3. Principal Component Analysis
3.3 Computation
3.3.1 R packages
library("FactoMineR")
library("factoextra")## Loading required package: ggplot2
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
3.3.2 Data format
data("decathlon2")
head(decathlon2)## X100m Long.jump Shot.put High.jump X400m X110m.hurdle Discus
## SEBRLE 11.04 7.58 14.83 2.07 49.81 14.69 43.75
## CLAY 10.76 7.40 14.26 1.86 49.37 14.05 50.72
## BERNARD 11.02 7.23 14.25 1.92 48.93 14.99 40.87
## YURKOV 11.34 7.09 15.19 2.10 50.42 15.31 46.26
## ZSIVOCZKY 11.13 7.30 13.48 2.01 48.62 14.17 45.67
## McMULLEN 10.83 7.31 13.76 2.13 49.91 14.38 44.41
## Pole.vault Javeline X1500m Rank Points Competition
## SEBRLE 5.02 63.19 291.7 1 8217 Decastar
## CLAY 4.92 60.15 301.5 2 8122 Decastar
## BERNARD 5.32 62.77 280.1 4 8067 Decastar
## YURKOV 4.72 63.44 276.4 5 8036 Decastar
## ZSIVOCZKY 4.42 55.37 268.0 7 8004 Decastar
## McMULLEN 4.42 56.37 285.1 8 7995 Decastar
decathlon2.active <- decathlon2[1:23, 1:10]
head(decathlon2.active[, 1:6], 4)## X100m Long.jump Shot.put High.jump X400m X110m.hurdle
## SEBRLE 11.04 7.58 14.83 2.07 49.81 14.69
## CLAY 10.76 7.40 14.26 1.86 49.37 14.05
## BERNARD 11.02 7.23 14.25 1.92 48.93 14.99
## YURKOV 11.34 7.09 15.19 2.10 50.42 15.31
3.3.4 R code
library("FactoMineR")
res.pca <- PCA(decathlon2.active, graph = FALSE)
print(res.pca)## **Results for the Principal Component Analysis (PCA)**
## The analysis was performed on 23 individuals, described by 10 variables
## *The results are available in the following objects:
##
## name description
## 1 "$eig" "eigenvalues"
## 2 "$var" "results for the variables"
## 3 "$var$coord" "coord. for the variables"
## 4 "$var$cor" "correlations variables - dimensions"
## 5 "$var$cos2" "cos2 for the variables"
## 6 "$var$contrib" "contributions of the variables"
## 7 "$ind" "results for the individuals"
## 8 "$ind$coord" "coord. for the individuals"
## 9 "$ind$cos2" "cos2 for the individuals"
## 10 "$ind$contrib" "contributions of the individuals"
## 11 "$call" "summary statistics"
## 12 "$call$centre" "mean of the variables"
## 13 "$call$ecart.type" "standard error of the variables"
## 14 "$call$row.w" "weights for the individuals"
## 15 "$call$col.w" "weights for the variables"
3.4 Visualization and Interpretation
3.4.1 Eigenvalues/Variances
library("factoextra")
eig.val <- get_eigenvalue(res.pca)
eig.val## eigenvalue variance.percent cumulative.variance.percent
## Dim.1 4.1242133 41.242133 41.24213
## Dim.2 1.8385309 18.385309 59.62744
## Dim.3 1.2391403 12.391403 72.01885
## Dim.4 0.8194402 8.194402 80.21325
## Dim.5 0.7015528 7.015528 87.22878
## Dim.6 0.4228828 4.228828 91.45760
## Dim.7 0.3025817 3.025817 94.48342
## Dim.8 0.2744700 2.744700 97.22812
## Dim.9 0.1552169 1.552169 98.78029
## Dim.10 0.1219710 1.219710 100.00000
fviz_eig(res.pca, addlabels = TRUE, ylim = c(0,50))3.4.2 Graph of variables
3.4.2.1 Results
var <- get_pca_var(res.pca)
var## Principal Component Analysis Results for variables
## ===================================================
## Name Description
## 1 "$coord" "Coordinates for the variables"
## 2 "$cor" "Correlations between variables and dimensions"
## 3 "$cos2" "Cos2 for the variables"
## 4 "$contrib" "contributions of the variables"
head(var$coord)## Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
