.16 0.19 0.20 0.31    0
## IST2  0.14 0.17 0.17 0.21 0.31    0
## IST4  0.15 0.17 0.18 0.19 0.31    0
## IST5  0.14 0.16 0.19 0.20 0.31    0
## IST6  0.15 0.17 0.18 0.18 0.33    0
## IST7  0.14 0.17 0.18 0.19 0.32    0
## IST8  0.14 0.17 0.17 0.20 0.33    0
## IST9  0.14 0.17 0.17 0.20 0.32    0
## IST10 0.13 0.16 0.17 0.18 0.35    0
## IST11 0.14 0.16 0.17 0.21 0.32    0
## IST12 0.17 0.18 0.17 0.22 0.25    0

5. Thang do SI

for(i in 1:17){
  chuan5 <-replace(SI,rbinom(obs,1,sig)==1,tt)
  assign(paste("SI", i, sep = ""), chuan5)
}
SI7 <-replace(SI7, rbinom(obs,1,0.6)==1,tt)
SI8 <-replace(SI8, rbinom(obs,1,0.6)==1,tt)
SI10 <-replace(SI10, rbinom(obs,1,0.6)==1,tt)
SI11 <-replace(SI11, rbinom(obs,1,0.6)==1,tt)
SI16 <-replace(SI16, rbinom(obs,1,0.6)==1,tt)
SI17 <-replace(SI17, rbinom(obs,1,0.6)==1,tt)

