con = gzcon(url('https://github.com/systematicinvestor/SIT/raw/master/sit.gz', 'rb'))
source(con)
close(con)
# Load historical data from 2000 to 2022
load.packages('quantmod,quadprog,lpSolve')
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
##
## Attaching package: 'TTR'
## The following object is masked _by_ '.GlobalEnv':
##
## DVI
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
tickers = spl('SPY,QQQ,EEM,IWM,EFA,TLT,IYR,GLD')
data <- new.env()
getSymbols(tickers, src = 'yahoo', from = '2000-01-01', env = data, auto.assign = T)
## [1] "SPY" "QQQ" "EEM" "IWM" "EFA" "TLT" "IYR" "GLD"
for(i in ls(data)) data[[i]] = adjustOHLC(data[[i]], use.Adjusted=T)
data.weekly <- new.env()
for(i in tickers) data.weekly[[i]] = to.weekly(data[[i]], indexAt='endof')
bt.prep(data, align='remove.na', dates='2000::2022')
bt.prep(data.weekly, align='remove.na', dates='2000::2022')
# Code Strategies
prices = data$prices
n = ncol(prices)
# find week ends
week.ends = endpoints(prices, 'weeks')
week.ends = week.ends[week.ends > 0]
# Equal Weight 1/N Benchmark
data$weight[] = NA
data$weight[week.ends,] = ntop(prices[week.ends,], n)
capital = 100000
data$weight[] = (capital / prices) * data$weight
equal.weight = bt.run(data, type='share')
## Latest weights :
## EEM EFA GLD IWM IYR QQQ SPY TLT
## 2022-12-30 12.67 12.55 12.58 12.5 12.52 12.42 12.48 12.28
##
## Performance summary :
## CAGR Best Worst
## 8 10.2 -8.8
# Create Constraints
constraints = new.constraints(n, lb = -Inf, ub = +Inf)
# SUM x.i = 1
constraints = add.constraints(rep(1, n), 1, type = '=', constraints)
ret = prices / mlag(prices) - 1
weight = coredata(prices)
weight[] = NA
for( i in week.ends[week.ends >= (63 + 1)] ) {
# one quarter is 63 days
hist = ret[ (i- 63 +1):i, ]
# create historical input assumptions
ia = create.historical.ia(hist, 252)
s0 = apply(coredata(hist),2,sd)
ia$cov = cor(coredata(hist), use='complete.obs',method='pearson') * (s0 %*% t(s0))
weight[i,] = min.risk.portfolio(ia, constraints)
}
# Minimum Variance
data$weight[] = weight
capital = 100000
data$weight[] = (capital / prices) * data$weight
min.var.daily = bt.run(data, type='share', capital=capital)
## Latest weights :
## EEM EFA GLD IWM IYR QQQ SPY TLT
## 2022-12-30 34.25 -51.19 48.19 -82.82 7.65 -93.89 217.12 20.69
##
## Performance summary :
## CAGR Best Worst
## 7.9 4.1 -5.2
# Minimum Variance portfolios using weekly data:
# Code Strategies: Weekly
retw = data.weekly$prices / mlag(data.weekly$prices) - 1
weightw = coredata(prices)
weightw[] = NA
for( i in week.ends[week.ends >= (63 + 1)] ) {
# map
j = which(index(ret[i,]) == index(retw))
# one quarter = 13 weeks
hist = retw[ (j- 13 +1):j, ]
# create historical input assumptions
ia = create.historical.ia(hist, 52)
s0 = apply(coredata(hist),2,sd)
ia$cov = cor(coredata(hist), use='complete.obs',method='pearson') * (s0 %*% t(s0))
weightw[i,] = min.risk.portfolio(ia, constraints)
}
data$weight[] = weightw
capital = 100000
data$weight[] = (capital / prices) * data$weight
min.var.weekly = bt.run(data, type='share', capital=capital)
## Latest weights :
## EEM EFA GLD IWM IYR QQQ SPY TLT
## 2022-12-30 -25.91 -93.66 138.66 -70.46 17.57 -108.08 238.22 3.65
##
## Performance summary :
## CAGR Best Worst
## 9.8 7.1 -13.9
# Create Report
plotbt.custom.report.part1(min.var.weekly, min.var.daily, equal.weight)

# Daily and Weekly transition maps
layout(1:2)
plotbt.transition.map(min.var.daily$weight)
legend('topright', legend = 'min.var.daily', bty = 'n')
plotbt.transition.map(min.var.weekly$weight)
legend('topright', legend = 'min.var.weekly', bty = 'n')