## X100m -0.8506257 -0.17939806 0.3015564 0.03357320 -0.1944440
## Long.jump 0.7941806 0.28085695 -0.1905465 -0.11538956 0.2331567
## Shot.put 0.7339127 0.08540412 0.5175978 0.12846837 -0.2488129
## High.jump 0.6100840 -0.46521415 0.3300852 0.14455012 0.4027002
## X400m -0.7016034 0.29017826 0.2835329 0.43082552 0.1039085
## X110m.hurdle -0.7641252 -0.02474081 0.4488873 -0.01689589 0.2242200
head(var$cos2)## Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
## X100m 0.7235641 0.0321836641 0.09093628 0.0011271597 0.03780845
## Long.jump 0.6307229 0.0788806285 0.03630798 0.0133147506 0.05436203
## Shot.put 0.5386279 0.0072938636 0.26790749 0.0165041211 0.06190783
## High.jump 0.3722025 0.2164242070 0.10895622 0.0208947375 0.16216747
## X400m 0.4922473 0.0842034209 0.08039091 0.1856106269 0.01079698
## X110m.hurdle 0.5838873 0.0006121077 0.20149984 0.0002854712 0.05027463
head(var$contrib)## Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
## X100m 17.544293 1.7505098 7.338659 0.13755240 5.389252
## Long.jump 15.293168 4.2904162 2.930094 1.62485936 7.748815
## Shot.put 13.060137 0.3967224 21.620432 2.01407269 8.824401
## High.jump 9.024811 11.7715838 8.792888 2.54987951 23.115504
## X400m 11.935544 4.5799296 6.487636 22.65090599 1.539012
## X110m.hurdle 14.157544 0.0332933 16.261261 0.03483735 7.166193
3.4.2.2 Correlation circle
head(var$coord, 4)## Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
## X100m -0.8506257 -0.17939806 0.3015564 0.0335732 -0.1944440
## Long.jump 0.7941806 0.28085695 -0.1905465 -0.1153896 0.2331567
## Shot.put 0.7339127 0.08540412 0.5175978 0.1284684 -0.2488129
## High.jump 0.6100840 -0.46521415 0.3300852 0.1445501 0.4027002
fviz_pca_var(res.pca, col.var = "black")3.4.2.3 Quality of representation
head(var$cos2, 4)## Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
## X100m 0.7235641 0.032183664 0.09093628 0.00112716 0.03780845
## Long.jump 0.6307229 0.078880629 0.03630798 0.01331475 0.05436203
## Shot.put 0.5386279 0.007293864 0.26790749 0.01650412 0.06190783
## High.jump 0.3722025 0.216424207 0.10895622 0.02089474 0.16216747
library("corrplot")## corrplot 0.92 loaded
corrplot(var$cos2, is.corr = FALSE)fviz_cos2(res.pca, choice = "var", axes = 1:2)fviz_pca_var(res.pca, col.var = "cos2",
gradient.cols=c("#00AFBB", "#E7B800", "#FC4E07"),
repel = TRUE)fviz_pca_var(res.pca, alpha.var = "cos2")3.4.2.4 Contributions of variables to PCs
head(var$contrib, 4)## Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
## X100m 17.544293 1.7505098 7.338659 0.1375524 5.389252
## Long.jump 15.293168 4.2904162 2.930094 1.6248594 7.748815
## Shot.put 13.060137 0.3967224 21.620432 2.0140727 8.824401
## High.jump 9.024811 11.7715838 8.792888 2.5498795 23.115504
library("corrplot")
corrplot(var$contrib, is.corr = FALSE)fviz_contrib(res.pca, choice = "var", axes = 1, top = 10)fviz_contrib(res.pca, choice = "var", axes = 2, top = 10)fviz_contrib(res.pca, choice = "var", axes = 1:2, top = 10)fviz_pca_var(res.pca, col.var = "contrib", gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"))fviz_pca_var(res.pca, alpha.var = "contrib")3.4.2.5 Color by a custom continous variable
set.seed(123)
my.cont.var <- rnorm(10)fviz_pca_var(res.pca, col.var = my.cont.var, gradient.cols = c("blue", "yellow", "red"), legend.title = "Cont.Var")3.4.2.6 Color by groups
set.seed(123)
res.km <- kmeans(var$coord, centers = 3, nstart = 25)
grp <- as.factor(res.km$cluster)
fviz_pca_var(res.pca, col.var = grp, palette = c("#0073C2FF", "#EFC000FF", "#868686FF"), legend.title= "Cluster")3.4.3 Dimesion description
res.desc <- dimdesc(res.pca, axes = c(1,2), proba = 0.05)
res.desc$Dim.1##