tam5 <-cbind(SI1, SI2, SI3, SI4, SI5, SI6, SI7, SI8, SI9, SI10, SI11, SI12, SI13, SI14, SI15, SI16, SI17)
dulieu5 <-cbind(SI1, SI2, SI3, SI4, SI5, SI6, SI9, SI12, SI13, SI14, SI15)
head(dulieu5)
##      SI1 SI2 SI3 SI4 SI5 SI6 SI9 SI12 SI13 SI14 SI15
## [1,]   1   1   1   1   1   1   1    1    1    1    1
## [2,]   1   1   1   1   1   1   2    1    1    1    1
## [3,]   2   2   2   2   2   2   2    2    2    2    2
## [4,]   3   3   3   3   1   3   3    2    3    3    3
## [5,]   1   1   1   1   2   3   1    1    1    1    1
## [6,]   1   1   1   1   1   4   4    1    1    1    1
tam5 <-6-tam5
#dulieu5 <-6-dulieu5
head(dulieu5)
##      SI1 SI2 SI3 SI4 SI5 SI6 SI9 SI12 SI13 SI14 SI15
## [1,]   1   1   1   1   1   1   1    1    1    1    1
## [2,]   1   1   1   1   1   1   2    1    1    1    1
## [3,]   2   2   2   2   2   2   2    2    2    2    2
## [4,]   3   3   3   3   1   3   3    2    3    3    3
## [5,]   1   1   1   1   2   3   1    1    1    1    1
## [6,]   1   1   1   1   1   4   4    1    1    1    1
alpha(tam5)
## 
## Reliability analysis   
## Call: alpha(x = tam5)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean   sd median_r
##       0.89      0.89    0.89      0.32 7.9 0.0066  2.7 0.86     0.26
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt     0.87  0.89   0.9
## Duhachek  0.87  0.89   0.9
## 
##  Reliability if an item is dropped:
##      raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## SI1       0.88      0.88    0.88      0.31 7.1   0.0073 0.023  0.26
## SI2       0.88      0.88    0.88      0.31 7.1   0.0073 0.024  0.25
## SI3       0.88      0.88    0.88      0.31 7.2   0.0073 0.023  0.25
## SI4       0.88      0.88    0.88      0.31 7.1   0.0073 0.023  0.25
## SI5       0.88      0.88    0.88      0.31 7.1   0.0073 0.023  0.25
## SI6       0.88      0.88    0.88      0.31 7.2   0.0072 0.024  0.26
## SI7       0.89      0.89    0.89      0.33 7.9   0.0066 0.024  0.27
## SI8       0.89      0.89    0.90      0.34 8.3   0.0064 0.022  0.28
## SI9       0.88      0.88    0.88      0.31 7.1   0.0074 0.023  0.25
## SI10      0.89      0.89    0.89      0.33 7.9   0.0066 0.025  0.27
## SI11      0.89      0.89    0.89      0.34 8.1   0.0065 0.024  0.28
## SI12      0.88      0.88    0.88      0.31 7.1   0.0073 0.023  0.26
## SI13      0.88      0.88    0.88      0.31 7.2   0.0073 0.023  0.26
## SI14      0.88      0.88    0.88      0.31 7.2   0.0072 0.024  0.26
## SI15      0.88      0.88    0.88      0.31 7.1   0.0073 0.024  0.25
## SI16      0.89      0.89    0.89      0.34 8.3   0.0064 0.022  0.28
## SI17      0.89      0.89    0.89      0.33 8.0   0.0066 0.024  0.28
## 
##  Item statistics 
##        n raw.r std.r r.cor r.drop mean  sd
## SI1  569  0.71  0.71  0.70   0.66  2.7 1.5
## SI2  570  0.72  0.72  0.71   0.67  2.6 1.4
## SI3  570  0.71  0.71  0.69   0.65  2.7 1.4
## SI4  570  0.73  0.73  0.72   0.68  2.7 1.4
## SI5  569  0.73  0.73  0.72   0.68  2.6 1.4
## SI6  571  0.67  0.68  0.66   0.62  2.6 1.4
## SI7  570  0.44  0.44  0.37   0.35  2.9 1.4
## SI8  570  0.33  0.33  0.25   0.24  2.9 1.4
## SI9  569  0.73  0.73  0.72   0.68  2.7 1.5
## SI10 570  0.45  0.44  0.38   0.36  2.8 1.4
## SI11 571  0.39  0.39  0.32   0.30  2.9 1.4
## SI12 569  0.73  0.73  0.72   0.67  2.6 1.4
## SI13 