x <- c(0.1, 0.5, 1.0, 1.5, 2.0, 2.5)
y <- c(0, 0, 1, 1, 1, 0)
glm(y ~ x, family = "binomial")
##
## Call: glm(formula = y ~ x, family = "binomial")
##
## Coefficients:
## (Intercept) x
## -0.8982 0.7099
##
## Degrees of Freedom: 5 Total (i.e. Null); 4 Residual
## Null Deviance: 8.318
## Residual Deviance: 7.832 AIC: 11.83
pca<- prcomp(mtcars)
print(pca)
## Standard deviations (1, .., p=11):
## [1] 136.5330479 38.1480776 3.0710166 1.3066508 0.9064862 0.6635411
## [7] 0.3085791 0.2859604 0.2506973 0.2106519 0.1984238
##
## Rotation (n x k) = (11 x 11):
## PC1 PC2 PC3 PC4 PC5
## mpg -0.038118199 0.009184847 0.982070847 0.047634784 -0.08832843
## cyl 0.012035150 -0.003372487 -0.063483942 -0.227991962 0.23872590
## disp 0.899568146 0.435372320 0.031442656 -0.005086826 -0.01073597
## hp 0.434784387 -0.899307303 0.025093049 0.035715638 0.01655194
## drat -0.002660077 -0.003900205 0.039724928 -0.057129357 -0.13332765
## wt 0.006239405 0.004861023 -0.084910258 0.127962867 -0.24354296
## qsec -0.006671270 0.025011743 -0.071670457 0.886472188 -0.21416101
## vs -0.002729474 0.002198425 0.004203328 0.177123945 -0.01688851
## am -0.001962644 -0.005793760 0.054806391 -0.135658793 -0.06270200
## gear -0.002604768 -0.011272462 0.048524372 -0.129913811 -0.27616440
## carb 0.005766010 -0.027779208 -0.102897231 -0.268931427 -0.85520810
## PC6 PC7 PC8 PC9 PC10
## mpg -0.143790084 -0.039239174 2.271040e-02 -0.002790139 0.030630361
## cyl -0.793818050 0.425011021 -1.890403e-01 0.042677206 0.131718534
## disp 0.007424138 0.000582398 -5.841464e-04 0.003532713 -0.005399132
## hp 0.001653685 -0.002212538 4.748087e-06 -0.003734085 0.001862554
## drat 0.227229260 0.034847411 -9.385817e-01 -0.014131110 0.184102094
## wt -0.127142296 -0.186558915 1.561907e-01 -0.390600261 0.829886844
## qsec -0.189564973 0.254844548 -1.028515e-01 -0.095914479 -0.204240658
## vs 0.102619063 -0.080788938 -2.132903e-03 0.684043835 0.303060724
## am 0.205217266 0.200858874 -2.273255e-02 -0.572372433 -0.162808201
## gear 0.334971103 0.801625551 2.174878e-01 0.156118559 0.203540645
## carb -0.283788381 -0.165474186 3.972219e-03 0.127583043 -0.239954748
## PC11
## mpg -0.0158569365
## cyl 0.1454453628
## disp 0.0009420262
## hp -0.0021526102
## drat -0.0973818815
## wt -0.0198581635
## qsec 0.0110677880
## vs 0.6256900918
## am 0.7331658036
## gear -0.1909325849
## carb 0.0557957968
summary(pca)
## Importance of components:
## PC1 PC2 PC3 PC4 PC5 PC6 PC7
## Standard deviation 136.533 38.14808 3.07102 1.30665 0.90649 0.66354 0.3086
## Proportion of Variance 0.927 0.07237 0.00047 0.00008 0.00004 0.00002 0.0000
## Cumulative Proportion 0.927 0.99937 0.99984 0.99992 0.99996 0.99998 1.0000
## PC8 PC9 PC10 PC11
## Standard deviation 0.286 0.2507 0.2107 0.1984
## Proportion of Variance 0.000 0.0000 0.0000 0.0000
## Cumulative Proportion 1.000 1.0000 1.0000 1.0000
100% of the variance is accounted for in the 7th principal component.
a <- matrix(1:20,nrow = 4, ncol = 5)
print(svd(a))
## $d
## [1] 5.352022e+01 2.363426e+00 4.870683e-15 7.906968e-16
##
## $u
## [,1] [,2] [,3] [,4]
## [1,] -0.4430188 -0.7097424 -0.52426094 0.1585890
## [2,] -0.4798725 -0.2640499 0.81721984 0.1793091
## [3,] -0.5167262 0.1816426 -0.06165685 -0.8343851
## [4,] -0.5535799 0.6273351 -0.23130204 0.4964870
##
## $v
## [,1] [,2] [,3] [,4]
## [1,] -0.09654784 0.76855612 -0.6000256 0.1704800
## [2,] -0.24551564 0.48961420 0.5577664 -0.5560862
## [3,] -0.39448345 0.21067228 0.2312115 0.1606664
## [4,] -0.54345125 -0.06826963 0.2643802 0.6650059
## [5,] -0.69241905 -0.34721155 -0.4533325 -0.4400661
y <- function(a,b,c,d){
x <- (5*a+2*b+2*c+d)
return(x)
}
x1 <- runif(100, min=1, max=2)
x2 <- runif(100, min=1, max=2)
x3 <- rnorm(100, mean=0, sd=1)
x4 <- rnorm(100, mean=0, sd=1)
y = 5*x1 + 2*x2 + 2*x3 + x4
df <- as.data.frame(cbind(y,x1,x2,x3,x4))
pc <- prcomp(df)
summary(pc)
## Importance of components:
## PC1 PC2 PC3 PC4 PC5
## Standard deviation 2.5106 1.0635 0.6312 0.29633 3.009e-16
## Proportion of Variance 0.7958 0.1428 0.0503 0.01109 0.000e+00
## Cumulative Proportion 0.7958 0.9386 0.9889 1.00000 1.000e+00
The results are expected. Since the y is already determined by the equation, most of the variation is caught early with 100% of the variation caught in the fourth principal component.