## Link between the variable and the continuous variables (R-square)
## =================================================================================
## correlation p.value
## Long.jump 0.7941806 6.059893e-06
## Discus 0.7432090 4.842563e-05
## Shot.put 0.7339127 6.723102e-05
## High.jump 0.6100840 1.993677e-03
## Javeline 0.4282266 4.149192e-02
## X400m -0.7016034 1.910387e-04
## X110m.hurdle -0.7641252 2.195812e-05
## X100m -0.8506257 2.727129e-07
res.desc$Dim.2##
## Link between the variable and the continuous variables (R-square)
## =================================================================================
## correlation p.value
## Pole.vault 0.8074511 3.205016e-06
## X1500m 0.7844802 9.384747e-06
## High.jump -0.4652142 2.529390e-02
3.4.4 Graph of individuals
3.4.4.1 Results
ind <- get_pca_ind(res.pca)
ind## Principal Component Analysis Results for individuals
## ===================================================
## Name Description
## 1 "$coord" "Coordinates for the individuals"
## 2 "$cos2" "Cos2 for the individuals"
## 3 "$contrib" "contributions of the individuals"
head(ind$coord)## Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
## SEBRLE 0.1955047 1.5890567 0.6424912 0.08389652 1.16829387
## CLAY 0.8078795 2.4748137 -1.3873827 1.29838232 -0.82498206
## BERNARD -1.3591340 1.6480950 0.2005584 -1.96409420 0.08419345
## YURKOV -0.8889532 -0.4426067 2.5295843 0.71290837 0.40782264
## ZSIVOCZKY -0.1081216 -2.0688377 -1.3342591 -0.10152796 -0.20145217
## McMULLEN 0.1212195 -1.0139102 -0.8625170 1.34164291 1.62151286
head(ind$cos2)## Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
## SEBRLE 0.007530179 0.49747323 0.081325232 0.001386688 0.2689026575
## CLAY 0.048701249 0.45701660 0.143628117 0.125791741 0.0507850580
## BERNARD 0.197199804 0.28996555 0.004294015 0.411819183 0.0007567259
## YURKOV 0.096109800 0.02382571 0.778230322 0.061812637 0.0202279796
## ZSIVOCZKY 0.001574385 0.57641944 0.239754152 0.001388216 0.0054654972
## McMULLEN 0.002175437 0.15219499 0.110137872 0.266486530 0.3892621478
head(ind$contrib)## Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
## SEBRLE 0.04029447 5.9714533 1.4483919 0.03734589 8.45894063
## CLAY 0.68805664 14.4839248 6.7537381 8.94458283 4.21794385
## BERNARD 1.94740183 6.4234107 0.1411345 20.46819433 0.04393073
## YURKOV 0.83308415 0.4632733 22.4517396 2.69663605 1.03075263
## ZSIVOCZKY 0.01232413 10.1217143 6.2464325 0.05469230 0.25151025
## McMULLEN 0.01549089 2.4310854 2.6102794 9.55055888 16.29493304
3.4.4.2 Plots: quality and contribution
fviz_pca_ind(res.pca)fviz_pca_ind(res.pca, col.ind = "cos2", gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"), repel = TRUE)fviz_pca_ind(res.pca, pointsize = "cos2", pointshape = 21, fill = "#00AFBB", repel = TRUE)fviz_pca_ind(res.pca, col.ind = "cos2", pointsize = "cos2", gradient.cols = c("#00AFBB", "#e7b800", "#fc4e07"), repel = TRUE)fviz_cos2(res.pca, choice = "ind")fviz_contrib(res.pca, choice = "ind", axes = 1:2)3.4.4.3 Color by a custom continous variable
set.seed(123)
my.cont.var <- rnorm(23)
fviz_pca_ind(res.pca, col.ind = my.cont.var, gradient.cols = c("blue", "purple", "pink"), legend.title = "Cont.Var")3.4.4.4 Color by groups
head(iris, 3)## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1 5.1 3.5 1.4 0.2 setosa
## 2 4.9 3.0 1.4 0.2 setosa
## 3 4.7 3.2 1.3 0.2 setosa
iris.pca <- PCA(iris[,-5], graph = FALSE)fviz_pca_ind(iris.pca,
geom.ind = "point",
col.ind = iris$Species,
palette = c("#00afbb", "#e7b800", "#fc4e04"),
addEllipses = TRUE,
legend.title = "Groups")fviz_pca_ind(iris.pca,
geom.ind = "point",
col.ind = iris$Species,
palette = c("#00afbb", "#e7b800", "#fc4e04"),
