Base de datos.
library(wooldridge)
data(hprice1)
head(force(hprice1),n=5)
300 |
349.1 |
4 |
6126 |
2438 |
1 |
5.703783 |
5.855359 |
8.720297 |
7.798934 |
370 |
351.5 |
3 |
9903 |
2076 |
1 |
5.913503 |
5.862210 |
9.200593 |
7.638198 |
191 |
217.7 |
3 |
5200 |
1374 |
0 |
5.252274 |
5.383118 |
8.556414 |
7.225481 |
195 |
231.8 |
3 |
4600 |
1448 |
1 |
5.273000 |
5.445875 |
8.433811 |
7.277938 |
373 |
319.1 |
4 |
6095 |
2514 |
1 |
5.921578 |
5.765504 |
8.715224 |
7.829630 |
1. Estimación del modelo.
library(stargazer)
modelo_ejercicio<-lm(formula = price~lotsize+sqrft+bdrms, data=hprice1)
stargazer(modelo_ejercicio, title = "Ejercicio", type = "html")
Ejercicio
|
|
Dependent variable:
|
|
|
|
price
|
|
lotsize
|
0.002***
|
|
(0.001)
|
|
|
sqrft
|
0.123***
|
|
(0.013)
|
|
|
bdrms
|
13.853
|
|
(9.010)
|
|
|
Constant
|
-21.770
|
|
(29.475)
|
|
|
|
Observations
|
88
|
R2
|
0.672
|
Adjusted R2
|
0.661
|
Residual Std. Error
|
59.833 (df = 84)
|
F Statistic
|
57.460*** (df = 3; 84)
|
|
Note:
|
p<0.1; p<0.05;
p<0.01
|
2. Uso de la librería lmtest.
library(lmtest)
prueba_white<-bptest(modelo_ejercicio,~I(lotsize^2)+I(sqrft^2)+I(bdrms^2)+lotsize*sqrft+lotsize*bdrms+sqrft*bdrms,data = hprice1)
print(prueba_white)
##
## studentized Breusch-Pagan test
##
## data: modelo_ejercicio
## BP = 33.732, df = 9, p-value = 9.953e-05
Como 0.00009953 ≤ 0.05 Se rechaza la H0, por lo tanto hay evidencia de
que la varianza de los residuos es heterocedástica
Grafica utilizando librería fastGraph.
library(fastGraph)
alphan_sig<-0.05
gl<-3+3+3
u_i<-modelo_ejercicio$residuals
data_prueba_white<-as.data.frame(cbind(u_i,hprice1))
regresion_auxiliar<-lm(formula = I(u_i^2)~lotsize+sqrft+bdrms+I(lotsize^2)+I(sqrft^2)+I(bdrms^2)+lotsize*sqrft+lotsize*bdrms+sqrft*bdrms,data = data_prueba_white)
sumario<-summary(regresion_auxiliar)
n<-nrow(data_prueba_white)
R_2<-sumario$r.squared
LM_w<-n*R_2
VC<-qchisq(p = 0.95,df = gl)
shadeDist(LM_w,ddist = "dchisq",
parm1 = gl,
lower.tail = FALSE, xmin = 0,
sub=paste("VC:", round(VC,2)," ","LM_w", round(LM_w,2)))
