[Project title here]
Rpubs link: [copy Rpubs url address here]
GitHub Repository: [add url here if you have created a data or code
repository, if not delete this line]
Study Preregistration form: [copy Rpubs url address here or
delete]
Workspace setup
YAML settings
output: html_document: code_download: true
toc: true toc_depth: 2 toc_float:
collapsed: false smooth_scroll: true
Global settings of R chunks
# Global options
opts_chunk$set(echo=TRUE,
cache=TRUE,
comment=NA,
message=FALSE,
warning=FALSE)
Libraries
# All used libraries
library("rmarkdown")
library("knitr")
Versions of used packages
$rmarkdown
[1] '2.20'
$knitr
[1] '1.42'
My enviroment
[1] "R version 4.2.2 (2022-10-31 ucrt)"
1. Introduction
Code and outputs are not included in the wordcount
500 words
Critical and evidence-based reflections on the paper and your new
research question(s).
- Clearly state which claim (finding/argument) from the replicated
paper you discuss or test robustness of any methodological
assumptions.
- What the authors argued, and what could be counter-argued, and
why.
- Use at least 5 scientific references to support your critique and
your idea for research extension.
Refer to the four types of replications as discussed in Freese and
Peterson (2017) and explain what aspects of the original research your
replication tests.
Briefly summarise, what results you expected to find and
preregistered.
2. Data and methods
2.1. Data
250 words
Transparently describe data used in the original
paper and in your replication project: full dataset names, years of data
collection, sources (who created data), sample sizes, variables used in
the model you replicate.
Embed R code to upload your data (recommendation - show code only
using results='hide' in the chunk options).
Remember to add all datasets with their doi number to the list of
references. See examples in the conditions of use for the ESS data here.
Report all steps you have undertaken in data
transformation:
- Subsetting data by selecting a lower number of variables or
excluding any cases.
- Merging data files.
- Steps in recoding and renaming all variables.
- Embed R code below to present the steps in data manipulation. If
this would be very long chunk of R code (over 1 page), show just some
examples and hide the rest of the code in text
(
include=FALSE option). The entire code will be still
displayed in Appendix 2.
You have to display some summary statistics of your
key variables of interest. This could be done as a table/s or a graph/s
presenting distribution of your dependent variable/s for the entire
sample or by a group of interest, boxplots, correlation plots or graphs
with means values.
2.2. Methods
250 words
Describe what methods were used in the original paper and what
methods you used and why.
Support any changes you made in the analytical strategy with
literature and/or displaying any relevant data diagnostics.
If suitable, embed statistical tests comparing model fit of both
methods.
3. Results
500 words
Display and describe your research results.
Show R code and professionally looking outputs, e.g. tables prepared
in tab_model or stargazer functions, or graphs
as coefplots or predicted values.
Provide in-depth discussion and interpretation of your results.
4. Conclusions
250 words
Discuss you findings in the light of literature you introduced in the
introduction.
Reflect why your results are similar/different from the original
study.
References
min. 5 scientific references, excluding the replicated
paper
Freese, J., & Peterson, D. (2017). Replication in social science.
Annual Review of Sociology, 43, 147-165, doi:
10.1146.
Appendix
Appendix 2. Entire R code used in the project
# Opening key libraries first
library(rmarkdown)
library(knitr)
# Global options
opts_chunk$set(echo=TRUE,
cache=TRUE,
comment=NA,
message=FALSE,
warning=FALSE)
# All used libraries
library("rmarkdown")
library("knitr")
# Versions of used packages
packages <- c("rmarkdown", "knitr")
names(packages) <- packages
lapply(packages, packageVersion)