addEllipses = TRUE, ellypse.type = "confidence",
legend.title = "Groups")fviz_pca_ind(iris.pca,
label = "none",
habillage = iris$Species,
addEllipses = TRUE,
palette = "jco")3.4.5 Graph customization
3.4.5.1 Dimesions
fviz_pca_var(res.pca, axes = c(2, 3))fviz_pca_ind(res.pca, axes = c(2, 3))3.4.5.2 Plot elements: point, text, arrow
fviz_pca_var(res.pca, geom.var = c("point", "text"))fviz_pca_ind(res.pca, geom.ind = "text")3.4.5.3 Size ans shape of plot elements
fviz_pca_var(res.pca, arrowsize = 1, labelsize = 5, repel = TRUE)fviz_pca_ind(res.pca, pointsize = 3, pointshape = 21, fill = "lightblue", labelsize = 5, repel = TRUE)3.4.5.4 Ellipses
fviz_pca_ind(iris.pca, geom.ind = "point", col.ind = iris$Species, palette = c("#00afbb", "#e7b800", "#fc4e07"), addEllipses = TRUE, ellipse.type = "confidence", legend.title = "Groups")fviz_pca_ind(iris.pca, geom.ind = "point", col.ind = iris$Species, palette = c("#00afbb", "#e7b800", "#fc4e07"), addEllipses = TRUE, ellipse.type="convex", legend.title = "Groups")3.4.5.5 Group mean points
fviz_pca_ind(iris.pca,
geom.ind = "point",
group.ind = iris$Species,
legend.title = "Groups",
mean.point = FALSE)3.4.5.6 Axis lines
fviz_pca_var(res.pca, axes.linetype = "blank")3.4.5.7 Graphical parameters
ind.p <- fviz_pca_ind(iris.pca, geom = "point", col.ind = iris$Species)
ggpubr::ggpar(ind.p, title = "Principal Component Analysis", subtitle = "Iris data set", caption = "Source: factoextra", xlab = "PC1", ylab = "PC2", legend.title = "Species", legend.position = "top", ggtheme = theme_gray(), palette = "jco")3.4.6 Biplot
fviz_pca_biplot(res.pca, repel = TRUE, col.var = "#2e9fdf", col.ind = "#696969")fviz_pca_biplot(iris.pca, col.ind = iris$Species, palette = "jco", addEllipses = TRUE, label = "var", col.var = "black", repel = TRUE, legend.title = "Species")fviz_pca_biplot(iris.pca,
geom.ind = "point",
pointshape=21,
pointsize=2.5,
fill.ind = iris$Species,
col.ind = "black",
col.var = factor(c("sepal","sepal","petal","petal")),
legend.title = list(fill = "Species", color = "Clusters"),
repel = TRUE)+
ggpubr::fill_palette("jco")+
ggpubr::color_palette("npg")fviz_pca_biplot(iris.pca,
geom.ind = "point",
fill.ind = iris$Species, col.ind = "black",
pointshape = 21, pointsize = 2,
palette = "jco",
addEllipses = TRUE,
alpha.var = "contrib", col.var = "contrib",
gradient.cols = "RdYlBu",
legend.title = list(fill = "Species", color = "Contrib", alpha = "Contrib"))3.5 Supplementary elements
3.5.2 Specification in PCA
res.pca <- PCA(decathlon2, ind.sup = 24:27, quanti.sup = 11:12, quali.sup = 13, graph = FALSE)3.5.3 Quantitative variables
res.pca$quanti.sup## $coord
## Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
## Rank -0.7014777 -0.24519443 -0.1834294 0.05575186 -0.07382647
## Points 0.9637075 0.07768262 0.1580225 -0.16623092 -0.03114711
##
## $cor
## Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
## Rank -0.7014777 -0.24519443 -0.1834294 0.05575186 -0.07382647
## Points 0.9637075 0.07768262 0.1580225 -0.16623092 -0.03114711
##
## $cos2
## Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
## Rank 0.4920710 0.060120310 0.03364635 0.00310827 0.0054503477
## Points 0.9287322 0.006034589 0.02497110 0.02763272 0.0009701427
fviz_pca_var(res.pca)fviz_pca_var(res.pca,
col.var = "black",
col.quanti.sup = "red")fviz_pca_var(res.pca, invisible="var")fviz_pca_var(res.pca, invisible = "quanti.sup")p <- fviz_pca_var(res.pca, invisible="quanti.sup")
fviz_add(p, res.pca$quanti.sup$coord,
geom = c("arrow", "text"),
color = "red")3.5.4 Individuals
