Gender Type Pilot Summary

Study Summary

I asked participants to evaluate four roles. I used three job role from Heilman et al. (2004) - financial planning analyst (which they found was considered to be masculine), employee assistant analyst (which they found was considered to be feminine), and training analyst (which they found was considered to be neutral: i.e., in between masculine and feminine). I made a “gender diversity training analyst”.

Goal

I predicted that people think a canddiate’s gender is more relevant for the DEI position than other positions. The other items were filler to distract participants from the DEI items.

Study Description

For each role, I asked participants to imagine that they were hiring for that role

Then, I asked participants the following:
1. Nationwide, what percentage of people in each role do you think are women?
2. To what extent do you think that other people see each role as more masculine or feminine (1 = Very Masculine, 3 = Slightly Masculine, 4 = Neither masculine nor feminine, 5 = Slightly feminine, 7 = Very Feminine; I adapted this from Heilman et al., 2004)?
3. What is the ideal gender that you think others have in mind when hiring for these positions (1 = Male, 2 = Female, 3 = Non-binary, 4 = Not listed, 5 = Does Not Matter)?
4. How important do you think it is that the person in this position is a woman?

Here are the Roles (and their descriptions which I included):

Financial Planning Analyst:.
Providing financial planning information to employees. Informing employees about within-company benefit options through individual appointments and in-house workshops.
Locating out-of-company sources that can aid them in mapping out long-term financial strategies for themselves and their families.
Being good with numbers and knowledgeable about banking, insurance, accounting, and bond and equity investment.
Staying abreast of programs and practices within the industry concerning life insurance and mortgage assistance.

Employee Assistance Analyst:.
Providing assistance to employees with personal and family problems.
Counseling employees about mental health problems through individual appointments and in-house workshop.
Referring employees to professionals who can aid them in coping with issues affecting their work performance.
Having good interpersonal skills, sensitivity to the concerns of others, and the ability to build trusting relationships.
Staying updated of programs and practices within the industry concerning on-site day care.

Training Analyst:.
Providing skill training to employees who seek to upgrade their roles within the company.
Informing employees about job advancement opportunities through individual appointments and in-house workshops.
Referring employees to professionals who can aid them in developing longterm career goals.
Good communication skills and knowledgeable about job and career planning.
Is up-to-date with programs and practices within the industry concerning paid leave for taking courses.

Gender Diversity, Equity, and Inclusion Analyst:.
Providing training to employees about how to make the workplace better for women.
Giving information to employees about upcoming company-wide events intended to honor, or promote, women.
Referring employees to professionals who can offer additional information about creating a diverse and inclusive environment.
Good communication skills, ability to navigate difficult conversations, and knowledgeable about the issues that women face in the workplace.
Stays current on programs and practices within the industry concerning practices for enhancing gender equity.

Qualifications:
I also asked them to report how important it was that the candidate possess the following characteristics (scale was 1 = Not at all important to 7 = Very important):
- Prior Experience.
- Time in similar roles.
- Prior performance in similar roles.
- The candidate’s gender.
- The candidate’s ethnicity.
- The candidate’s ability to connect with other people on the team.
- The candidate’s ability to connect with other people in the organization.
- The candidate’s comfort working with numbers.
- The candidate’s creativity.
- The candidate’s interpersonal warmth.

Next step:

Use these findings to justify the following study design:
1. I tell participants that their organization recently decided a new initiative, and I would like to know who they will solicit voice from. 2. I present three candidates, each with different experiences.
3. I manipulate:
- The focus of the initiative (DEI vs. Financial planning).
4. I measure:
- If participants pick the woman to so solicit voice in the DEI (vs. finacical planning) condition.
- How interested participants think the woman is in each condition (I expect people to assume she is more interested in the DEI condition, relative to the financial planning condition).

Works Cited/Studies Referenced

Heilman, M. E., Wallen, A. S., Fuchs, D., & Tamkins, M. M. (2004). Penalties for success: reactions to women who succeed at male gender-typed tasks. Journal of applied psychology, 89(3), 416.