569  0.70  0.70  0.68   0.64  2.6 1.4
## SI14 569  0.68  0.68  0.66   0.62  2.7 1.4
## SI15 569  0.71  0.71  0.70   0.66  2.7 1.4
## SI16 571  0.34  0.33  0.26   0.24  2.8 1.4
## SI17 570  0.41  0.41  0.35   0.33  2.9 1.4
## 
## Non missing response frequency for each item
##         1    2    3    4    5 miss
## SI1  0.30 0.20 0.18 0.16 0.16    0
## SI2  0.31 0.20 0.19 0.16 0.14    0
## SI3  0.30 0.20 0.18 0.16 0.16    0
## SI4  0.29 0.21 0.18 0.16 0.16    0
## SI5  0.31 0.20 0.19 0.15 0.15    0
## SI6  0.31 0.20 0.19 0.16 0.14    0
## SI7  0.24 0.19 0.19 0.19 0.18    0
## SI8  0.24 0.19 0.20 0.18 0.19    0
## SI9  0.31 0.20 0.17 0.17 0.16    0
## SI10 0.25 0.19 0.21 0.17 0.18    0
## SI11 0.23 0.22 0.18 0.19 0.19    0
## SI12 0.31 0.21 0.17 0.17 0.15    0
## SI13 0.29 0.21 0.19 0.17 0.14    0
## SI14 0.28 0.21 0.20 0.17 0.14    0
## SI15 0.29 0.21 0.18 0.17 0.15    0
## SI16 0.26 0.20 0.19 0.18 0.18    0
## SI17 0.24 0.20 0.19 0.19 0.18    0
alpha(dulieu5)
## 
## Reliability analysis   
## Call: alpha(x = dulieu5)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.91      0.91    0.91      0.49  11 0.0053  3.3  1     0.49
## 
##     95% confidence boundaries 
##          lower alpha upper
## Feldt      0.9  0.91  0.92
## Duhachek   0.9  0.91  0.92
## 
##  Reliability if an item is dropped:
##      raw_alpha std.alpha G6(smc) average_r  S/N alpha se   var.r med.r
## SI1       0.91      0.91     0.9      0.49  9.7   0.0059 0.00107  0.49
## SI2       0.91      0.91     0.9      0.49  9.7   0.0058 0.00100  0.49
## SI3       0.91      0.91     0.9      0.49  9.7   0.0058 0.00098  0.49
## SI4       0.91      0.91     0.9      0.49  9.6   0.0059 0.00099  0.49
## SI5       0.91      0.91     0.9      0.49  9.6   0.0059 0.00086  0.49
## SI6       0.91      0.91     0.9      0.50 10.0   0.0057 0.00075  0.50
## SI9       0.91      0.91     0.9      0.49  9.6   0.0059 0.00103  0.49
## SI12      0.91      0.91     0.9      0.49  9.6   0.0059 0.00097  0.49
## SI13      0.91      0.91     0.9      0.49  9.8   0.0058 0.00108  0.50
## SI14      0.91      0.91     0.9      0.50  9.9   0.0057 0.00075  0.50
## SI15      0.91      0.91     0.9      0.49  9.8   0.0058 0.00089  0.49
## 
##  Item statistics 
##        n raw.r std.r r.cor r.drop mean  sd
## SI1  569  0.74  0.74  0.71   0.68  3.3 1.5
## SI2  570  0.73  0.73  0.70   0.67  3.4 1.4
## SI3  570  0.73  0.73  0.70   0.67  3.3 1.4
## SI4  570  0.75  0.75  0.72   0.68  3.3 1.4
## SI5  569  0.75  0.75  0.72   0.68  3.4 1.4
## SI6  571  0.70  0.70  0.66   0.63  3.4 1.4
## SI9  569  0.76  0.76  0.73   0.69  3.3 1.5
## SI12 569  0.75  0.75  0.72   0.69  3.4 1.4
## SI13 569  0.73  0.73  0.69   0.66  3.4 1.4
## SI14 569  0.71  0.71  0.67   0.64  3.3 1.4
## SI15 569  0.73  0.73  0.69   0.66  3.3 1.4
## 
## Non missing response frequency for each item
##         1    2    3    4    5 miss
## SI1  0.16 0.16 0.18 0.20 0.30    0
## SI2  0.14 0.16 0.19 0.20 0.31    0
## SI3  0.16 0.16 0.18 0.20 0.30    0
## SI4  0.16 0.16 0.18 0.21 0.29    0
## SI5  0.15 0.15 0.19 0.20 0.31    0
## SI6  0.14 0.16 0.19 0.20 0.31    0
## SI9  0.16 0.17 0.17 0.20 0.31    0
## SI12 0.15 0.17 0.17 0.21 0.31    0
## SI13 0.14 0.17 0.19 0.21 0.29    0
## SI14 0.14 0.17 0.20 0.21 0.28    0
## SI15 0.15 0.17 0.18 0.21 0.29    0