# What is my R version?
version[['version.string']]
# Detailed information about my environment
sessionInfo()
LS0tDQp0aXRsZTogIlNNSTIwNSBSZXBsaWNhdGlvbiBQcm9qZWN0ICgyMDIzKSINCmF1dGhvcjogIllvdXIgU3R1ZGVudCBJRC9udW1iZXIiDQpkYXRlOiAiMjIvMDUvMjAyMyINCm91dHB1dDogDQogIGh0bWxfZG9jdW1lbnQ6IA0KICAgIGNvZGVfZG93bmxvYWQ6IHRydWUNCiAgICB0b2M6IHRydWUNCiAgICB0b2NfZGVwdGg6IDINCiAgICB0b2NfZmxvYXQ6IA0KICAgICAgY29sbGFwc2VkOiBmYWxzZQ0KICAgICAgc21vb3RoX3Njcm9sbDogdHJ1ZQ0KLS0tDQoNCmBgYHtyIHN0YXJ0LCBpbmNsdWRlPUZBTFNFfQ0KIyBPcGVuaW5nIGtleSBsaWJyYXJpZXMgZmlyc3QNCmxpYnJhcnkocm1hcmtkb3duKQ0KbGlicmFyeShrbml0cikNCmBgYA0KDQojIFtQcm9qZWN0IHRpdGxlIGhlcmVdDQoNCiMjIyBScHVicyBsaW5rOiBbY29weSBScHVicyB1cmwgYWRkcmVzcyBoZXJlXQ0KIyMjIEdpdEh1YiBSZXBvc2l0b3J5OiBbYWRkIHVybCBoZXJlIGlmIHlvdSBoYXZlIGNyZWF0ZWQgYSBkYXRhIG9yIGNvZGUgcmVwb3NpdG9yeSwgaWYgbm90IGRlbGV0ZSB0aGlzIGxpbmVdDQojIyMgU3R1ZHkgUHJlcmVnaXN0cmF0aW9uIGZvcm06IFtjb3B5IFJwdWJzIHVybCBhZGRyZXNzIGhlcmUgb3IgZGVsZXRlXQ0KDQojIyBJbmZvcm1hdGlvbiBhYm91dCB0aGlzIHJlcGxpY2F0aW9uIHByb2plY3QNCiogUmVwbGljYXRpb24gcHJvamVjdCBiYXNlZCBvbiBwYXBlciBbYWRkIGZ1bGwgY2l0YXRpb24gaGVyZSBhbmQgbGluayB0byBpdHMgcHVibGlzaGVkIG9ubGluZSB2ZXJzaW9uXQ0KKiBSZXBsaWNhdGlvbiBtZXRob2QgKHNlbGVjdCBvbmUgZnJvbSBiZWxvdyk6DQogICsgVXNlZCByZXBsaWNhdGlvbiBwYWNrYWdlIGF2YWlsYWJsZSBhdCBbYWRkIGNpdGF0aW9uICsgcmVwb3NpdG9yeSBsaW5rIGhlcmVdDQogICsgVXNlZCBtYXRlcmlhbHMgb2J0YWluZWQgZnJvbSBhdXRob3JzDQogICsgT3duIHJlcGxpY2F0aW9uIGZvbGxvd2luZyBtZXRob2RzIHNlY3Rpb24gb2YgdGhlIHBhcGVyDQogICsgT3RoZXIgLSBleHBsYWluDQoNCiMjIFdvcmtzcGFjZSBzZXR1cCB7LnRhYnNldCAudGFic2V0LXBpbGxzfQ0KDQojIyMgWUFNTCBzZXR0aW5ncw0KDQogb3V0cHV0OiA8L2JyPg0KICAmbmJzcDsgaHRtbF9kb2N1bWVudDogPC9icj4NCiAgICAmbmJzcDsmbmJzcDsgY29kZV9kb3dubG9hZDogdHJ1ZSA8L2JyPg0KICAgICZuYnNwOyZuYnNwOyZuYnNwOyB0b2M6IHRydWUgPC9icj4NCiAgICAmbmJzcDsmbmJzcDsmbmJzcDsgdG9jX2RlcHRoOiAyIDwvYnI+DQogICAgJm5ic3A7Jm5ic3A7Jm5ic3A7IHRvY19mbG9hdDogPC9icj4NCiAgICAgICZuYnNwOyZuYnNwOyZuYnNwOyZuYnNwOyBjb2xsYXBzZWQ6IGZhbHNlIDwvYnI+DQogICAgICAmbmJzcDsmbmJzcDsmbmJzcDsmbmJzcDsgc21vb3RoX3Njcm9sbDogdHJ1ZSA8L2JyPg0KDQojIyMgR2xvYmFsIHNldHRpbmdzIG9mIFIgY2h1bmtzDQoNCmBgYHtyIHNldHVwLCBpbmNsdWRlPVRSVUV9DQojIEdsb2JhbCBvcHRpb25zDQpvcHRzX2NodW5rJHNldChlY2hvPVRSVUUsDQoJICAgICAgICAgICAgIGNhY2hlPVRSVUUsDQogICAgICAgICAgICAgICBjb21tZW50PU5BLA0KICAgICAgICAgICAgICAgbWVzc2FnZT1GQUxTRSwNCiAgICAgICAgICAgICAgIHdhcm5pbmc9RkFMU0UpDQpgYGANCg0KIyMjIExpYnJhcmllcw0KDQpgYGB7ciBsaWJyYXJpZXMsIGluY2x1ZGU9VFJVRX0NCiMgQWxsIHVzZWQgbGlicmFyaWVzDQpsaWJyYXJ5KCJybWFya2Rvd24iKQ0KbGlicmFyeSgia25pdHIiKQ0KYGBgDQoNCiMjIyBWZXJzaW9ucyBvZiB1c2VkIHBhY2thZ2VzDQoNCmBgYHtyIHZlcnNpb25zLCBlY2hvPUZBTFNFfQ0KIyBWZXJzaW9ucyBvZiB1c2VkIHBhY2thZ2VzDQpwYWNrYWdlcyA8LSBjKCJybWFya2Rvd24iLCAia25pdHIiKQ0KbmFtZXMocGFja2FnZXMpIDwtIHBhY2thZ2VzDQpsYXBwbHkocGFja2FnZXMsIHBhY2thZ2VWZXJzaW9uKQ0KYGBgDQoNCiMjIyBNeSBlbnZpcm9tZW50DQoNCmBgYHtyIG15UiwgZWNobz1GQUxTRX0NCiMgV2hhdCBpcyBteSBSIHZlcnNpb24/DQp2ZXJzaW9uW1sndmVyc2lvbi5zdHJpbmcnXV0NCmBgYA0KDQojIyAxLiBJbnRyb2R1Y3Rpb24NCg0KKkNvZGUgYW5kIG91dHB1dHMgYXJlIG5vdCBpbmNsdWRlZCBpbiB0aGUgd29yZGNvdW50Kg0KDQoqKjUwMCB3b3JkcyoqDQoNCkNyaXRpY2FsIGFuZCBldmlkZW5jZS1iYXNlZCByZWZsZWN0aW9ucyBvbiB0aGUgcGFwZXIgYW5kIHlvdXIgbmV3IHJlc2VhcmNoIHF1ZXN0aW9uKHMpLiANCg0KKiBDbGVhcmx5IHN0YXRlIHdoaWNoIGNsYWltIChmaW5kaW5nL2FyZ3VtZW50KSBmcm9tIHRoZSByZXBsaWNhdGVkIHBhcGVyIHlvdSBkaXNjdXNzIG9yIHRlc3Qgcm9idXN0bmVzcyBvZiBhbnkgbWV0aG9kb2xvZ2ljYWwgYXNzdW1wdGlvbnMuIA0KKiBXaGF0IHRoZSBhdXRob3JzIGFyZ3VlZCwgYW5kIHdoYXQgY291bGQgYmUgY291bnRlci1hcmd1ZWQsIGFuZCB3aHkuDQoqIFVzZSBhdCBsZWFzdCA1IHNjaWVudGlmaWMgcmVmZXJlbmNlcyB0byBzdXBwb3J0IHlvdXIgY3JpdGlxdWUgYW5kIHlvdXIgaWRlYSBmb3IgcmVzZWFyY2ggZXh0ZW5zaW9uLiANCg0KUmVmZXIgdG8gdGhlIGZvdXIgdHlwZXMgb2YgcmVwbGljYXRpb25zIGFzIGRpc2N1c3NlZCBpbiBGcmVlc2UgYW5kIFBldGVyc29uICgyMDE3KSBhbmQgZXhwbGFpbiB3aGF0IGFzcGVjdHMgb2YgdGhlIG9yaWdpbmFsIHJlc2VhcmNoIHlvdXIgcmVwbGljYXRpb24gdGVzdHMuDQoNCkJyaWVmbHkgc3VtbWFyaXNlLCB3aGF0IHJlc3VsdHMgeW91IGV4cGVjdGVkIHRvIGZpbmQgYW5kIHByZXJlZ2lzdGVyZWQuDQoNCg0KIyMgMi4gRGF0YSBhbmQgbWV0aG9kcw0KDQojIyMgMi4xLiBEYXRhDQoNCioqMjUwIHdvcmRzKioNCg0KVHJhbnNwYXJlbnRseSBfX2Rlc2NyaWJlIGRhdGFfXyB1c2VkIGluIHRoZSBvcmlnaW5hbCBwYXBlciBhbmQgaW4geW91ciByZXBsaWNhdGlvbiBwcm9qZWN0OiBmdWxsIGRhdGFzZXQgbmFtZXMsIHllYXJzIG9mIGRhdGEgY29sbGVjdGlvbiwgc291cmNlcyAod2hvIGNyZWF0ZWQgZGF0YSksIHNhbXBsZSBzaXplcywgdmFyaWFibGVzIHVzZWQgaW4gdGhlIG1vZGVsIHlvdSByZXBsaWNhdGUuDQoNCkVtYmVkIFIgY29kZSB0byB1cGxvYWQgeW91ciBkYXRhIChyZWNvbW1lbmRhdGlvbiAtIHNob3cgY29kZSBvbmx5IHVzaW5nIGByZXN1bHRzPSdoaWRlJ2AgaW4gdGhlIGNodW5rIG9wdGlvbnMpLiANCg0KUmVtZW1iZXIgdG8gYWRkIGFsbCBkYXRhc2V0cyB3aXRoIHRoZWlyIGRvaSBudW1iZXIgdG8gdGhlIGxpc3Qgb2YgcmVmZXJlbmNlcy4gU2VlIGV4YW1wbGVzIGluIHRoZSBjb25kaXRpb25zIG9mIHVzZSBmb3IgdGhlIEVTUyBkYXRhIFtoZXJlXShodHRwczovL3d3dy5ldXJvcGVhbnNvY2lhbHN1cnZleS5vcmcvZGF0YS9jb25kaXRpb25zX29mX3VzZS5odG1sKS4NCg0KUmVwb3J0IGFsbCBzdGVwcyB5b3UgaGF2ZSB1bmRlcnRha2VuIGluIF9fZGF0YSB0cmFuc2Zvcm1hdGlvbl9fOg0KDQoqIFN1YnNldHRpbmcgZGF0YSBieSBzZWxlY3RpbmcgYSBsb3dlciBudW1iZXIgb2YgdmFyaWFibGVzIG9yIGV4Y2x1ZGluZyBhbnkgY2FzZXMuDQoqIE1lcmdpbmcgZGF0YSBmaWxlcy4NCiogU3RlcHMgaW4gcmVjb2RpbmcgYW5kIHJlbmFtaW5nIGFsbCB2YXJpYWJsZXMuIA0KKiBFbWJlZCBSIGNvZGUgYmVsb3cgdG8gcHJlc2VudCB0aGUgc3RlcHMgaW4gZGF0YSBtYW5pcHVsYXRpb24uIElmIHRoaXMgd291bGQgYmUgdmVyeSBsb25nIGNodW5rIG9mIFIgY29kZSAob3ZlciAxIHBhZ2UpLCBzaG93IGp1c3Qgc29tZSBleGFtcGxlcyBhbmQgaGlkZSB0aGUgcmVzdCBvZiB0aGUgY29kZSBpbiB0ZXh0IChgaW5jbHVkZT1GQUxTRWAgb3B0aW9uKS4gVGhlIGVudGlyZSBjb2RlIHdpbGwgYmUgc3RpbGwgZGlzcGxheWVkIGluIEFwcGVuZGl4IDIuIA0KDQpZb3UgX19oYXZlIHRvX18gZGlzcGxheSBzb21lIHN1bW1hcnkgc3RhdGlzdGljcyBvZiB5b3VyIGtleSB2YXJpYWJsZXMgb2YgaW50ZXJlc3QuIFRoaXMgY291bGQgYmUgZG9uZSBhcyBhIHRhYmxlL3Mgb3IgYSBncmFwaC9zIHByZXNlbnRpbmcgZGlzdHJpYnV0aW9uIG9mIHlvdXIgZGVwZW5kZW50IHZhcmlhYmxlL3MgZm9yIHRoZSBlbnRpcmUgc2FtcGxlIG9yIGJ5IGEgZ3JvdXAgb2YgaW50ZXJlc3QsIGJveHBsb3RzLCBjb3JyZWxhdGlvbiBwbG90cyBvciBncmFwaHMgd2