Participant Summary

I collected data from 102 part-/and full-time workers on Prolific

Nationwide, what percentage of people in each role do you think are women?

Percentage Analyses

## ANOVA Table (type III tests)
## 
## $ANOVA
##     Effect DFn DFd    F        p p<.05   ges
## 1 ItemText   3 303 83.2 2.73e-39     * 0.279
## 
## $`Mauchly's Test for Sphericity`
##     Effect     W        p p<.05
## 1 ItemText 0.764 6.21e-05     *
## 
## $`Sphericity Corrections`
##     Effect   GGe      DF[GG]    p[GG] p[GG]<.05   HFe      DF[HF]    p[HF] p[HF]<.05
## 1 ItemText 0.864 2.59, 261.8 2.58e-34         * 0.889 2.67, 269.3 3.21e-35         *

Percentage Graphs

To what extent do you think that other people see each role as more masculine or feminine?

To what extent do you think that other people see each role as more masculine or feminine (1 = Very Masculine, 3 = Slightly Masculine, 4 = Neither masculine nor feminine, 5 = Slightly feminine, 7 = Very Feminine; I adapted this from Heilman et al., 2004)

Masculine Analyses

## ANOVA Table (type III tests)
## 
## $ANOVA
##     Effect DFn DFd       F        p p<.05   ges
## 1 ItemText   3 303 143.849 5.83e-58     * 0.496
## 
## $`Mauchly's Test for Sphericity`
##     Effect     W        p p<.05
## 1 ItemText 0.786 0.000214     *
## 
## $`Sphericity Corrections`
##     Effect   GGe       DF[GG]    p[GG] p[GG]<.05   HFe       DF[HF]    p[HF] p[HF]<.05
## 1 ItemText 0.852 2.56, 258.21 8.31e-50         * 0.876 2.63, 265.48 3.93e-51         *

Masculine Graphs

What is the ideal gender that you think others have in mind when hiring for these positions?

As a note: I coded “1” if the participant said that women were the ideal candidates, and “0” if they did not select “woman”.

Selecting a Woman

Ideal Analyses

## ANOVA Table (type III tests)
## 
## $ANOVA
##     Effect DFn DFd      F        p p<.05   ges
## 1 ItemText   3 303 65.922 7.72e-33     * 0.278
## 
## $`Mauchly's Test for Sphericity`
##     Effect     W        p p<.05
## 1 ItemText 0.606 1.38e-09     *
## 
## $`Sphericity Corrections`
##     Effect   GGe       DF[GG]    p[GG] p[GG]<.05   HFe      DF[HF]    p[HF] p[HF]<.05
## 1 ItemText 0.812 2.44, 246.03 3.69e-27         * 0.834 2.5, 252.56 8.25e-28         *

Ideal Graphs

Selecting a Man

Ideal Analyses

## ANOVA Table (type III tests)
## 
## $ANOVA
##     Effect DFn DFd      F        p p<.05   ges
## 1 ItemText   3 303 59.565 2.69e-30     * 0.242
## 
## $`Mauchly's Test for Sphericity`
##     Effect     W        p p<.05
## 1 ItemText 0.287 3.58e-25     *
## 
## $`Sphericity Corrections`
##     Effect   GGe       DF[GG]   p[GG] p[GG]<.05   HFe       DF[HF]    p[HF] p[HF]<.05
## 1 ItemText 0.679 2.04, 205.76 2.1e-21         * 0.693 2.08, 210.03 8.52e-22         *

Ideal Graphs

How important do you think it is that the person in this position is a woman?

