#setInternet2(TRUE) # Load Systematic Investor Toolbox (SIT)
rm(list=ls())
#setInternet2(TRUE)
con = gzcon(url('https://github.com/systematicinvestor/SIT/raw/master/sit.gz', 'rb'))
source(con)
close(con)
library(quantmod)
## Loading required package: xts
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
## Loading required package: TTR
##
## Attaching package: 'TTR'
## The following object is masked _by_ '.GlobalEnv':
##
## DVI
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
library(quadprog)
library(lpSolve)
tickers = spl('SPY,QQQ,EEM,IWM,EFA,TLT,IYR,GLD')
data <- new.env()
getSymbols(tickers, src = 'yahoo', from = '2000-01-01', env = data, auto.assign = T)
## [1] "SPY" "QQQ" "EEM" "IWM" "EFA" "TLT" "IYR" "GLD"
for(i in ls(data)) data[[i]] = adjustOHLC(data[[i]], use.Adjusted=T)
names(data)
## [1] "GLD" "IWM" "IYR" "TLT" "QQQ"
## [6] ".getSymbols" "EEM" "SPY" "EFA"
data.weekly <- new.env()
for(i in tickers) data.weekly[[i]] = to.weekly(data[[i]], indexAt='endof')
bt.prep(data, align='remove.na', dates='2000::2022')
bt.prep(data.weekly, align='remove.na', dates='2000::2022')
names(data)
## [1] "GLD" "prices" "IWM" "dates"
## [5] "IYR" "TLT" "weight" "QQQ"
## [9] ".getSymbols" "symbolnames" "execution.price" "EEM"
## [13] "SPY" "EFA"
#*****************************************************************
# Code Strategies
#******************************************************************
prices = data$prices
n = ncol(prices)
n
## [1] 8
# find week ends
week.ends = endpoints(prices, 'weeks')
week.ends = week.ends[week.ends > 0]
# Equal Weight 1/N Benchmark
data$weight[] = NA
data$weight[week.ends,] = ntop(prices[week.ends,], n)
#capital = 100000
#data$weight[] = (capital / prices) * data$weight
equal.weight = bt.run(data)
## Latest weights :
## EEM EFA GLD IWM IYR QQQ SPY TLT
## 2022-12-30 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5
##
## Performance summary :
## CAGR Best Worst
## 8.3 10.3 -8.8
names(equal.weight)
## [1] "weight" "type" "ret" "best" "worst"
## [6] "equity" "cagr" "dates.index"
head(equal.weight$equity)
## EEM
## 2004-11-18 1.000000
## 2004-11-19 1.000000
## 2004-11-22 1.006032
## 2004-11-23 1.008216
## 2004-11-24 1.014851
## 2004-11-26 1.016392
#*****************************************************************
# Create Constraints
#*****************************************************************
constraints = new.constraints(n, lb = -Inf, ub = +Inf)
# SUM x.i = 1
constraints = add.constraints(rep(1, n), 1, type = '=', constraints)
ret = prices / mlag(prices) - 1
weight = coredata(prices)
weight[] = NA
for( i in week.ends[week.ends >= (63 + 1)] ) {
# one quarter is 63 days
hist = ret[ (i- 63 +1):i, ]
# create historical input assumptions
ia = create.historical.ia(hist, 252)
#s0 = apply(coredata(hist),2,sd)
#ia$cov = cor(coredata(hist), use='complete.obs',method='pearson') * (s0 %*% t(s0))
weight[i,] = min.risk.portfolio(ia, constraints)
}
tail(weight,1)
## EEM EFA GLD IWM IYR QQQ
## [4561,] 0.3109796 -0.4501837 0.3773814 -0.8443584 -0.004984299 -0.9045819
## SPY TLT
## [4561,] 2.218969 0.2967782
# Minimum Variance
data$weight[] = weight
capital = 100000
data$weight[] = (capital / prices) * data$weight
min.var.daily = bt.run(data, type='share', capital=capital)
## Latest weights :
## EEM EFA GLD IWM IYR QQQ SPY TLT
## 2022-12-30 34.25 -51.19 48.19 -82.82 7.65 -93.89 217.12 20.69
##
## Performance summary :
## CAGR Best Worst
## 7.9 4.1 -5.2
names(min.var.daily)
## [1] "weight" "type" "share" "capital" "ret"
## [6] "best" "worst" "equity" "cagr" "dates.index"
# Code Strategies: Weekly
#******************************************************************
retw = data.weekly$prices / mlag(data.weekly$prices) - 1
weightw = coredata(prices)
weightw[] = NA
week.ends<-week.ends[ -length(week.ends) ]
for( i in week.ends[week.ends >= (63 + 1)] ) {
# map
j = which(index(ret[i,]) == index(retw))
# one quarter = 13 weeks
hist = retw[ (j- 13 +1):j, ]
# create historical input assumptions
ia = create.historical.ia(hist, 52)
#s0 = apply(coredata(hist),2,sd)
#ia$cov = cor(coredata(hist), use='complete.obs',method='pearson') * (s0 %*% t(s0))
weightw[i,] = min.risk.portfolio(ia, constraints)
}
data$weight[] = weightw
capital = 100000
data$weight[] = (capital / prices) * data$weight
min.var.weekly = bt.run(data, type='share', capital=capital)
## Latest weights :
## EEM EFA GLD IWM IYR QQQ SPY TLT
## 2022-12-30 -25.91 -93.66 138.66 -70.47 17.57 -108.08 238.22 3.65
##
## Performance summary :
## CAGR Best Worst
## 9.8 7.1 -13.9
# Create Report
#******************************************************************
plotbt.custom.report.part1(min.var.daily, equal.weight)
#
models<-list(min.var.daily, equal.weight)
models<-list("Min.var.daily" = min.var.daily,
"Min.var.weekly" = min.var.weekly,
"Equal.weight" = equal.weight)
#
strategy.performance.snapshoot(models,T)
## NULL
strategy.performance.snapshoot(models, control=list(comparison=T),
sort.performance = T )
plotbt.strategy.sidebyside(models,return.table = T )
## Min.var.daily Min.var.weekly Equal.weight
## Period "Nov2004 - Dec2022" "Nov2004 - Dec2022" "Nov2004 - Dec2022"
## Cagr "7.91" "9.81" "8.28"
## Sharpe "0.98" "0.78" "0.57"
## DVR "0.95" "0.74" "0.51"
## Volatility "8.13" "13.23" "16.49"
## MaxDD "-20.54" "-41.88" "-44.48"
## AvgDD "-1.27" "-1.85" "-1.75"
## VaR "-0.76" "-1.13" "-1.49"
## CVaR "-1.19" "-1.88" "-2.48"
## Exposure "98.6" "98.6" "99.96"
plotbt.strategy.sidebyside(min.var.daily,return.table = T)
## min.var.daily
## Period "Nov2004 - Dec2022"
## Cagr "7.91"
## Sharpe "0.98"
## DVR "0.95"
## Volatility "8.13"
## MaxDD "-20.54"
## AvgDD "-1.27"
## VaR "-0.76"
## CVaR "-1.19"
## Exposure "98.6"
# plot Daily and Weekly transition maps
layout(1:2)
plotbt.transition.map(min.var.daily$weight)
legend('topright', legend = 'min.var.daily', bty = 'n')
plotbt.transition.map(min.var.weekly$weight)
legend('topright', legend = 'min.var.weekly', bty = 'n')