l0aCBtZWFucyB2YWx1ZXMuDQoNCg0KIyMjIDIuMi4gTWV0aG9kcw0KDQoqKjI1MCB3b3JkcyoqDQoNCkRlc2NyaWJlIHdoYXQgbWV0aG9kcyB3ZXJlIHVzZWQgaW4gdGhlIG9yaWdpbmFsIHBhcGVyIGFuZCB3aGF0IG1ldGhvZHMgeW91IHVzZWQgYW5kIHdoeS4gDQoNClN1cHBvcnQgYW55IGNoYW5nZXMgeW91IG1hZGUgaW4gdGhlIGFuYWx5dGljYWwgc3RyYXRlZ3kgd2l0aCBsaXRlcmF0dXJlIGFuZC9vciBkaXNwbGF5aW5nIGFueSByZWxldmFudCBkYXRhIGRpYWdub3N0aWNzLiANCg0KSWYgc3VpdGFibGUsIGVtYmVkIHN0YXRpc3RpY2FsIHRlc3RzIGNvbXBhcmluZyBtb2RlbCBmaXQgb2YgYm90aCBtZXRob2RzLg0KDQoNCiMjIDMuIFJlc3VsdHMNCg0KKio1MDAgd29yZHMqKg0KDQpEaXNwbGF5IGFuZCBkZXNjcmliZSB5b3VyIHJlc2VhcmNoIHJlc3VsdHMuDQoNClNob3cgUiBjb2RlIGFuZCBwcm9mZXNzaW9uYWxseSBsb29raW5nIG91dHB1dHMsIGUuZy4gdGFibGVzIHByZXBhcmVkIGluIGB0YWJfbW9kZWxgIG9yIGBzdGFyZ2F6ZXJgIGZ1bmN0aW9ucywgb3IgZ3JhcGhzIGFzIGBjb2VmcGxvdHNgIG9yIHByZWRpY3RlZCB2YWx1ZXMuDQoNClByb3ZpZGUgaW4tZGVwdGggZGlzY3Vzc2lvbiBhbmQgaW50ZXJwcmV0YXRpb24gb2YgeW91ciByZXN1bHRzLg0KDQoNCiMjIDQuIENvbmNsdXNpb25zDQoNCioqMjUwIHdvcmRzKioNCg0KRGlzY3VzcyB5b3UgZmluZGluZ3MgaW4gdGhlIGxpZ2h0IG9mIGxpdGVyYXR1cmUgeW91IGludHJvZHVjZWQgaW4gdGhlIGludHJvZHVjdGlvbi4NCg0KUmVmbGVjdCB3aHkgeW91ciByZXN1bHRzIGFyZSBzaW1pbGFyL2RpZmZlcmVudCBmcm9tIHRoZSBvcmlnaW5hbCBzdHVkeS4gDQoNCg0KIyMgUmVmZXJlbmNlcw0KDQoqKm1pbi4gNSBzY2llbnRpZmljIHJlZmVyZW5jZXMsIGV4Y2x1ZGluZyB0aGUgcmVwbGljYXRlZCBwYXBlcioqDQoNCkZyZWVzZSwgSi4sICYgUGV0ZXJzb24sIEQuICgyMDE3KS4gUmVwbGljYXRpb24gaW4gc29jaWFsIHNjaWVuY2UuICpBbm51YWwgUmV2aWV3IG9mIFNvY2lvbG9neSosIDQzLCAxNDctMTY1LCBbZG9pOiAxMC4xMTQ2XShodHRwczovL3d3dy5hbm51YWxyZXZpZXdzLm9yZy9kb2kvYWJzLzEwLjExNDYvYW5udXJldi1zb2MtMDYwMTE2LTA1MzQ1MCkuDQoNCiMjIEFwcGVuZGl4DQoNCiMjIyBBcHBlbmRpeCAxLiBNeSBlbnZpcm9tZW50IChmdWxsIGluZm9ybWF0aW9uKSANCg0KYGBge3Igc2Vzc2lvbn0NCiMgRGV0YWlsZWQgaW5mb3JtYXRpb24gYWJvdXQgbXkgZW52aXJvbm1lbnQNCnNlc3Npb25JbmZvKCkNCmBgYA0KDQojIyMgQXBwZW5kaXggMi4gRW50aXJlIFIgY29kZSB1c2VkIGluIHRoZSBwcm9qZWN0DQoNCmBgYHtyIHJlZi5sYWJlbD1rbml0cjo6YWxsX2xhYmVscygpLCBlY2hvPVRSVUUsIGV2YWw9RkFMU0V9DQpgYGANCg==