res.pca$ind.sup## $coord
## Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
## KARPOV 0.7947206 0.77951227 -1.6330203 1.7242283 -0.75070396
## WARNERS -0.3864645 -0.12159237 -1.7387332 -0.7063341 -0.03230011
## Nool -0.5591306 1.97748871 -0.4830358 -2.2784526 -0.25461493
## Drews -1.1092038 0.01741477 -3.0488182 -1.5343468 -0.32642192
##
## $cos2
## Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
## KARPOV 0.05104677 4.911173e-02 0.21553730 0.24028620 0.0455487744
## WARNERS 0.02422707 2.398250e-03 0.49039677 0.08092862 0.0001692349
## Nool 0.02897149 3.623868e-01 0.02162236 0.48108780 0.0060077529
## Drews 0.09207094 2.269527e-05 0.69560547 0.17617609 0.0079736753
##
## $dist
## KARPOV WARNERS Nool Drews
## 3.517470 2.482899 3.284943 3.655527
p <- fviz_pca_ind(res.pca, col.ind.sup = "blue", repel = TRUE)
p <- fviz_add(p, res.pca$quali.sup$coord, color = "red")
p3.5.5 Qualitative variables
res.pca$quali## $coord
## Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
## Decastar -1.343451 0.1218097 -0.03789524 0.1808357 0.1343364
## OlympicG 1.231497 -0.1116589 0.03473730 -0.1657661 -0.1231417
##
## $cos2
## Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
## Decastar 0.9051233 0.007440939 0.0007201669 0.01639956 0.009050062
## OlympicG 0.9051233 0.007440939 0.0007201669 0.01639956 0.009050062
##
## $v.test
## Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
## Decastar -2.970766 0.4034256 -0.1528767 0.8971036 0.7202457
## OlympicG 2.970766 -0.4034256 0.1528767 -0.8971036 -0.7202457
##
## $dist
## Decastar OlympicG
## 1.412108 1.294433
##
## $eta2
## Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
## Competition 0.4011568 0.00739783 0.001062332 0.03658159 0.02357972
fviz_pca_ind(res.pca, habillage = 13, addEllipses = TRUE, ellipse.type="confidence", palette="jco", repel=TRUE)3.6 Filtering results
fviz_pca_var(res.pca, select.var = list(cos2=0.6))fviz_pca_var(res.pca, select.var = list(cos2=5))name <- list(name=c("Long.Jump", "High.Jump", "X100m"))
fviz_pca_var(res.pca, select.var = name)fviz_pca_biplot(res.pca, select.ind = list(contrib=5),
select.var = list(contrib=5),
ggtheme = theme_minimal())3.7 Exporting results
3.7.1 Export plots to PDF/PNG files
scree.plot <- fviz_eig(res.pca)
ind.plot <- fviz_pca_ind(res.pca)
var.plot <- fviz_pca_var(res.pca)pdf("PCA.pdf")
print(scree.plot)
print(ind.plot)
print(var.plot)
dev.off()## png
## 2
png("pca-scree-plot.png")
print(scree.plot)
dev.off()## png
## 2
png("pca-variables.png")
print(var.plot)
dev.off()## png
## 2
png("pca-individuals.png")
print(ind.plot)
dev.off()## png
## 2
library(ggpubr)
ggexport(plotlist = list(scree.plot, ind.plot, var.plot),
filename = "PCA.pdf")## file saved to PCA.pdf
ggexport(plotlist = list(scree.plot, ind.plot, var.plot),
nrow = 2, ncol = 2,
filename = "PCA.pdf")## file saved to PCA.pdf
ggexport(plotlist = list(scree.plot, ind.plot, var.plot),
filename = "PCA.png")## [1] "PCA%03d.png"
## file saved to PCA%03d.png
3.7.2 Export results to txt/csv files
write.infile(res.pca, "pca.txt", sep = "\t")
write.infile(res.pca, "pca.csv", sep = ";")3.8 Summary
res.pca <- prcomp(iris[, -5], scale. = TRUE)res.pca <- princomp(iris[, -5], cor = TRUE)library(ade4)##
## Attaching package: 'ade4'
## The following object is masked from 'package:FactoMineR':
##
## reconst
res.pca <- dudi.pca(iris[, -5], scannf = FALSE, nf = 5)library(ExPosition)## Loading required package: prettyGraphs
res.pca <- epPCA(iris[, -5], graph = FALSE)library(factoextra)
fviz_eig(res.pca)fviz_pca_ind(res.pca)fviz_pca_var(res.pca)