library(wooldridge)
data(hprice1)
head(force(hprice1),n=5)
## price assess bdrms lotsize sqrft colonial lprice lassess llotsize lsqrft
## 1 300 349.1 4 6126 2438 1 5.703783 5.855359 8.720297 7.798934
## 2 370 351.5 3 9903 2076 1 5.913503 5.862210 9.200593 7.638198
## 3 191 217.7 3 5200 1374 0 5.252274 5.383118 8.556414 7.225482
## 4 195 231.8 3 4600 1448 1 5.273000 5.445875 8.433811 7.277938
## 5 373 319.1 4 6095 2514 1 5.921578 5.765504 8.715224 7.829630
library(stargazer)
modelo_ejemplo<-lm(formula=price~lotsize+sqrft+bdrms, data=hprice1)
stargazer(modelo_ejemplo, title = "Modelo para Ejercicio", type = "html", digits = 4, out.type="html")
| Dependent variable: | |
| price | |
| lotsize | 0.0021*** |
| (0.0006) | |
| sqrft | 0.1228*** |
| (0.0132) | |
| bdrms | 13.8525 |
| (9.0101) | |
| Constant | -21.7703 |
| (29.4750) | |
| Observations | 88 |
| R2 | 0.6724 |
| Adjusted R2 | 0.6607 |
| Residual Std. Error | 59.8335 (df = 84) |
| F Statistic | 57.4602*** (df = 3; 84) |
| Note: | p<0.1; p<0.05; p<0.01 |
| html |
##Libreria lmtest
library(lmtest)
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
dwtest(modelo_ejemplo,alternative = "two.sided",iterations = 1000)
##
## Durbin-Watson test
##
## data: modelo_ejemplo
## DW = 2.1098, p-value = 0.6218
## alternative hypothesis: true autocorrelation is not 0
Como 0.6218 > que 0.05 podemos decir que Ho no se rechaza, por lo tanto no hay evidencia de presencia de autocorrelación
## Libreria car
library(car)
## Loading required package: carData
durbinWatsonTest(modelo_ejemplo,simulate=TRUE, rep=1000)
## lag Autocorrelation D-W Statistic p-value
## 1 -0.05900522 2.109796 0.638
## Alternative hypothesis: rho != 0
library(stargazer)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following object is masked from 'package:car':
##
## recode
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(tidyr)
library(kableExtra)
##
## Attaching package: 'kableExtra'
## The following object is masked from 'package:dplyr':
##
## group_rows
residuos<-modelo_ejemplo$residuals
cbind(residuos,hprice1) %>%
as.data.frame()%>%
mutate(Lag_1=dplyr::lag(residuos,1),
Lag_2=dplyr::lag(residuos,2),
Lag_3=dplyr::lag(residuos,3)) %>%
replace_na(list(Lag_1=0,Lag_2=0,Lag_3=0))->data_BG
kable(head(data_BG,n=6))
| residuos | price | assess | bdrms | lotsize | sqrft | colonial | lprice | lassess | llotsize | lsqrft | Lag_1 | Lag_2 | Lag_3 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| -45.639765 | 300.000 | 349.1 | 4 | 6126 | 2438 | 1 | 5.703783 | 5.855359 | 8.720297 | 7.798934 | 0.000000 | 0.000000 | 0.000000 |
| 74.848732 | 370.000 | 351.5 | 3 | 9903 | 2076 | 1 | 5.913503 | 5.862210 | 9.200593 | 7.638198 | -45.639765 | 0.000000 | 0.000000 |
| -8.236558 | 191.000 | 217.7 | 3 | 5200 | 1374 | 0 | 5.252274 | 5.383118 | 8.556414 | 7.225481 | 74.848732 | -45.639765 | 0.000000 |
| -12.081520 | 195.000 | 231.8 | 3 | 4600 | 1448 | 1 | 5.273000 | 5.445875 | 8.433811 | 7.277938 | -8.236558 | 74.848732 | -45.639765 |
| 18.093192 | 373.000 | 319.1 | 4 | 6095 | 2514 | 1 | 5.921578 | 5.765504 | 8.715224 | 7.829630 | -12.081520 | -8.236558 | 74.848732 |
| 62.939597 | 466.275 | 414.5 | 5 | 8566 | 2754 | 1 | 6.144775 | 6.027073 | 9.055556 | 7.920810 | 18.093192 | -12.081520 | -8.236558 |
regresion_aux_BG<-lm(residuos~lotsize+sqrft+bdrms+Lag_1+Lag_2+Lag_3,data=data_BG)
sumario_BG<-summary(regresion_aux_BG)
R_2_BG<-sumario_BG$r.squared
n<-nrow(data_BG)
LM_BG<-n*R_2_BG
gl=3
p_value<-1-pchisq(q=LM_BG,df=gl)
VC<-qchisq(p=0.95,df=gl)
salida_BG<-c(LM_BG,VC,p_value)
names(salida_BG)<-c("LMBG","Valor Crítico","P value")
stargazer(salida_BG,title="Resultados de la prueba de Breush Godfrey",type="html",digits = 6)
| LMBG | Valor Crítico | P value |
| 3.989284 | 7.814728 | 0.262624 |
Como podemos observar el p value es mayor que 0.05, por lo que podemos decir que la Ho no se rechaza y por lo tanto los residuos del modelo no siguen autocorrelación de oreden 2
library(lmtest)
bgtest(modelo_ejemplo,order=2)
##
## Breusch-Godfrey test for serial correlation of order up to 2
##
## data: modelo_ejemplo
## LM test = 3.0334, df = 2, p-value = 0.2194