Important Analyses

## ANOVA Table (type III tests)
## 
## $ANOVA
##     Effect DFn DFd      F        p p<.05   ges
## 1 ItemText   3 303 52.941 1.53e-27     * 0.139
## 
## $`Mauchly's Test for Sphericity`
##     Effect     W        p p<.05
## 1 ItemText 0.202 1.47e-32     *
## 
## $`Sphericity Corrections`
##     Effect   GGe      DF[GG]    p[GG] p[GG]<.05   HFe       DF[HF]    p[HF] p[HF]<.05
## 1 ItemText 0.498 1.5, 151.02 5.37e-15         * 0.504 1.51, 152.78 3.84e-15         *

Important Graphs

Candidate Qualifications

I asked all participants, for each position, to indicate how much they think the following qualifications are important for the position: - Prior Experience.
- Time in similar roles.
- Prior performance in similar roles.
- The candidate’s gender.
- The candidate’s ethnicity.
- The candidate’s ability to connect with other people on the team.
- The candidate’s ability to connect with other people in the organization.
- The candidate’s comfort working with numbers.
- The candidate’s creativity.
- The candidate’s interpersonal warmth.

Analyses

## $`Educ. Experience Means + SDs`
## # A tibble: 4 × 5
##   condition                 n  mean    sd    se
##   <fct>                 <dbl> <dbl> <dbl> <dbl>
## 1 1. dei                  102  5.01  1.51 0.150
## 2 2. emp_assist (fem)     102  5.18  1.38 0.136
## 3 3. financial (masc)     102  5.78  1.21 0.120
## 4 4. training (neutral)   102  5.35  1.23 0.122
## 
## $`Educ. Experience Anova Table`
## $`Educ. Experience Anova Table`$ANOVA
##      Effect DFn DFd      F       p p<.05   ges
## 1 condition   3 303 10.483 1.4e-06     * 0.045
## 
## 
## $`Educ. Experience T-test Results`
##     .y.              group1                group2 statistic    p.adj p.adj.signif
## 1 Value              1. dei   2. emp_assist (fem) -1.214010 1.00e+00           ns
## 2 Value              1. dei   3. financial (masc) -4.555283 8.82e-05         ****
## 3 Value              1. dei 4. training (neutral) -2.432552 1.01e-01           ns
## 4 Value 2. emp_assist (fem)   3. financial (masc) -4.175532 3.79e-04          ***
## 5 Value 2. emp_assist (fem) 4. training (neutral) -1.386770 1.00e+00           ns
## 6 Value 3. financial (masc) 4. training (neutral)  2.905906 2.70e-02            *
## 
## $`Graph of Educ. Experience`

## 
## $`Time in Similar Roles Means + SDs`
## # A tibble: 4 × 5
##   condition                 n  mean    sd     se
##   <fct>                 <dbl> <dbl> <dbl>  <dbl>
## 1 1. dei                  102  5.43  1.29 0.127 
## 2 2. emp_assist (fem)     102  5.65  1.10 0.109 
## 3 3. financial (masc)     102  5.99  0.97 0.0960
## 4 4. training (neutral)   102  5.76  1.03 0.102 
## 
## $`Time in Similar Roles Anova Table`
## $`Time in Similar Roles Anova Table`$ANOVA
##      Effect DFn DFd     F        p p<.05   ges
## 1 condition   3 303 9.354 6.23e-06     * 0.033
## 
## 
## $`Time in Similar Roles T-test Results`
##     .y.              group1                group2 statistic    p.adj p.adj.signif
## 1 Value              1. dei   2. emp_assist (fem) -1.910845 0.353000           ns
## 2 Value              1. dei   3. financial (masc) -4.335615 0.000206          ***
## 3 Value              1. dei 4. training (neutral) -2.982679 0.021000            *
## 4 Value 2. emp_assist (fem)   3. financial (masc) -3.367105 0.006000           **
## 5 Value 2. emp_assist (fem) 4. training (neutral) -1.330167 1.000000           ns
## 6 Value 3. financial (masc) 4. training (neutral)  2.290832 0.145000           ns
## 
## $`Graph of Time in Similar Roles`