6. Thang đo moderation

dataMod1 <-cbind(dulieu2,dulieu5)
dataMod1 <-data.frame(dataMod1)
dataMod2 <-cbind(dulieu3,dulieu5)
dataMod2 <-data.frame(dataMod2)
dulieu2 <-data.frame(dulieu2)
dulieu3 <-data.frame(dulieu3)
dulieu5 <-data.frame(dulieu5)
nrow(dataMod2)
## [1] 571
## Cach1 Dùng matrix tạo interaction
as.data.frame(model.matrix(~ (. + .)^2 - 1, dataMod1))->mod1
#MOD1 %>% select(-(1:26)) ->MOD1
as.data.frame(model.matrix(~ (. + .)^2 - 1, dataMod2))->mod2
as.data.frame(model.matrix(~ (. + .)^2 - 1, dulieu2))->dl2
as.data.frame(model.matrix(~ (. + .)^2 - 1, dulieu3))->dl3
as.data.frame(model.matrix(~ (. + .)^2 - 1, dulieu5))->dl5

## Cach 2 Dùng interact.data tạo interaction
#interact.data(dulieu2) ->dl2
#data.frame(interact.data(dulieu3)) ->dl3
#data.frame(interact.data(dulieu5))->dl5
#data.frame(interact.data(dataMod1)) ->mod1
#data.frame(interact.data(dataMod2)) ->mod2


mod1[setdiff(names(mod1), names(dl2))]->mod1
mod1[setdiff(names(mod1), names(dl5))]->MOD1
mod2[setdiff(names(mod2), names(dl3))]->mod2
mod2[setdiff(names(mod2), names(dl5))]->MOD2
MOD1 <-na.omit(MOD1)
nrow(MOD1)
## [1] 569
ncol(MOD1)
## [1] 55
MOD2 <-na.omit(MOD2)
nrow(MOD2)
## [1] 569
ncol(MOD2)
## [1] 55
#summary(alpha(mod1))
#summary(alpha(mod2))

Chạy PLSPM

library(plspm)
dulieuold <-cbind(dulieu1, dulieu2, dulieu3, dulieu4, dulieu5)
dulieu<-dulieuold
dulieu <-na.omit(dulieu)
nrow(dulieu)
## [1] 569
ncol(dulieu)
## [1] 37
dulieu <-cbind(dulieu,MOD1)
dulieu <-cbind(dulieu,MOD2)
nrow(dulieu)
## [1] 569
# Tạo quan hệ

SM   = c(0,0,0,0,0,0,0)
HM   = c(0,0,0,0,0,0,0)
SI   = c(0,0,0,0,0,0,0)
MOD1 = c(0,0,0,0,0,0,0)
MOD2 = c(0,0,0,0,0,0,0)
IST  = c(1,1,0,0,0,0,0)
OIBB = c(1,1,1,1,1,1,0)
modedo <- c("A","A","A","A","A","A","A")

mohinh = rbind( SM, HM ,SI, MOD1, MOD2,IST,OIBB)

colnames(mohinh) = rownames(mohinh)
mohinh
##      SM HM SI MOD1 MOD2 IST OIBB
## SM    0  0  0    0    0   0    0
## HM    0  0  0    0    0   0    0
## SI    0  0  0    0    0   0    0
## MOD1  0  0  0    0    0   0    0
## MOD2  0  0  0    0    0   0    0
## IST   1  1  0    0    0   0    0
## OIBB  1  1  1    1    1   1    0
innerplot(mohinh)

biencon = list(6:10, 11:15, 16:26,37:92,93:147,27:37,1:5)

sem <- plspm(Data=dulieu, path_matrix=mohinh, blocks= biencon, modes= modedo)
names(sem)
##  [1] "outer_model"   "inner_model"   "path_coefs"    "scores"       
##  [5] "crossloadings" "inner_summary" "effects"       "unidim"       
##  [9] "gof"           "boot"          "data"          "manifests"    
## [13] "model"

Xem kết quả

#sem$outer_model
sem$inner_model
## $IST
##               Estimate Std. Error      t value     Pr(>|t|)
## Intercept 2.702842e-16 0.04104439 6.585169e-15 1.000000e+00
## SM        1.106353e-01 0.04166727 2.655208e+00 8.149133e-03
## HM        1.669943e-01 0.04166727 4.007804e+00 6.948424e-05
## 
## $OIBB
##                Estimate Std. Error       t value     Pr(>|t|)
## Intercept -4.912087e-16 0.03914019 -1.254998e-14 1.0000000000
## SM         3.684309e-01 0.12729203  2.894375e+00 0.0039466573
## HM         3.752603e-01 0.12780761  2.936134e+00 0.0034593380
## SI         1.497991e-01 0.04125168  3.631346e+00 0.0003077249
## MOD1      -3.489905e-01 0.18223751 -1.915031e+00 0.0559958262
## MOD2      -3.641238e-01 0.18708209 -1.946332e+00 0.0521128570
## IST        5.627762e-01 0.15721567  3.579644e+00 0.0003738204

Đồ thị

innerplot(sem, lcol = "blue")

#outerplot(sem)

Lưu data

setwd("/Users/thuphan/Desktop/R-STUDIO")
library(openxlsx)
write.xlsx(dulieuold, 'dulieuold.xlsx')