## 
## $`Prior Performance Means + SDs`
## # A tibble: 4 × 5
##   condition                 n  mean    sd     se
##   <fct>                 <dbl> <dbl> <dbl>  <dbl>
## 1 1. dei                  102  5.72 1.28  0.127 
## 2 2. emp_assist (fem)     102  5.92 1.01  0.100 
## 3 3. financial (masc)     102  6.12 0.947 0.0938
## 4 4. training (neutral)   102  5.91 1.02  0.101 
## 
## $`Prior Performance Anova Table`
## $`Prior Performance Anova Table`$ANOVA
##      Effect DFn DFd     F     p p<.05   ges
## 1 condition   3 303 4.613 0.004     * 0.017
## 
## 
## $`Prior Performance T-test Results`
##     .y.              group1                group2  statistic p.adj p.adj.signif
## 1 Value              1. dei   2. emp_assist (fem) -1.8798776 0.378           ns
## 2 Value              1. dei   3. financial (masc) -3.1051578 0.015            *
## 3 Value              1. dei 4. training (neutral) -1.6489827 0.612           ns
## 4 Value 2. emp_assist (fem)   3. financial (masc) -2.0518498 0.257           ns
## 5 Value 2. emp_assist (fem) 4. training (neutral)  0.1105718 1.000           ns
## 6 Value 3. financial (masc) 4. training (neutral)  2.0424685 0.262           ns
## 
## $`Graph of Prior Performance`

## 
## $`Gender Means + SDs`
## # A tibble: 4 × 5
##   condition                 n  mean    sd    se
##   <fct>                 <dbl> <dbl> <dbl> <dbl>
## 1 1. dei                  102  3.84  2.22 0.219
## 2 2. emp_assist (fem)     102  2.07  1.54 0.153
## 3 3. financial (masc)     102  1.78  1.30 0.128
## 4 4. training (neutral)   102  1.79  1.37 0.136
## 
## $`Gender Anova Table`
## $`Gender Anova Table`$ANOVA
##      Effect DFn DFd      F        p p<.05   ges
## 1 condition   3 303 74.753 3.25e-36     * 0.215
## 
## 
## $`Gender T-test Results`
##     .y.              group1                group2  statistic    p.adj p.adj.signif
## 1 Value              1. dei   2. emp_assist (fem)  8.3272710 2.53e-12         ****
## 2 Value              1. dei   3. financial (masc)  9.5217207 6.12e-15         ****
## 3 Value              1. dei 4. training (neutral)  9.6888427 2.61e-15         ****
## 4 Value 2. emp_assist (fem)   3. financial (masc)  2.9645430 2.30e-02            *
## 5 Value 2. emp_assist (fem) 4. training (neutral)  3.7806270 2.00e-03           **
## 6 Value 3. financial (masc) 4. training (neutral) -0.1295599 1.00e+00           ns
## 
## $`Graph of Gender`

## 
## $`Ethnicity Means + SDs`
## # A tibble: 4 × 5
##   condition                 n  mean    sd    se
##   <fct>                 <dbl> <dbl> <dbl> <dbl>
## 1 1. dei                  102  2.76  1.97 0.195
## 2 2. emp_assist (fem)     102  1.87  1.48 0.147
## 3 3. financial (masc)     102  1.71  1.32 0.130
## 4 4. training (neutral)   102  1.70  1.26 0.124
## 
## $`Ethnicity Anova Table`
## $`Ethnicity Anova Table`$ANOVA
##      Effect DFn DFd      F        p p<.05   ges
## 1 condition   3 303 33.779 7.32e-19     * 0.076
## 
## 
## $`Ethnicity T-test Results`
##     .y.              group1                group2 statistic    p.adj p.adj.signif
## 1 Value              1. dei   2. emp_assist (fem) 5.6801895 7.80e-07         ****
## 2 Value              1. dei   3. financial (masc) 6.3772453 3.29e-08         ****
## 3 Value              1. dei 4. training (neutral) 6.9422189 2.28e-09         ****
## 4 Value 2. emp_assist (fem)   3. financial (masc) 1.9913207 2.95e-01           ns
## 5 Value 2. emp_assist (fem) 4. training (neutral) 2.6175864 6.10e-02           ns
## 6 Value 3. financial (masc) 4. training (neutral) 0.1451633 1.00e+00           ns
## 
## $`Graph of Ethnicity`

## 
## $`Ability to connect with others on the team Means + SDs`
## # A tibble: 4 × 5
##   condition                 n  mean    sd    se
##   <fct>                 <dbl> <dbl> <dbl> <dbl>
## 1 1. dei                  102  5.97  1.19 0.118
## 2 2. emp_assist (fem)     102  6.14  1.10 0.109
## 3 3. financial (masc)     102  4.95  1.37 0.136
## 4 4. training (neutral)   102  5.96  1.12 0.111
## 
## $`Ability to connect with others on the team Anova Table`
## $`Ability to connect with others on the team Anova Table`$ANOVA
##      Effect DFn DFd      F        p p<.05   ges
## 1 condition   3 303 35.386 1.23e-19     * 0.134
## 
## 
## $`Ability to connect with others on the team T-test Results`
##     .y.              group1                group2   statistic    p.adj p.adj.signif
## 1 Value              1. dei   2. emp_assist (fem) -1.23981978 1.00e+00           ns
## 2 Value              1. dei   3. financial (masc)  7.04216980 1.41e-09         ****
## 3 Value              1. dei 4. training (neutral)  0.08380427 1.00e+00           ns
## 4 Value 2. emp_assist (fem)   3. financial (masc)  8.35945499 2.15e-12         ****
## 5 Value 2. emp_assist (fem) 4. training (neutral)  2.07068487 2.45e-01           ns
## 6 Value 3. financial (masc) 4. training (neutral) -7.22953540 5.70e-10         ****
## 
## $`Graph of Ability to connect with others on the team`

## 
## $`Ability to connect with others in the org. Means + SDs`
## # A tibble: 4 × 5
##   condition                 n  mean    sd    se
##   <fct>                 <dbl> <dbl> <dbl> <dbl>
## 1 1. dei                  102  6.02  1.20 0.119
## 2 2. emp_assist (fem)     102  6.13  1.07 0.106
## 3 3. financial (masc)     102  4.98  1.41 0.140
## 4 4. training (neutral)   102  6.02  1.05 0.104
## 
## $`Ability to connect with others in the org. Anova Table`
## $`Ability to connect with others in the org. Anova Table`$ANOVA
##      Effect DFn DFd      F     p p<.05   ges
## 1 condition   3 303 38.019 7e-21     * 0.134
## 
## 
## $`Ability to connect with others in the org. T-test Results`
##     .y.              group1                group2  statistic    p.adj p.adj.signif
## 1 Value              1. dei   2. emp_assist (fem) -0.9324103 1.00e+00           ns
## 2 Value              1. dei   3. financial (masc)  7.0188024 1.58e-09         ****
## 3 Value              1. dei 4. training (neutral)  0.0000000 1.00e+00           ns
## 4 Value 2. emp_assist (fem)   3. financial (masc)  7.8352474 2.93e-11         ****
## 5 Value 2. emp_assist (fem) 4. training (neutral)  1.3702387 1.00e+00           ns
## 6 Value 3. financial (masc) 4. training (neutral) -7.6554199 7.08e-11         ****
## 
## $`Graph of Ability to connect with others in the org.`

## 
## $`Comfort with numbers Means + SDs`
## # A tibble: 4 × 5
##   condition                 n  mean    sd    se
##   <fct>                 <dbl> <dbl> <dbl> <dbl>
## 1 1. dei                  102  3.57  2.00 0.198
## 2 2. emp_assist (fem)     102  3.54  1.87 0.185
## 3 3. financial (masc)     102  6.24  1.19 0.118
## 4 4. training (neutral)   102  4.05  1.79 0.178
## 
## $`Comfort with numbers Anova Table`
## $`Comfort with numbers Anova Table`$ANOVA
##      Effect DFn DFd     F        p p<.05   ges
## 1 condition   3 303 85.58 3.93e-40     * 0.292
## 
## 
## $`Comfort with numbers T-test Results`
##     .y.              group1                group2   statistic    p.adj p.adj.signif
## 1 Value              1. dei   2. emp_assist (fem)   0.2324642 1.00e+00           ns
## 2 Value              1. dei   3. financial (masc) -10.2653530 1.40e-16         ****
## 3 Value              1. dei 4. training (neutral)  -3.6810070 2.00e-03           **
## 4 Value 2. emp_assist (fem)   3. financial (masc) -11.0372902 2.83e-18         ****
## 5 Value 2. emp_assist (fem) 4. training (neutral)  -3.8199485 1.00e-03           **
## 6 Value 3. financial (masc) 4. training (neutral)   9.5913602 4.28e-15         ****
## 
## $`Graph of Comfort with numbers`

## 
## $`Creativity Means + SDs`
## # A tibble: 4 × 5
##   condition                 n  mean    sd    se
##   <fct>                 <dbl> <dbl> <dbl> <dbl>
## 1 1. dei                  102  5.18  1.42 0.141
## 2 2. emp_assist (fem)     102  4.88  1.39 0.137
## 3 3. financial (masc)     102  4.28  1.50 0.149
## 4 4. training (neutral)   102  5     1.36 0.134
## 
## $`Creativity Anova Table`
## $`Creativity Anova Table`$ANOVA
##      Effect DFn DFd     F       p p<.05   ges
## 1 condition   3 303 12.65 8.2e-08     * 0.053
## 
## 
## $`Creativity T-test Results`
##     .y.              group1                group2  statistic    p.adj p.adj.signif
## 1 Value              1. dei   2. emp_assist (fem)  1.9384118 3.32e-01           ns
## 2 Value              1. dei   3. financial (masc)  4.8836034 2.35e-05         ****
## 3 Value              1. dei 4. training (neutral)  1.2220590 1.00e+00           ns
## 4 Value 2. emp_assist (fem)   3. financial (masc)  3.9637007 8.28e-04          ***
## 5 Value 2. emp_assist (fem) 4. training (neutral) -0.9666769 1.00e+00           ns
## 6 Value 3. financial (masc) 4. training (neutral) -4.3353063 2.07e-04          ***
## 
## $`Graph of Creativity`

## 
## $`Interpersonal warmth Means + SDs`
## # A tibble: 4 × 5
##   condition                 n  mean    sd    se
##   <fct>                 <dbl> <dbl> <dbl> <dbl>
## 1 1. dei                  102  5.99  1.23 0.122
## 2 2. emp_assist (fem)     102  6.26  1.15 0.114
## 3 3. financial (masc)     102  4.47  1.44 0.143
## 4 4. training (neutral)   102  5.85  1.19 0.118
## 
## $`Interpersonal warmth Anova Table`
## $`Interpersonal warmth Anova Table`$ANOVA
##      Effect DFn DFd      F        p p<.05   ges
## 1 condition   3 303 73.473 9.79e-36     * 0.234
## 
## 
## $`Interpersonal warmth T-test Results`
##     .y.              group1                group2 statistic    p.adj p.adj.signif
## 1 Value              1. dei   2. emp_assist (fem) -2.688710 5.00e-02           ns
## 2 Value              1. dei   3. financial (masc)  9.502422 6.72e-15         ****
## 3 Value              1. dei 4. training (neutral)  1.352618 1.00e+00           ns
## 4 Value 2. emp_assist (fem)   3. financial (masc) 11.119885 1.86e-18         ****
## 5 Value 2. emp_assist (fem) 4. training (neutral)  4.196464 3.50e-04          ***
## 6 Value 3. financial (masc) 4. training (neutral) -8.980619 9.42e-14         ****
## 
## $`Graph of Interpersonal warmth`